You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1297 lines
42 KiB

/*============================================================================
KWSys - Kitware System Library
Copyright 2000-2009 Kitware, Inc., Insight Software Consortium
Distributed under the OSI-approved BSD License (the "License");
see accompanying file Copyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the License for more information.
============================================================================*/
/*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
#ifdef __BORLANDC__
# pragma warn -8027 /* 'for' not inlined. */
# pragma warn -8026 /* 'exception' not inlined. */
#endif
#ifndef @KWSYS_NAMESPACE@_hashtable_hxx
#define @KWSYS_NAMESPACE@_hashtable_hxx
#include <@KWSYS_NAMESPACE@/Configure.hxx>
#include <@KWSYS_NAMESPACE@/cstddef> // size_t
#include <@KWSYS_NAMESPACE@/stl/algorithm> // lower_bound
#include <@KWSYS_NAMESPACE@/stl/functional> // unary_function
#include <@KWSYS_NAMESPACE@/stl/iterator> // iterator_traits
#include <@KWSYS_NAMESPACE@/stl/memory> // allocator
#include <@KWSYS_NAMESPACE@/stl/utility> // pair
#include <@KWSYS_NAMESPACE@/stl/vector> // vector
#if defined(_MSC_VER)
# pragma warning (push)
# pragma warning (disable:4284)
# pragma warning (disable:4786)
# pragma warning (disable:4512) /* no assignment operator for class */
#endif
#if defined(__sgi) && !defined(__GNUC__)
# pragma set woff 3970 /* pointer to int conversion */ 3321 3968
#endif
// In C++11, clang will warn about using dynamic exception specifications
// as they are deprecated. But as this class is trying to faithfully
// mimic unordered_set and unordered_map, we want to keep the 'throw()'
// decorations below. So we suppress the warning.
#if defined(__clang__) && defined(__has_warning)
# if __has_warning("-Wdeprecated")
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated"
# endif
#endif
#if @KWSYS_NAMESPACE@_STL_HAS_ALLOCATOR_TEMPLATE
# define @KWSYS_NAMESPACE@_HASH_DEFAULT_ALLOCATOR(T) @KWSYS_NAMESPACE@_stl::allocator< T >
#elif @KWSYS_NAMESPACE@_STL_HAS_ALLOCATOR_NONTEMPLATE
# define @KWSYS_NAMESPACE@_HASH_DEFAULT_ALLOCATOR(T) @KWSYS_NAMESPACE@_stl::allocator
#else
# define @KWSYS_NAMESPACE@_HASH_DEFAULT_ALLOCATOR(T) @KWSYS_NAMESPACE@_stl::alloc
#endif
#if @KWSYS_NAMESPACE@_STL_HAS_ALLOCATOR_OBJECTS
# define @KWSYS_NAMESPACE@_HASH_BUCKETS_INIT(__a) _M_buckets(__a)
# define @KWSYS_NAMESPACE@_HASH_BUCKETS_GET_ALLOCATOR(__b) , __b.get_allocator()
#else
# define @KWSYS_NAMESPACE@_HASH_BUCKETS_INIT(__a) _M_buckets()
# define @KWSYS_NAMESPACE@_HASH_BUCKETS_GET_ALLOCATOR(__b)
#endif
namespace @KWSYS_NAMESPACE@
{
//----------------------------------------------------------------------------
// Define an allocator adaptor for platforms that do not provide an
// allocator with the rebind member.
#if !@KWSYS_NAMESPACE@_STL_HAS_ALLOCATOR_REBIND
// Utility functions to convert item counts.
inline size_t hash_sizeof(void*) { return sizeof(char); }
inline size_t hash_sizeof(const void*) { return sizeof(char); }
template <class TPtr> inline size_t hash_sizeof(TPtr p)
{
static_cast<void>(p);
return sizeof(*p);
}
template <class POut, class PIn, class TSize>
inline TSize hash_allocator_n(POut out, PIn in, TSize n)
{
return n*(hash_sizeof(out)/hash_sizeof(in) +
(hash_sizeof(out)%hash_sizeof(in)>0));
}
// Define an allocation method to use the native allocator with
// the proper signature. The following signatures of the allocate
// method are used on various STL implementations:
// pointer allocate(size_type, const void* hint)
// pointer allocate(size_type)
// static pointer allocate(size_type, const void* hint)
// static pointer allocate(size_type)
// Where pointer might be a real type or void*.
// This set of overloads decodes the signature for a particular STL.
