You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

376 lines
14 KiB

# -*- coding: utf-8 -*-
# Refactored parts from britney.py, which is/was:
# Copyright (C) 2001-2008 Anthony Towns <ajt@debian.org>
# Andreas Barth <aba@debian.org>
# Fabio Tranchitella <kobold@debian.org>
# Copyright (C) 2010-2012 Adam D. Barratt <adsb@debian.org>
# Copyright (C) 2012 Niels Thykier <niels@thykier.net>
#
# New portions
# Copyright (C) 2013 Adam D. Barratt <adsb@debian.org>
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
import apt_pkg
from functools import partial
from itertools import chain, ifilter, ifilterfalse, izip, repeat
import re
import time
from migrationitem import MigrationItem, UnversionnedMigrationItem
from consts import (VERSION, BINARIES, PROVIDES, DEPENDS, CONFLICTS,
RDEPENDS, RCONFLICTS, ARCHITECTURE, SECTION)
binnmu_re = re.compile(r'^(.*)\+b\d+$')
def same_source(sv1, sv2, binnmu_re=binnmu_re):
"""Check if two version numbers are built from the same source
This method returns a boolean value which is true if the two
version numbers specified as parameters are built from the same
source. The main use of this code is to detect binary-NMU.
binnmu_re is an optimization to avoid "load global".
"""
if sv1 == sv2:
return 1
m = binnmu_re.match(sv1)
if m: sv1 = m.group(1)
m = binnmu_re.match(sv2)
if m: sv2 = m.group(1)
if sv1 == sv2:
return 1
return 0
def ifilter_except(container, iterable=None):
"""Filter out elements in container
If given an iterable it returns a filtered iterator, otherwise it
returns a function to generate filtered iterators. The latter is
useful if the same filter has to be (re-)used on multiple
iterators that are not known on beforehand.
"""
if iterable is not None:
return ifilterfalse(container.__contains__, iterable)
return partial(ifilterfalse, container.__contains__)
def ifilter_only(container, iterable=None):
"""Filter out elements in which are not in container
If given an iterable it returns a filtered iterator, otherwise it
returns a function to generate filtered iterators. The latter is
useful if the same filter has to be (re-)used on multiple
iterators that are not known on beforehand.
"""
if iterable is not None:
return ifilter(container.__contains__, iterable)
return partial(ifilter, container.__contains__)
def undo_changes(lundo, systems, sources, binaries,
BINARIES=BINARIES, PROVIDES=PROVIDES):
"""Undoes one or more changes to testing
* lundo is a list of (undo, item)-tuples
* systems is the britney-py.c system
* sources is the table of all source packages for all suites
* binaries is the table of all binary packages for all suites
and architectures
The "X=X" parameters are optimizations to avoid "load global"
in loops.
"""
