|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
/// \file simple_coder.c
|
|
|
|
/// \brief Wrapper for simple filters
|
|
|
|
///
|
|
|
|
/// Simple filters don't change the size of the data i.e. number of bytes
|
|
|
|
/// in equals the number of bytes out.
|
|
|
|
//
|
|
|
|
// Author: Lasse Collin
|
|
|
|
//
|
|
|
|
// This file has been put into the public domain.
|
|
|
|
// You can do whatever you want with this file.
|
|
|
|
//
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
#include "simple_private.h"
|
|
|
|
|
|
|
|
|
|
|
|
/// Copied or encodes/decodes more data to out[].
|
|
|
|
static lzma_ret
|
|
|
|
copy_or_code(lzma_simple_coder *coder, const lzma_allocator *allocator,
|
|
|
|
const uint8_t *restrict in, size_t *restrict in_pos,
|
|
|
|
size_t in_size, uint8_t *restrict out,
|
|
|
|
size_t *restrict out_pos, size_t out_size, lzma_action action)
|
|
|
|
{
|
|
|
|
assert(!coder->end_was_reached);
|
|
|
|
|
|
|
|
if (coder->next.code == NULL) {
|
|
|
|
lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size);
|
|
|
|
|
|
|
|
// Check if end of stream was reached.
|
|
|
|
if (coder->is_encoder && action == LZMA_FINISH
|
|
|
|
&& *in_pos == in_size)
|
|
|
|
coder->end_was_reached = true;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// Call the next coder in the chain to provide us some data.
|
|
|
|
const lzma_ret ret = coder->next.code(
|
|
|
|
coder->next.coder, allocator,
|
|
|
|
in, in_pos, in_size,
|
|
|
|
out, out_pos, out_size, action);
|
|
|
|
|
|
|
|
if (ret == LZMA_STREAM_END) {
|
|
|
|
assert(!coder->is_encoder
|
|
|
|
|| action == LZMA_FINISH);
|
|
|
|
coder->end_was_reached = true;
|
|
|
|
|
|
|
|
} else if (ret != LZMA_OK) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return LZMA_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static size_t
|
|
|
|
call_filter(lzma_simple_coder *coder, uint8_t *buffer, size_t size)
|
|
|
|
{
|
|
|
|
const size_t filtered = coder->filter(coder->simple,
|
|
|
|
coder->now_pos, coder->is_encoder,
|
|
|
|
buffer, size);
|
|
|
|
coder->now_pos += filtered;
|
|
|
|
return filtered;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static lzma_ret
|
|
|
|
simple_code(void *coder_ptr, const lzma_allocator *allocator,
|
|
|
|
const uint8_t *restrict in, size_t *restrict in_pos,
|
|
|
|
size_t in_size, uint8_t *restrict out,
|
|
|
|
size_t *restrict out_pos, size_t out_size, lzma_action action)
|
|
|
|
{
|
|
|
|
lzma_simple_coder *coder = coder_ptr;
|
|
|
|
|
|
|
|
// TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it
|
|
|
|
// in cases when the filter is able to filter everything. With most
|
|
|
|
// simple filters it can be done at offset that is a multiple of 2,
|
|
|
|
// 4, or 16. With x86 filter, it needs good luck, and thus cannot
|
|
|
|
// be made to work predictably.
|
|
|
|
if (action == LZMA_SYNC_FLUSH)
|
|
|
|
return LZMA_OPTIONS_ERROR;
|
|
|
|
|
|
|
|
// Flush already filtered data from coder->buffer[] to out[].
|
|
|
|
if (coder->pos < coder->filtered) {
|
|
|
|
lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
|
|
|
|
out, out_pos, out_size);
|
|
|
|
|
|
|
|
// If we couldn't flush all the filtered data, return to
|
|
|
|
// application immediately.
|
|
|
|
if (coder->pos < coder->filtered)
|
|
|
|
return LZMA_OK;
|
|
|
|
|
|
|
|
if (coder->end_was_reached) {
|
|
|
|
assert(coder->filtered == coder->size);
|
|
|
|
return LZMA_STREAM_END;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we get here, there is no filtered data left in the buffer.