// The extra three int/long arguments will favor certain signatures
// over others in the case that multiple are present to avoid
// ambiguity errors.
template <class TAlloc, class PIn, class TSize, class THint, class POut>
inline void hash_allocate(TAlloc* a, PIn (TAlloc::*allocate)(TSize, THint),
TSize n_out, const void* hint, POut& out,
int, int, int)
{
TSize n_in = hash_allocator_n(POut(), PIn(), n_out);
void* vout = (a->*allocate)(n_in, const_cast<THint>(hint));
out = static_cast<POut>(vout);
}
template <class TAlloc, class PIn, class TSize, class POut>
inline void hash_allocate(TAlloc* a, PIn (TAlloc::*allocate)(TSize),
TSize n_out, const void*, POut& out,
int, int, long)
{
TSize n_in = hash_allocator_n(POut(), PIn(), n_out);
void* vout = (a->*allocate)(n_in);
out = static_cast<POut>(vout);
}
template <class PIn, class TSize, class THint, class POut>
inline void hash_allocate(void*, PIn (*allocate)(TSize, THint),
TSize n_out, const void* hint, POut& out,
int, long, long)
{
TSize n_in = hash_allocator_n(POut(), PIn(), n_out);
void* vout = allocate(n_in, const_cast<THint>(hint));
out = static_cast<POut>(vout);
}
template <class PIn, class TSize, class POut>
inline void hash_allocate(void*, PIn (*allocate)(TSize),
TSize n_out, const void*, POut& out,
long, long, long)
{
TSize n_in = hash_allocator_n(POut(), PIn(), n_out);
void* vout = allocate(n_in);
out = static_cast<POut>(vout);
}
// Define a deallocation method to use the native allocator with
// the proper signature. The following signatures of the deallocate
// method are used on various STL implementations:
// void deallocate(pointer, size_type)
// void deallocate(pointer)
// static void deallocate(pointer, size_type)
// static void deallocate(pointer)
// Where pointer might be a real type or void*.
// This set of overloads decodes the signature for a particular STL.
// The extra three int/long arguments will favor certain signatures
// over others in the case that multiple are present to avoid
// ambiguity errors.
template <class TAlloc, class PIn, class TSize, class PInReal, class POut>
inline void hash_deallocate(TAlloc* a, void (TAlloc::*deallocate)(PIn, TSize),
PInReal, POut p, TSize n_out, int, int, int)
{
TSize n_in = hash_allocator_n(POut(), PInReal(), n_out);
void* vout = p;
(a->*deallocate)(static_cast<PIn>(vout), n_in);
}
template <class TAlloc, class PIn, class TSize, class PInReal, class POut>
inline void hash_deallocate(TAlloc* a, void (TAlloc::*deallocate)(PIn),
PInReal, POut p, TSize, int, int, long)
{
void* vout = p;
(a->*deallocate)(static_cast<PIn>(vout));
}
template <class PIn, class TSize, class PInReal, class POut>
inline void hash_deallocate(void*, void (*deallocate)(PIn, TSize),
PInReal, POut p, TSize n_out, int, long, long)
{
TSize n_in = hash_allocator_n(POut(), PInReal(), n_out);
void* vout = p;
deallocate(static_cast<PIn>(vout), n_in);
}
template <class PIn, class TSize, class PInReal, class POut>
inline void hash_deallocate(void*, void (*deallocate)(PIn),
PInReal, POut p, TSize, long, long, long)
{
void* vout = p;
deallocate(static_cast<PIn>(vout));
}
// Use the same four overloads as hash_allocate to decode the type
// really used for allocation. This is passed as PInReal to the
// deallocate functions so that hash_allocator_n has the proper size.
template <class TAlloc, class PIn, class TSize, class THint>
inline PIn hash_allocate_type(PIn (TAlloc::*)(TSize, THint),
int, int, int) { return 0; }
template <class TAlloc, class PIn, class TSize>
inline PIn hash_allocate_type(PIn (TAlloc::*)(TSize),
int, int, long) { return 0; }
template <class PIn, class TSize, class THint>
inline PIn hash_allocate_type(PIn (*)(TSize, THint),
int, long, long) { return 0; }
template <class PIn, class TSize>
inline PIn hash_allocate_type(PIn (*)(TSize),
long, long, long) { return 0; }
// Define the comparison operators in terms of a base type to avoid
// needing templated versions.
class hash_allocator_base {};
inline bool operator==(const hash_allocator_base&,
const hash_allocator_base&) throw() { return true; }
inline bool operator!=(const hash_allocator_base&,
const hash_allocator_base&) throw() { return false; }
// Define the allocator template.
template <class T, class Alloc>
class hash_allocator: public hash_allocator_base
{
private:
// Store the real allocator privately.
typedef Alloc alloc_type;
alloc_type alloc_;
public:
// Standard allocator interface.