# We do the undo process in "4 steps" and each step must be
# fully completed for each undo-item before starting on the
# next.
#
# see commit:ef71f0e33a7c3d8ef223ec9ad5e9843777e68133 and
# #624716 for the issues we had when we did not do this.
# STEP 1
# undo all the changes for sources
for (undo, item) in lundo:
for k in undo['sources']:
if k[0] == '-':
del sources["testing"][k[1:]]
else:
sources["testing"][k] = undo['sources'][k]
# STEP 2
# undo all new binaries (consequence of the above)
for (undo, item) in lundo:
if not item.is_removal and item.package in sources[item.suite]:
for p in sources[item.suite][item.package][BINARIES]:
binary, arch = p.split("/")
if item.architecture in ['source', arch]:
del binaries["testing"][arch][0][binary]
systems[arch].remove_binary(binary)
# STEP 3
# undo all other binary package changes (except virtual packages)
for (undo, item) in lundo:
for p in undo['binaries']:
binary, arch = p.split("/")
if binary[0] == "-":
del binaries['testing'][arch][0][binary[1:]]
systems[arch].remove_binary(binary[1:])
else:
binaries_t_a = binaries['testing'][arch][0]
binaries_t_a[binary] = undo['binaries'][p]
systems[arch].remove_binary(binary)
systems[arch].add_binary(binary, binaries_t_a[binary][:PROVIDES] + \
[", ".join(binaries_t_a[binary][PROVIDES]) or None])
# STEP 4
# undo all changes to virtual packages
for (undo, item) in lundo:
for p in undo['nvirtual']:
j, arch = p.split("/")
del binaries['testing'][arch][1][j]
for p in undo['virtual']:
j, arch = p.split("/")
if j[0] == '-':
del binaries['testing'][arch][1][j[1:]]
else:
binaries['testing'][arch][1][j] = undo['virtual'][p]
def old_libraries_format(libs):
"""Format old libraries in a smart table"""
libraries = {}
for i in libs:
pkg = i.package
if pkg in libraries:
libraries[pkg].append(i.architecture)
else:
libraries[pkg] = [i.architecture]
return "\n".join(" " + k + ": " + " ".join(libraries[k]) for k in libraries) + "\n"
def register_reverses(packages, provides, check_doubles=True, iterator=None,
parse_depends=apt_pkg.parse_depends,
DEPENDS=DEPENDS, CONFLICTS=CONFLICTS,
RDEPENDS=RDEPENDS, RCONFLICTS=RCONFLICTS):
"""Register reverse dependencies and conflicts for a given
sequence of packages
This method registers the reverse dependencies and conflicts for a
given sequence of packages. "packages" is a table of real
packages and "provides" is a table of virtual packages.
iterator is the sequence of packages for which the reverse
relations should be updated.
The "X=X" parameters are optimizations to avoid "load global" in
the loops.
"""
if iterator is None:
iterator = packages.iterkeys()
else:
iterator = ifilter_only(packages, iterator)
for pkg in iterator:
# register the list of the dependencies for the depending packages
dependencies = []
pkg_data = packages[pkg]
if pkg_data[DEPENDS]:
dependencies.extend(parse_depends(pkg_data[DEPENDS], False))
# go through the list
for p in dependencies:
for a in p:
dep = a[0]
# register real packages
if dep in packages and (not check_doubles or pkg not in packages[dep][RDEPENDS]):
packages[dep][RDEPENDS].append(pkg)
# also register packages which provide the package (if any)
if dep in provides:
for i in provides[dep]:
if i not in packages: continue
if not check_doubles or pkg not in packages[i][RDEPENDS]:
packages[i][RDEPENDS].append(pkg)
# register the list of the conflicts for the conflicting packages
if pkg_data[CONFLICTS]:
for p in parse_depends(pkg_data[CONFLICTS], False):
for a in p:
con = a[0]
# register real packages
if con in packages and (not check_doubles or pkg not in packages[con][RCONFLICTS]):
packages[con][RCONFLICTS].append(pkg)
# also register packages which provide the package (if any)
if con in provides:
for i in provides[con]:
if i not in packages: continue
if not check_doubles or pkg not in packages[i][RCONFLICTS]:
packages[i][RCONFLICTS].append(pkg)
def compute_reverse_tree(packages_s, pkg, arch,
set=set, flatten=chain.from_iterable,
RDEPENDS=RDEPENDS):
"""Calculate the full dependency tree for the given package
This method returns the full dependency tree for the package
"pkg", inside the "arch" architecture for a given suite flattened
as an iterable. The first argument "packages_s" is the binary
package table for that given suite (e.g. Britney().binaries["testing"]).
The tree (or graph) is returned as an iterable of (package, arch)
tuples and the iterable will contain ("pkg", "arch") if it is
available on that architecture.
If "pkg" is not available on that architecture in that suite,
this returns an empty iterable.
The method does not promise any ordering of the returned
elements and the iterable is not reusable.
The flatten=... and the "X=X" parameters are optimizations to
avoid "load global" in the loops.
