Don't clobber passed run IDs with newer failed results. This is potentially a
bit more expensive as we might re-fetch failed results at every run after a
PASS, but the IDs in our cache will be correct so that we can expose them in
the UI.
Traceback (most recent call last):
File "/home/ubuntu-archive/proposed-migration/code/b2/britney.py", line 3380, in <module>
Britney().main()
File "/home/ubuntu-archive/proposed-migration/code/b2/britney.py", line 3329, in main
self.write_excuses()
File "/home/ubuntu-archive/proposed-migration/code/b2/britney.py", line 1992, in write_excuses
upgrade_me.remove(e.name)
ValueError: list.remove(x): x not in list
Splitting up the processes of request(), submit(), and collect() makes our data
structures, house keeping, and code unnecessarily complicated. Drop the latter
two and now do all of it in just request(). This avoids having to have a
separate requested_test map, having to fetch test results twice, and gets rid
of some state keeping.
This could have led to (re-)fetching results more than once when we only got
the latest ID from the few triggers we were currently looking at, not for all
possible triggers of a package. Drop this kludge, and replace it with a proper
full iteration and caching.
- Invert the map to go from triggers to tested packages, instead of the other
way around. This is the lookup and update mode that we usually want, which
simplifies the code and speeds up lookups. The one exception is for fetching
results (as that is per tested source package, not per trigger), but there
is a FIXME to get rid of the "triggers" argument completely.
- Stop tracking tested package versions. We don't actually care about it
anywhere, as the important piece of data is the trigger.
- Drop our home-grown pending.txt format and write pending.json instead.
ATTENTION: This changes the on-disk cache format for pending tests, so
pending.txt needs to be cleaned up manually and any pending tests at the time
of upgrading to this revision will be re-run.
- Invert the map to go from triggers to tested versions, instead of from
tested versions to triggers. This is the lookup and update mode that we
usually want (except for determining "ever passed"), thus this simplifies
the code and speeds up lookups.
- Drop "latest_stamp" in favor of tracking individual run IDs for every
result. This allows us in the future to directly expose the run IDs on
excuses.{yaml,html}, e. g. by providing direct links to result logs.
- Drop "ever_passed" flag as we can compute this from the individual results.
- Don't track multiple package versions for a package and a particular
trigger. We are only interested in the latest (passing) version and don't
otherwise use the tested version except for displaying.
This requires adjusting the test_dkms_results_per_kernel_old_results test, as
we now consistently ignore "ever passed" for kernel tests also for "RUNNING"
vs. "RUNNING-ALWAYSFAILED", not just for "PASS" vs. "ALWAYSFAIL".
Also fix a bug in results() when checking if a test for which we don't have
results yet is currently running: Check for correct trigger, not for the
current source package version. This most probably already fixes LP: #1494786.
Also upgrade the warning about "result is neither known nor pending" to a grave
error, for making it more obvious to debug remaining errors with this.
ATTENTION: This changes the on-disk format of results.cache, and thus this
needs to be dropped and rebuilt when rolling this out.
We don't want to accept a result for an older package version than what the
trigger says.
Also drop two repeated (and thus unnecessary) results in set_results().
For using britney on PPAs we need to add the "ppas" test parameter to AMQP
autopkgtest requests. Add ADT_PPAS britney.conf option which gets passed
through to test requests.
In situations where we don't have an up to date existing results.cache, the
fallback for handling test results would attribute old test results to new
requests, as we don't have a solid way to map them. This is detrimental for ad
hoc britney instances, like for testing PPAs, and also when we need to rebuild
our cache.
Ignore test results without a package trigger, and drop the code for handling
those.
The main risk here is that if we need to rebuild the cache from scratch we
might miss historic "PASS" results which haven't run since we switched to
recording triggers two months ago. But in these two months most of the
interesting packages have run, in particular for the development series and for
stable kernels, and non-kernel SRUs are not auto-promoted anyway.
It does not make sense to have first a passing and then a failing result for
the same package version and trigger. We should prefer old passing results over
new failed ones for the same version (this isn't done yet, but will be soon).
python3-amqplib already exists in trusty, but python3-kombu does not. This
makes it possible to run britney on a standard trusty without manual backports.
We're going to modify britney so that RUNNING tests don't block
promotion if they have never failed - for this we will need to change a
few tests so that the packages being tested have passed before, meaning
that there could potentially be a regression.
Stop special-casing the kernel and move to one test run per trigger. This
allows us to only install the triggering package from unstable and run the rest
out of testing, which gives much better isolation.
For linux* themselves we don't want to trigger tests -- these should all come
from linux-meta*. A new kernel ABI without a corresponding -meta won't be
installed and thus we can't sensibly run tests against it. This caused
unnecessary and wrong regressions, and unnecessary runs (like linux-goldfish
being triggered by linux).
We want to treat linux-$flavor and linux-meta-$flavor as one set in britney
which goes in together or not at all. We never want to promote linux-$flavor
without the accompanying linux-meta-$flavor.
Introduce a synthetic linux* → linux-meta* dependency to enforce this grouping.
Test requesting: Don't re-request a test if we already have a result for it for
that trigger (for a relevant version), but there is a new version of the tested
package. First this unnecessarily delays propagation as the test will go back
to "in progress", and second if it fails in the next run this isn't the fault
of the original trigger, but the new version of the tested package.
Result finding: Don't limit acceptable results to the latest version of the
tested package. It's perfectly fine if an earlier version (like the one in
testing, or an earlier upload) was ran and gave a result for the requesting
trigger. If it's PASS, then we are definitively done, and if it's a failure
there is the "Checking for new results for failed test..." logic in collect()
logic which will also accept newer results.
This was a confusing inconsistency: libgreen1 and green binaries are both built
from the "green" source, so they should consistently declare that they have
"Testsuite: autopkgtest". Adjust the tests accordingly.
In addition to not reading ever_passed for kernel triggers, we must also not
write it for those. Otherwise we introduce false regressions for e. g. "dkms"
when some DKMS package always failed on the main kernel but succeeds on one
flavour.
We trigger independent tests for every linux/linux-meta* reverse dependencies,
as they run under the triggering kernel. Thus "ever passed" is rather
meaningless for these as we don't want to track this on a per-trigger basis (as
it would be wrong for everything else but kernels). This led to a lot of false
regressions, as some DKMS modules only work on some kernel flavours.
The kernel team is doing per-kernel regression analysis of the test results, so
we don't need to duplicate this logic in britney. Thus effectively disable the
"Regression" state for kernel reverse dependencies, and rely on the kernel
test machinery to untag the tracking bug only if there are no actual
regressions.