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
hash_allocator() throw(): alloc_() {}
hash_allocator(const hash_allocator_base&) throw() : alloc_() {}
hash_allocator(const hash_allocator& a) throw() : alloc_(a.alloc_) {}
hash_allocator(const alloc_type& a) throw() : alloc_(a) {}
~hash_allocator() throw() {}
# if @KWSYS_NAMESPACE@_CXX_HAS_MEMBER_TEMPLATES
template <class U>
struct rebind { typedef hash_allocator<U, alloc_type> other; };
# endif
pointer address(reference x) const { return &x; }
const_pointer address(const_reference x) const { return &x; }
typedef void* void_pointer;
typedef const void* const_void_pointer;
pointer allocate(size_type n=1, const_void_pointer hint = 0)
{
if(n)
{
pointer p;
hash_allocate(&alloc_, &alloc_type::allocate, n, hint, p, 1, 1, 1);
return p;
}
else
{
return 0;
}
}
void deallocate(pointer p, size_type n=1)
{
if(n)
{
hash_deallocate(&alloc_, &alloc_type::deallocate,
hash_allocate_type(&alloc_type::allocate, 1, 1, 1),
p, n, 1, 1, 1);
}
}
#if @KWSYS_NAMESPACE@_STL_HAS_ALLOCATOR_MAX_SIZE_ARGUMENT
size_type max_size(size_type s) const throw()
{
return alloc_.max_size(s);
}
#else
size_type max_size() const throw()
{
size_type n = alloc_.max_size() / sizeof(value_type);
return n>0? n:1;
}
#endif
void construct(pointer p, const value_type& val) { new (p) value_type(val); }
void destroy(pointer p) { (void)p; p->~value_type(); }
};
#endif
template <class _Val>
struct _Hashtable_node
{
_Hashtable_node* _M_next;
_Val _M_val;
void public_method_to_quiet_warning_about_all_methods_private();
private:
void operator=(_Hashtable_node<_Val> const&); // poison node assignment
};
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey,
class _Alloc = @KWSYS_NAMESPACE@_HASH_DEFAULT_ALLOCATOR(char) >
class hashtable;
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_iterator;
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_const_iterator;
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_iterator {
typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
_Hashtable;
typedef _Hashtable_iterator<_Val, _Key, _HashFcn,
_ExtractKey, _EqualKey, _Alloc>
iterator;
typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn,
_ExtractKey, _EqualKey, _Alloc>
const_iterator;
typedef _Hashtable_node<_Val> _Node;
typedef @KWSYS_NAMESPACE@_stl::forward_iterator_tag iterator_category;
typedef _Val value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef _Val& reference;
typedef _Val* pointer;
_Node* _M_cur;
_Hashtable* _M_ht;
_Hashtable_iterator(_Node* __n, _Hashtable* __tab)
: _M_cur(__n), _M_ht(__tab) {}
_Hashtable_iterator() {}
reference operator*() const { return _M_cur->_M_val; }
pointer operator->() const { return &(operator*()); }
iterator& operator++();
iterator operator++(int);
bool operator==(const iterator& __it) const
{ return _M_cur == __it._M_cur; }
bool operator!=(const iterator& __it) const
{ return _M_cur != __it._M_cur; }
};
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_const_iterator {
typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
_Hashtable;
typedef _Hashtable_iterator<_Val,_Key,_HashFcn,
_ExtractKey,_EqualKey,_Alloc>
iterator;
typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn,
_ExtractKey, _EqualKey, _Alloc>
const_iterator;
typedef _Hashtable_node<_Val> _Node;
typedef @KWSYS_NAMESPACE@_stl::forward_iterator_tag iterator_category;
typedef _Val value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef const _Val& reference;
typedef const _Val* pointer;
const _Node* _M_cur;
const _Hashtable* _M_ht;
_Hashtable_const_iterator(const _Node* __n, const _Hashtable* __tab)
: _M_cur(__n), _M_ht(__tab) {}
_Hashtable_const_iterator() {}
_Hashtable_const_iterator(const iterator& __it)
: _M_cur(__it._M_cur), _M_ht(__it._M_ht) {}
reference operator*() const { return _M_cur->_M_val; }
pointer operator->() const { return &(operator*()); }
const_iterator& operator++();
const_iterator operator++(int);
bool operator==(const const_iterator& __it) const
{ return _M_cur == __it._M_cur; }
bool operator!=(const const_iterator& __it) const
{ return _M_cur != __it._M_cur; }
};
// Note: assumes long is at least 32 bits.
enum { _stl_num_primes = 31 };
// create a function with a static local to that function that returns
// the static
static inline const unsigned long* get_stl_prime_list() {
static const unsigned long _stl_prime_list[_stl_num_primes] =
{
5ul, 11ul, 23ul,
53ul, 97ul, 193ul, 389ul, 769ul,
1543ul, 3079ul, 6151ul, 12289ul, 24593ul,
49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul,
50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul,
1610612741ul, 3221225473ul, 4294967291ul
};
return &_stl_prime_list[0]; }
static inline size_t _stl_next_prime(size_t __n)
{
const unsigned long* __first = get_stl_prime_list();
const unsigned long* __last = get_stl_prime_list() + (int)_stl_num_primes;
const unsigned long* pos = @KWSYS_NAMESPACE@_stl::lower_bound(__first, __last, __n);
return pos == __last ? *(__last - 1) : *pos;
}
// Forward declaration of operator==.