"""
binaries = packages_s[arch][0]
if pkg not in binaries:
return frozenset()
rev_deps = set(binaries[pkg][RDEPENDS])
seen = set([pkg])
binfilt = ifilter_only(binaries)
revfilt = ifilter_except(seen)
while rev_deps:
# mark all of the current iteration of packages as affected
seen |= rev_deps
# generate the next iteration, which is the reverse-dependencies of
# the current iteration
rev_deps = set(revfilt(flatten( binaries[x][RDEPENDS] for x in binfilt(rev_deps) )))
return izip(seen, repeat(arch))
def write_nuninst(filename, nuninst):
"""Write the non-installable report
Write the non-installable report derived from "nuninst" to the
file denoted by "filename".
"""
with open(filename, 'w') as f:
# Having two fields with (almost) identical dates seems a bit
# redundant.
f.write("Built on: " + time.strftime("%Y.%m.%d %H:%M:%S %z", time.gmtime(time.time())) + "\n")
f.write("Last update: " + time.strftime("%Y.%m.%d %H:%M:%S %z", time.gmtime(time.time())) + "\n\n")
for k in nuninst:
f.write("%s: %s\n" % (k, " ".join(nuninst[k])))
def read_nuninst(filename, architectures):
"""Read the non-installable report
Read the non-installable report from the file denoted by
"filename" and return it. Only architectures in "architectures"
will be included in the report.
"""
nuninst = {}
with open(filename) as f:
for r in f:
if ":" not in r: continue
arch, packages = r.strip().split(":", 1)
if arch.split("+", 1)[0] in architectures:
nuninst[arch] = set(packages.split())
return nuninst
def newly_uninst(nuold, nunew):
"""Return a nuninst statstic with only new uninstallable packages
This method subtracts the uninstallable packages of the statistic
"nunew" from the statistic "nuold".
It returns a dictionary with the architectures as keys and the list
of uninstallable packages as values.
"""
res = {}
for arch in ifilter_only(nunew, nuold):
res[arch] = [x for x in nunew[arch] if x not in nuold[arch]]
return res
def eval_uninst(architectures, nuninst):
"""Return a string which represents the uninstallable packages
This method returns a string which represents the uninstallable
packages reading the uninstallability statistics "nuninst".
An example of the output string is:
* i386: broken-pkg1, broken-pkg2
"""
parts = []
for arch in architectures:
if arch in nuninst and nuninst[arch]:
parts.append(" * %s: %s\n" % (arch,", ".join(sorted(nuninst[arch]))))
return "".join(parts)
def write_heidi(filename, sources_t, packages_t,
VERSION=VERSION, SECTION=SECTION,
ARCHITECTURE=ARCHITECTURE, sorted=sorted):
"""Write the output HeidiResult
This method write the output for Heidi, which contains all the
binary packages and the source packages in the form:
<pkg-name> <pkg-version> <pkg-architecture> <pkg-section>
<src-name> <src-version> source <src-section>
The file is written as "filename", it assumes all sources and
packages in "sources_t" and "packages_t" to be the packages in
"testing".
The "X=X" parameters are optimizations to avoid "load global" in
the loops.
"""
with open(filename, 'w') as f:
# write binary packages
for arch in sorted(packages_t):
binaries = packages_t[arch][0]
for pkg_name in sorted(binaries):
pkg = binaries[pkg_name]
pkgv = pkg[VERSION]
pkgarch = pkg[ARCHITECTURE] or 'all'
pkgsec = pkg[SECTION] or 'faux'
f.write('%s %s %s %s\n' % (pkg_name, pkgv, pkgarch, pkgsec))
# write sources
for src_name in sorted(sources_t):
src = sources_t[src_name]
srcv = src[VERSION]
srcsec = src[SECTION] or 'unknown'
f.write('%s %s source %s\n' % (src_name, srcv, srcsec))
def make_migrationitem(package, sources, VERSION=VERSION):
"""Convert a textual package specification to a MigrationItem
sources is a list of source packages in each suite, used to determine
the version which should be used for the MigrationItem.
"""
item = UnversionnedMigrationItem(package)
return MigrationItem("%s/%s" % (item.uvname, sources[item.suite][item.package][VERSION]))