|
|
|
|
coder->filtered = 0;
|
|
|
|
|
|
|
|
assert(!coder->end_was_reached);
|
|
|
|
|
|
|
|
// If there is more output space left than there is unfiltered data
|
|
|
|
// in coder->buffer[], flush coder->buffer[] to out[], and copy/code
|
|
|
|
// more data to out[] hopefully filling it completely. Then filter
|
|
|
|
// the data in out[]. This step is where most of the data gets
|
|
|
|
// filtered if the buffer sizes used by the application are reasonable.
|
|
|
|
const size_t out_avail = out_size - *out_pos;
|
|
|
|
const size_t buf_avail = coder->size - coder->pos;
|
|
|
|
if (out_avail > buf_avail || buf_avail == 0) {
|
|
|
|
// Store the old position so that we know from which byte
|
|
|
|
// to start filtering.
|
|
|
|
const size_t out_start = *out_pos;
|
|
|
|
|
|
|
|
// Flush data from coder->buffer[] to out[], but don't reset
|
|
|
|
// coder->pos and coder->size yet. This way the coder can be
|
|
|
|
// restarted if the next filter in the chain returns e.g.
|
|
|
|
// LZMA_MEM_ERROR.
|
|
|
|
//
|
|
|
|
// Do the memcpy() conditionally because out can be NULL
|
|
|
|
// (in which case buf_avail is always 0). Calling memcpy()
|
|
|
|
// with a null-pointer is undefined even if the third
|
|
|
|
// argument is 0.
|
|
|
|
if (buf_avail > 0)
|
|
|
|
memcpy(out + *out_pos, coder->buffer + coder->pos,
|
|
|
|
buf_avail);
|
|
|
|
|
|
|
|
*out_pos += buf_avail;
|
|
|
|
|
|
|
|
// Copy/Encode/Decode more data to out[].
|
|
|
|
{
|
|
|
|
const lzma_ret ret = copy_or_code(coder, allocator,
|
|
|
|
in, in_pos, in_size,
|
|
|
|
out, out_pos, out_size, action);
|
|
|
|
assert(ret != LZMA_STREAM_END);
|
|
|
|
if (ret != LZMA_OK)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Filter out[].
|
|
|
|
const size_t size = *out_pos - out_start;
|
|
|
|
const size_t filtered = call_filter(
|
|
|
|
coder, out + out_start, size);
|
|
|
|
|
|
|
|
const size_t unfiltered = size - filtered;
|
|
|
|
assert(unfiltered <= coder->allocated / 2);
|
|
|
|
|
|
|
|
// Now we can update coder->pos and coder->size, because
|
|
|
|
// the next coder in the chain (if any) was successful.
|
|
|
|
coder->pos = 0;
|
|
|
|
coder->size = unfiltered;
|
|
|
|
|
|
|
|
if (coder->end_was_reached) {
|
|
|
|
// The last byte has been copied to out[] already.
|
|
|
|
// They are left as is.
|
|
|
|
coder->size = 0;
|
|
|
|
|
|
|
|
} else if (unfiltered > 0) {
|
|
|
|
// There is unfiltered data left in out[]. Copy it to
|
|
|
|
// coder->buffer[] and rewind *out_pos appropriately.
|
|
|
|
*out_pos -= unfiltered;
|
|
|
|
memcpy(coder->buffer, out + *out_pos, unfiltered);
|
|
|
|
}
|
|
|
|
} else if (coder->pos > 0) {
|
|
|
|
memmove(coder->buffer, coder->buffer + coder->pos, buf_avail);
|
|
|
|
coder->size -= coder->pos;
|
|
|
|
coder->pos = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(coder->pos == 0);
|
|
|
|
|
|
|
|
// If coder->buffer[] isn't empty, try to fill it by copying/decoding
|
|
|
|
// more data. Then filter coder->buffer[] and copy the successfully
|
|
|
|
// filtered data to out[]. It is probable, that some filtered and
|
|
|
|
// unfiltered data will be left to coder->buffer[].
|
|
|
|
if (coder->size > 0) {
|
|
|
|
{
|
|
|
|
const lzma_ret ret = copy_or_code(coder, allocator,
|
|
|
|
in, in_pos, in_size,
|
|
|
|
coder->buffer, &coder->size,
|
|
|
|
coder->allocated, action);
|
|
|
|
assert(ret != LZMA_STREAM_END);
|
|
|
|
if (ret != LZMA_OK)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
coder->filtered = call_filter(
|
|
|
|
coder, coder->buffer, coder->size);
|
|
|
|
|
|
|
|
// Everything is considered to be filtered if coder->buffer[]
|
|
|
|
// contains the last bytes of the data.