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
class hashtable;
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2);
// Hashtables handle allocators a bit differently than other containers
// do. If we're using standard-conforming allocators, then a hashtable
// unconditionally has a member variable to hold its allocator, even if
// it so happens that all instances of the allocator type are identical.
// This is because, for hashtables, this extra storage is negligible.
// Additionally, a base class wouldn't serve any other purposes; it
// wouldn't, for example, simplify the exception-handling code.
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
class hashtable {
public:
typedef _Key key_type;
typedef _Val value_type;
typedef _HashFcn hasher;
typedef _EqualKey key_equal;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
hasher hash_funct() const { return _M_hash; }
key_equal key_eq() const { return _M_equals; }
private:
typedef _Hashtable_node<_Val> _Node;
#if @KWSYS_NAMESPACE@_STL_HAS_ALLOCATOR_REBIND
public:
typedef typename _Alloc::template rebind<_Val>::other allocator_type;
allocator_type get_allocator() const { return _M_node_allocator; }
private:
typedef typename _Alloc::template rebind<_Node>::other _M_node_allocator_type;
typedef typename _Alloc::template rebind<_Node*>::other _M_node_ptr_allocator_type;
typedef @KWSYS_NAMESPACE@_stl::vector<_Node*,_M_node_ptr_allocator_type> _M_buckets_type;
#else
public:
typedef hash_allocator<_Val, _Alloc> allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
private:
typedef hash_allocator<_Node, _Alloc> _M_node_allocator_type;
# if @KWSYS_NAMESPACE@_STL_HAS_ALLOCATOR_OBJECTS
typedef hash_allocator<_Node*, _Alloc> _M_node_ptr_allocator_type;
# else
typedef _Alloc _M_node_ptr_allocator_type;
# endif
typedef @KWSYS_NAMESPACE@_stl::vector<_Node*,_M_node_ptr_allocator_type> _M_buckets_type;
#endif
private:
_M_node_allocator_type _M_node_allocator;
hasher _M_hash;
key_equal _M_equals;
_ExtractKey _M_get_key;
_M_buckets_type _M_buckets;
size_type _M_num_elements;
_Node* _M_get_node() { return _M_node_allocator.allocate(1); }
void _M_put_node(_Node* __p) { _M_node_allocator.deallocate(__p, 1); }
public:
typedef _Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
iterator;
typedef _Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,
_Alloc>
const_iterator;
friend struct
_Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>;
friend struct
_Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>;
public:
hashtable(size_type __n,
const _HashFcn& __hf,
const _EqualKey& __eql,
const _ExtractKey& __ext,
const allocator_type& __a = allocator_type())
: _M_node_allocator(__a),
_M_hash(__hf),
_M_equals(__eql),
_M_get_key(__ext),
@KWSYS_NAMESPACE@_HASH_BUCKETS_INIT(__a),
_M_num_elements(0)
{
_M_initialize_buckets(__n);
}
hashtable(size_type __n,
const _HashFcn& __hf,
const _EqualKey& __eql,
const allocator_type& __a = allocator_type())
: _M_node_allocator(__a),
_M_hash(__hf),
_M_equals(__eql),
_M_get_key(_ExtractKey()),
@KWSYS_NAMESPACE@_HASH_BUCKETS_INIT(__a),
_M_num_elements(0)
{
_M_initialize_buckets(__n);
}
hashtable(const hashtable& __ht)
: _M_node_allocator(__ht.get_allocator()),
_M_hash(__ht._M_hash),
_M_equals(__ht._M_equals),
_M_get_key(__ht._M_get_key),
@KWSYS_NAMESPACE@_HASH_BUCKETS_INIT(__ht.get_allocator()),
_M_num_elements(0)
{
_M_copy_from(__ht);
}
hashtable& operator= (const hashtable& __ht)
{
if (&__ht != this) {
clear();
_M_hash = __ht._M_hash;
_M_equals = __ht._M_equals;
_M_get_key = __ht._M_get_key;
_M_copy_from(__ht);
}
return *this;
}
~hashtable() { clear(); }
size_type size() const { return _M_num_elements; }
size_type max_size() const { return size_type(-1); }
bool empty() const { return size() == 0; }
void swap(hashtable& __ht)
{
@KWSYS_NAMESPACE@_stl::swap(_M_hash, __ht._M_hash);
@KWSYS_NAMESPACE@_stl::swap(_M_equals, __ht._M_equals);
@KWSYS_NAMESPACE@_stl::swap(_M_get_key, __ht._M_get_key);
_M_buckets.swap(__ht._M_buckets);
@KWSYS_NAMESPACE@_stl::swap(_M_num_elements, __ht._M_num_elements);
}
iterator begin()
{
for (size_type __n = 0; __n < _M_buckets.size(); ++__n)
if (_M_buckets[__n])
return iterator(_M_buckets[__n], this);
return end();
}
iterator end() { return iterator(0, this); }
const_iterator begin() const
{
for (size_type __n = 0; __n < _M_buckets.size(); ++__n)
if (_M_buckets[__n])
return const_iterator(_M_buckets[__n], this);
return end();
}
