Zstandard's format is stable and documented in [RFC8878](https://datatracker.ietf.org/doc/html/rfc8878). Multiple independent implementations are already available.
This repository represents the reference implementation, provided as an open-source dual [BSD](LICENSE) and [GPLv2](COPYING) licensed **C** library,
Zstd can also offer stronger compression ratios at the cost of compression speed.
Speed vs Compression trade-off is configurable by small increments.
Decompression speed is preserved and remains roughly the same at all settings,
a property shared by most LZ compression algorithms, such as [zlib] or lzma.
The following tests were run
on a server running Linux Debian (`Linux version 4.14.0-3-amd64`)
with a Core i7-6700K CPU @ 4.0GHz,
using [lzbench], an open-source in-memory benchmark by @inikep
compiled with [gcc] 7.3.0,
on the [Silesia compression corpus].
Compression Speed vs Ratio | Decompression Speed
---------------------------|--------------------
![Compression Speed vs Ratio](doc/images/CSpeed2.png "Compression Speed vs Ratio") | ![Decompression Speed](doc/images/DSpeed3.png "Decompression Speed")
A few other algorithms can produce higher compression ratios at slower speeds, falling outside of the graph.
For a larger picture including slow modes, [click on this link](doc/images/DCspeed5.png).
## The case for Small Data compression
Previous charts provide results applicable to typical file and stream scenarios (several MB). Small data comes with different perspectives.
The smaller the amount of data to compress, the more difficult it is to compress. This problem is common to all compression algorithms, and reason is, compression algorithms learn from past data how to compress future data. But at the beginning of a new data set, there is no "past" to build upon.
To solve this situation, Zstd offers a __training mode__, which can be used to tune the algorithm for a selected type of data.
Training Zstandard is achieved by providing it with a few samples (one file per sample). The result of this training is stored in a file called "dictionary", which must be loaded before compression and decompression.
Using this dictionary, the compression ratio achievable on small data improves dramatically.
The following example uses the `github-users` [sample set](https://github.com/facebook/zstd/releases/tag/v1.1.3), created from [github public API](https://developer.github.com/v3/users/#get-all-users).
It consists of roughly 10K records weighing about 1KB each.
Compression Ratio | Compression Speed | Decompression Speed
These compression gains are achieved while simultaneously providing _faster_ compression and decompression speeds.
Training works if there is some correlation in a family of small data samples. The more data-specific a dictionary is, the more efficient it is (there is no _universal dictionary_).
Hence, deploying one dictionary per type of data will provide the greatest benefits.
Dictionary gains are mostly effective in the first few KB. Then, the compression algorithm will gradually use previously decoded content to better compress the rest of the file.