|
|
|
|
if (coder->end_was_reached)
|
|
|
|
coder->filtered = coder->size;
|
|
|
|
|
|
|
|
// Flush as much as possible.
|
|
|
|
lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
|
|
|
|
out, out_pos, out_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if we got everything done.
|
|
|
|
if (coder->end_was_reached && coder->pos == coder->size)
|
|
|
|
return LZMA_STREAM_END;
|
|
|
|
|
|
|
|
return LZMA_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
simple_coder_end(void *coder_ptr, const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
lzma_simple_coder *coder = coder_ptr;
|
|
|
|
lzma_next_end(&coder->next, allocator);
|
|
|
|
lzma_free(coder->simple, allocator);
|
|
|
|
lzma_free(coder, allocator);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static lzma_ret
|
|
|
|
simple_coder_update(void *coder_ptr, const lzma_allocator *allocator,
|
|
|
|
const lzma_filter *filters_null lzma_attribute((__unused__)),
|
|
|
|
const lzma_filter *reversed_filters)
|
|
|
|
{
|
|
|
|
lzma_simple_coder *coder = coder_ptr;
|
|
|
|
|
|
|
|
// No update support, just call the next filter in the chain.
|
|
|
|
return lzma_next_filter_update(
|
|
|
|
&coder->next, allocator, reversed_filters + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern lzma_ret
|
|
|
|
lzma_simple_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
|
|
|
|
const lzma_filter_info *filters,
|
|
|
|
size_t (*filter)(void *simple, uint32_t now_pos,
|
|
|
|
bool is_encoder, uint8_t *buffer, size_t size),
|
|
|
|
size_t simple_size, size_t unfiltered_max,
|
|
|
|
uint32_t alignment, bool is_encoder)
|
|
|
|
{
|
|
|
|
// Allocate memory for the lzma_simple_coder structure if needed.
|
|
|
|
lzma_simple_coder *coder = next->coder;
|
|
|
|
if (coder == NULL) {
|
|
|
|
// Here we allocate space also for the temporary buffer. We
|
|
|
|
// need twice the size of unfiltered_max, because then it
|
|
|
|
// is always possible to filter at least unfiltered_max bytes
|
|
|
|
// more data in coder->buffer[] if it can be filled completely.
|
|
|
|
coder = lzma_alloc(sizeof(lzma_simple_coder)
|
|
|
|
+ 2 * unfiltered_max, allocator);
|
|
|
|
if (coder == NULL)
|
|
|
|
return LZMA_MEM_ERROR;
|
|
|
|
|
|
|
|
next->coder = coder;
|
|
|
|
next->code = &simple_code;
|
|
|
|
next->end = &simple_coder_end;
|
|
|
|
next->update = &simple_coder_update;
|
|
|
|
|
|
|
|
coder->next = LZMA_NEXT_CODER_INIT;
|
|
|
|
coder->filter = filter;
|
|
|
|
coder->allocated = 2 * unfiltered_max;
|
|
|
|
|
|
|
|
// Allocate memory for filter-specific data structure.
|
|
|
|
if (simple_size > 0) {
|
|
|
|
coder->simple = lzma_alloc(simple_size, allocator);
|
|
|
|
if (coder->simple == NULL)
|
|
|
|
return LZMA_MEM_ERROR;
|
|
|
|
} else {
|
|
|
|
coder->simple = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (filters[0].options != NULL) {
|
|
|
|
const lzma_options_bcj *simple = filters[0].options;
|
|
|
|
coder->now_pos = simple->start_offset;
|
|
|
|
if (coder->now_pos & (alignment - 1))
|
|
|
|
return LZMA_OPTIONS_ERROR;
|
|
|
|
} else {
|
|
|
|
coder->now_pos = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reset variables.
|
|
|
|
coder->is_encoder = is_encoder;
|
|
|
|
coder->end_was_reached = false;
|
|
|
|
coder->pos = 0;
|
|
|
|
coder->filtered = 0;
|
|
|
|
coder->size = 0;
|
|
|
|
|
|
|
|
return lzma_next_filter_init(&coder->next, allocator, filters + 1);
|
|
|
|
}
|