const_iterator end() const { return const_iterator(0, this); }
friend bool operator==@KWSYS_NAMESPACE@_CXX_NULL_TEMPLATE_ARGS(const hashtable&,
const hashtable&);
public:
size_type bucket_count() const { return _M_buckets.size(); }
size_type max_bucket_count() const
{ return get_stl_prime_list()[(int)_stl_num_primes - 1]; }
size_type elems_in_bucket(size_type __bucket) const
{
size_type __result = 0;
for (_Node* __cur = _M_buckets[__bucket]; __cur; __cur = __cur->_M_next)
__result += 1;
return __result;
}
@KWSYS_NAMESPACE@_stl::pair<iterator, bool> insert_unique(const value_type& __obj)
{
resize(_M_num_elements + 1);
return insert_unique_noresize(__obj);
}
iterator insert_equal(const value_type& __obj)
{
resize(_M_num_elements + 1);
return insert_equal_noresize(__obj);
}
@KWSYS_NAMESPACE@_stl::pair<iterator, bool> insert_unique_noresize(const value_type& __obj);
iterator insert_equal_noresize(const value_type& __obj);
#if @KWSYS_NAMESPACE@_STL_HAS_ITERATOR_TRAITS
# define @KWSYS_NAMESPACE@_HASH_ITERATOR_CATEGORY(T,I) \
typename @KWSYS_NAMESPACE@_stl::iterator_traits< T >::iterator_category()
#elif @KWSYS_NAMESPACE@_STL_HAS_ITERATOR_CATEGORY
# define @KWSYS_NAMESPACE@_HASH_ITERATOR_CATEGORY(T,I) \
@KWSYS_NAMESPACE@_stl::iterator_category( I )
#elif @KWSYS_NAMESPACE@_STL_HAS___ITERATOR_CATEGORY
# define @KWSYS_NAMESPACE@_HASH_ITERATOR_CATEGORY(T,I) \
@KWSYS_NAMESPACE@_stl::__iterator_category( I )
#endif
#if @KWSYS_NAMESPACE@_CXX_HAS_MEMBER_TEMPLATES && defined(@KWSYS_NAMESPACE@_HASH_ITERATOR_CATEGORY)
template <class _InputIterator>
void insert_unique(_InputIterator __f, _InputIterator __l)
{
insert_unique(__f, __l,
@KWSYS_NAMESPACE@_HASH_ITERATOR_CATEGORY(_InputIterator, __f));
}
template <class _InputIterator>
void insert_equal(_InputIterator __f, _InputIterator __l)
{
insert_equal(__f, __l,
@KWSYS_NAMESPACE@_HASH_ITERATOR_CATEGORY(_InputIterator, __f));
}
template <class _InputIterator>
void insert_unique(_InputIterator __f, _InputIterator __l,
@KWSYS_NAMESPACE@_stl::input_iterator_tag)
{
for ( ; __f != __l; ++__f)
insert_unique(*__f);
}
template <class _InputIterator>
void insert_equal(_InputIterator __f, _InputIterator __l,
@KWSYS_NAMESPACE@_stl::input_iterator_tag)
{
for ( ; __f != __l; ++__f)
insert_equal(*__f);
}
template <class _ForwardIterator>
void insert_unique(_ForwardIterator __f, _ForwardIterator __l,
@KWSYS_NAMESPACE@_stl::forward_iterator_tag)
{
size_type __n = 0;
@KWSYS_NAMESPACE@_stl::distance(__f, __l, __n);
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_unique_noresize(*__f);
}
template <class _ForwardIterator>
void insert_equal(_ForwardIterator __f, _ForwardIterator __l,
@KWSYS_NAMESPACE@_stl::forward_iterator_tag)
{
size_type __n = 0;
@KWSYS_NAMESPACE@_stl::distance(__f, __l, __n);
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_equal_noresize(*__f);
}
#else
void insert_unique(const value_type* __f, const value_type* __l)
{
size_type __n = __l - __f;
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_unique_noresize(*__f);
}
void insert_equal(const value_type* __f, const value_type* __l)
{
size_type __n = __l - __f;
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_equal_noresize(*__f);
}
void insert_unique(const_iterator __f, const_iterator __l)
{
size_type __n = 0;
@KWSYS_NAMESPACE@_stl::distance(__f, __l, __n);
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_unique_noresize(*__f);
}
void insert_equal(const_iterator __f, const_iterator __l)
{
size_type __n = 0;
@KWSYS_NAMESPACE@_stl::distance(__f, __l, __n);
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_equal_noresize(*__f);
}
#endif
reference find_or_insert(const value_type& __obj);
iterator find(const key_type& __key)
{
size_type __n = _M_bkt_num_key(__key);
_Node* __first;
for ( __first = _M_buckets[__n];
__first && !_M_equals(_M_get_key(__first->_M_val), __key);
__first = __first->_M_next)
{}
return iterator(__first, this);
}
const_iterator find(const key_type& __key) const
{
size_type __n = _M_bkt_num_key(__key);
const _Node* __first;
for ( __first = _M_buckets[__n];
__first && !_M_equals(_M_get_key(__first->_M_val), __key);
__first = __first->_M_next)
{}
return const_iterator(__first, this);
}
size_type count(const key_type& __key) const
{
const size_type __n = _M_bkt_num_key(__key);
size_type __result = 0;
for (const _Node* __cur = _M_buckets[__n]; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), __key))
++__result;
return __result;
}
@KWSYS_NAMESPACE@_stl::pair<iterator, iterator>
equal_range(const key_type& __key);
@KWSYS_NAMESPACE@_stl::pair<const_iterator, const_iterator>
equal_range(const key_type& __key) const;
size_type erase(const key_type& __key);
void erase(const iterator& __it);
void erase(iterator __first, iterator __last);
void erase(const const_iterator& __it);
void erase(const_iterator __first, const_iterator __last);
void resize(size_type __num_elements_hint);
void clear();
private:
size_type _M_next_size(size_type __n) const
{ return _stl_next_prime(__n); }
void _M_initialize_buckets(size_type __n)
{
const size_type __n_buckets = _M_next_size(__n);
_M_buckets.reserve(__n_buckets);
_M_buckets.insert(_M_buckets.end(), __n_buckets, (_Node*) 0);
_M_num_elements = 0;
}
size_type _M_bkt_num_key(const key_type& __key) const
{
return _M_bkt_num_key(__key, _M_buckets.size());
}
size_type _M_bkt_num(const value_type& __obj) const
{
return _M_bkt_num_key(_M_get_key(__obj));
}
size_type _M_bkt_num_key(const key_type& __key, size_t __n) const
{
return _M_hash(__key) % __n;
}
size_type _M_bkt_num(const value_type& __obj, size_t __n) const
{
return _M_bkt_num_key(_M_get_key(__obj), __n);
}
void construct(_Val* p, const _Val& v)
{
new (p) _Val(v);
}
void destroy(_Val* p)
{
(void)p;
p->~_Val();
}
_Node* _M_new_node(const value_type& __obj)
{
_Node* __n = _M_get_node();
__n->_M_next = 0;
try {
construct(&__n->_M_val, __obj);
return __n;
}
catch(...) {_M_put_node(__n); throw;}
}
void _M_delete_node(_Node* __n)
{
destroy(&__n->_M_val);
_M_put_node(__n);
}
void _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last);
void _M_erase_bucket(const size_type __n, _Node* __last);
void _M_copy_from(const hashtable& __ht);
};
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
_Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&
_Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++()
{
const _Node* __old = _M_cur;
_M_cur = _M_cur->_M_next;
if (!_M_cur) {
size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val);
while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size())
_M_cur = _M_ht->_M_buckets[__bucket];
}
return *this;
}
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>
_Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int)
{
iterator __tmp = *this;
++*this;
return __tmp;
}
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
_Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&
_Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++()
{
const _Node* __old = _M_cur;
_M_cur = _M_cur->_M_next;
if (!_M_cur) {
size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val);
while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size())
_M_cur = _M_ht->_M_buckets[__bucket];
}
return *this;
}
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>
_Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int)
{
const_iterator __tmp = *this;
++*this;
return __tmp;
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2)
{
typedef typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::_Node _Node;
if (__ht1._M_buckets.size() != __ht2._M_buckets.size())
return false;
for (int __n = 0; __n < __ht1._M_buckets.size(); ++__n) {
_Node* __cur1 = __ht1._M_buckets[__n];
_Node* __cur2 = __ht2._M_buckets[__n];
for ( ; __cur1 && __cur2 && __cur1->_M_val == __cur2->_M_val;
__cur1 = __cur1->_M_next, __cur2 = __cur2->_M_next)
{}
if (__cur1 || __cur2)
return false;
}
return true;
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline bool operator!=(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2) {
return !(__ht1 == __ht2);
}
template <class _Val, class _Key, class _HF, class _Extract, class _EqKey,
class _All>
inline void swap(hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht1,
hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht2) {
__ht1.swap(__ht2);
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
@KWSYS_NAMESPACE@_stl::pair<@KWSYS_NAMESPACE@_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator, bool>
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::insert_unique_noresize(const value_type& __obj)
{
const size_type __n = _M_bkt_num(__obj);
_Node* __first = _M_buckets[__n];
for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj)))
return @KWSYS_NAMESPACE@_stl::pair<iterator, bool>(iterator(__cur, this), false);
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __first;
_M_buckets[__n] = __tmp;
++_M_num_elements;
return @KWSYS_NAMESPACE@_stl::pair<iterator, bool>(iterator(__tmp, this), true);
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::insert_equal_noresize(const value_type& __obj)
{
const size_type __n = _M_bkt_num(__obj);
_Node* __first = _M_buckets[__n];
for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) {
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __cur->_M_next;
__cur->_M_next = __tmp;
++_M_num_elements;
return iterator(__tmp, this);
}
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __first;
_M_buckets[__n] = __tmp;
++_M_num_elements;
return iterator(__tmp, this);
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::reference
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::find_or_insert(const value_type& __obj)
{
resize(_M_num_elements + 1);
size_type __n = _M_bkt_num(__obj);
_Node* __first = _M_buckets[__n];
for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj)))
return __cur->_M_val;
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __first;
_M_buckets[__n] = __tmp;
++_M_num_elements;
return __tmp->_M_val;
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
@KWSYS_NAMESPACE@_stl::pair<@KWSYS_NAMESPACE@_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator,
@KWSYS_NAMESPACE@_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator>
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::equal_range(const key_type& __key)
{
typedef @KWSYS_NAMESPACE@_stl::pair<iterator, iterator> _Pii;
const size_type __n = _M_bkt_num_key(__key);
for (_Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next)
if (_M_equals(_M_get_key(__first->_M_val), __key)) {
for (_Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next)
if (!_M_equals(_M_get_key(__cur->_M_val), __key))
return _Pii(iterator(__first, this), iterator(__cur, this));
for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
if (_M_buckets[__m])
return _Pii(iterator(__first, this),
iterator(_M_buckets[__m], this));
return _Pii(iterator(__first, this), end());
}
return _Pii(end(), end());
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
@KWSYS_NAMESPACE@_stl::pair<@KWSYS_NAMESPACE@_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator,
@KWSYS_NAMESPACE@_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator>
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::equal_range(const key_type& __key) const
{
typedef @KWSYS_NAMESPACE@_stl::pair<const_iterator, const_iterator> _Pii;
const size_type __n = _M_bkt_num_key(__key);
for (const _Node* __first = _M_buckets[__n] ;
__first;
__first = __first->_M_next) {
if (_M_equals(_M_get_key(__first->_M_val), __key)) {
for (const _Node* __cur = __first->_M_next;
__cur;
__cur = __cur->_M_next)
if (!_M_equals(_M_get_key(__cur->_M_val), __key))
return _Pii(const_iterator(__first, this),
const_iterator(__cur, this));
for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
if (_M_buckets[__m])
return _Pii(const_iterator(__first, this),
const_iterator(_M_buckets[__m], this));
return _Pii(const_iterator(__first, this), end());
}
}
return _Pii(end(), end());
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::size_type
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const key_type& __key)
{
const size_type __n = _M_bkt_num_key(__key);
_Node* __first = _M_buckets[__n];
size_type __erased = 0;
if (__first) {
_Node* __cur = __first;
_Node* __next = __cur->_M_next;
while (__next) {
if (_M_equals(_M_get_key(__next->_M_val), __key)) {
__cur->_M_next = __next->_M_next;
_M_delete_node(__next);
__next = __cur->_M_next;
++__erased;
--_M_num_elements;
}
else {
__cur = __next;
__next = __cur->_M_next;
}
}
if (_M_equals(_M_get_key(__first->_M_val), __key)) {
_M_buckets[__n] = __first->_M_next;
_M_delete_node(__first);
++__erased;
--_M_num_elements;
}
}
return __erased;
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const iterator& __it)
{
_Node* __p = __it._M_cur;
if (__p) {
const size_type __n = _M_bkt_num(__p->_M_val);
_Node* __cur = _M_buckets[__n];
if (__cur == __p) {
_M_buckets[__n] = __cur->_M_next;
_M_delete_node(__cur);
--_M_num_elements;
}
else {
_Node* __next = __cur->_M_next;
while (__next) {
if (__next == __p) {
__cur->_M_next = __next->_M_next;
_M_delete_node(__next);
--_M_num_elements;
break;
}
else {
__cur = __next;
__next = __cur->_M_next;
}
}
}
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::erase(iterator __first, iterator __last)
{
size_type __f_bucket = __first._M_cur ?
_M_bkt_num(__first._M_cur->_M_val) : _M_buckets.size();
size_type __l_bucket = __last._M_cur ?
_M_bkt_num(__last._M_cur->_M_val) : _M_buckets.size();
if (__first._M_cur == __last._M_cur)
return;
else if (__f_bucket == __l_bucket)
_M_erase_bucket(__f_bucket, __first._M_cur, __last._M_cur);
else {
_M_erase_bucket(__f_bucket, __first._M_cur, 0);
for (size_type __n = __f_bucket + 1; __n < __l_bucket; ++__n)
_M_erase_bucket(__n, 0);
if (__l_bucket != _M_buckets.size())
_M_erase_bucket(__l_bucket, __last._M_cur);
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline void
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const_iterator __first,
const_iterator __last)
{
erase(iterator(const_cast<_Node*>(__first._M_cur),
const_cast<hashtable*>(__first._M_ht)),
iterator(const_cast<_Node*>(__last._M_cur),
const_cast<hashtable*>(__last._M_ht)));
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline void
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const const_iterator& __it)
{
erase(iterator(const_cast<_Node*>(__it._M_cur),
const_cast<hashtable*>(__it._M_ht)));
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::resize(size_type __num_elements_hint)
{
const size_type __old_n = _M_buckets.size();
if (__num_elements_hint > __old_n) {
const size_type __n = _M_next_size(__num_elements_hint);
if (__n > __old_n) {
_M_buckets_type __tmp(
__n, (_Node*)(0)
@KWSYS_NAMESPACE@_HASH_BUCKETS_GET_ALLOCATOR(_M_buckets));
try {
for (size_type __bucket = 0; __bucket < __old_n; ++__bucket) {
_Node* __first = _M_buckets[__bucket];
while (__first) {
size_type __new_bucket = _M_bkt_num(__first->_M_val, __n);
_M_buckets[__bucket] = __first->_M_next;
__first->_M_next = __tmp[__new_bucket];
__tmp[__new_bucket] = __first;
__first = _M_buckets[__bucket];
}
}
_M_buckets.swap(__tmp);
}
catch(...) {
for (size_type __bucket = 0; __bucket < __tmp.size(); ++__bucket) {
while (__tmp[__bucket]) {
_Node* __next = __tmp[__bucket]->_M_next;
_M_delete_node(__tmp[__bucket]);
__tmp[__bucket] = __next;
}
}
throw;
}
}
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::_M_erase_bucket(const size_type __n, _Node* __first, _Node* __last)
{
_Node* __cur = _M_buckets[__n];
if (__cur == __first)
_M_erase_bucket(__n, __last);
else {
_Node* __next;
for (__next = __cur->_M_next;
__next != __first;
__cur = __next, __next = __cur->_M_next)
;
while (__next != __last) {
__cur->_M_next = __next->_M_next;
_M_delete_node(__next);
__next = __cur->_M_next;
--_M_num_elements;
}
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::_M_erase_bucket(const size_type __n, _Node* __last)
{
_Node* __cur = _M_buckets[__n];
while (__cur != __last) {
_Node* __next = __cur->_M_next;
_M_delete_node(__cur);
__cur = __next;
_M_buckets[__n] = __cur;
--_M_num_elements;
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::clear()
{
for (size_type __i = 0; __i < _M_buckets.size(); ++__i) {
_Node* __cur = _M_buckets[__i];
while (__cur != 0) {
_Node* __next = __cur->_M_next;
_M_delete_node(__cur);
__cur = __next;
}
_M_buckets[__i] = 0;
}
_M_num_elements = 0;
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::_M_copy_from(const hashtable& __ht)
{
_M_buckets.clear();
_M_buckets.reserve(__ht._M_buckets.size());
_M_buckets.insert(_M_buckets.end(), __ht._M_buckets.size(), (_Node*) 0);
try {
for (size_type __i = 0; __i < __ht._M_buckets.size(); ++__i) {
const _Node* __cur = __ht._M_buckets[__i];
if (__cur) {
_Node* __copy = _M_new_node(__cur->_M_val);
_M_buckets[__i] = __copy;
for (_Node* __next = __cur->_M_next;
__next;
__cur = __next, __next = __cur->_M_next) {
__copy->_M_next = _M_new_node(__next->_M_val);
__copy = __copy->_M_next;
}
}
}
_M_num_elements = __ht._M_num_elements;
}
catch(...) {clear(); throw;}
}
} // namespace @KWSYS_NAMESPACE@
// Normally the comparison operators should be found in the @KWSYS_NAMESPACE@
// namespace by argument dependent lookup. For compilers that do not
// support it we must bring them into the global namespace now.
#if !@KWSYS_NAMESPACE@_CXX_HAS_ARGUMENT_DEPENDENT_LOOKUP
using @KWSYS_NAMESPACE@::operator==;
using @KWSYS_NAMESPACE@::operator!=;
#endif
// Undo warning suppression.
#if defined(__clang__) && defined(__has_warning)
# if __has_warning("-Wdeprecated")
# pragma clang diagnostic pop
# endif
#endif
#if defined(_MSC_VER)
# pragma warning (pop)
#endif
#endif