You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
cmake/Source/kwsys/SystemInformation.cxx

5509 lines
149 KiB

/* Distributed under the OSI-approved BSD 3-Clause License. See accompanying
file Copyright.txt or https://cmake.org/licensing#kwsys for details. */
#if defined(_WIN32)
#define NOMINMAX // use our min,max
#if !defined(_WIN32_WINNT) && !(defined(_MSC_VER) && _MSC_VER < 1300)
#define _WIN32_WINNT 0x0501
#endif
#include <winsock.h> // WSADATA, include before sys/types.h
#endif
#if (defined(__GNUC__) || defined(__PGI)) && !defined(_GNU_SOURCE)
#define _GNU_SOURCE
#endif
// TODO:
// We need an alternative implementation for many functions in this file
// when USE_ASM_INSTRUCTIONS gets defined as 0.
//
// Consider using these on Win32/Win64 for some of them:
//
// IsProcessorFeaturePresent
// http://msdn.microsoft.com/en-us/library/ms724482(VS.85).aspx
//
// GetProcessMemoryInfo
// http://msdn.microsoft.com/en-us/library/ms683219(VS.85).aspx
#include "kwsysPrivate.h"
#include KWSYS_HEADER(SystemInformation.hxx)
#include KWSYS_HEADER(Process.h)
// Work-around CMake dependency scanning limitation. This must
// duplicate the above list of headers.
#if 0
#include "Process.h.in"
#include "SystemInformation.hxx.in"
#endif
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#if defined(_WIN32)
#include <windows.h>
#if defined(_MSC_VER) && _MSC_VER >= 1800
#define KWSYS_WINDOWS_DEPRECATED_GetVersionEx
#endif
#include <errno.h>
#if defined(KWSYS_SYS_HAS_PSAPI)
#include <psapi.h>
#endif
#if !defined(siginfo_t)
typedef int siginfo_t;
#endif
#else
#include <sys/types.h>
#include <errno.h> // extern int errno;
#include <fcntl.h>
#include <signal.h>
#include <sys/resource.h> // getrlimit
#include <sys/time.h>
#include <sys/utsname.h> // int uname(struct utsname *buf);
#include <unistd.h>
#endif
#if defined(__CYGWIN__) && !defined(_WIN32)
#include <windows.h>
#undef _WIN32
#endif
#if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \
defined(__DragonFly__)
#include <netdb.h>
#include <netinet/in.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#if defined(KWSYS_SYS_HAS_IFADDRS_H)
#include <ifaddrs.h>
#include <net/if.h>
#define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN
#endif
#endif
#if defined(KWSYS_SYS_HAS_MACHINE_CPU_H)
#include <machine/cpu.h>
#endif
#ifdef __APPLE__
#include <fenv.h>
#include <mach/host_info.h>
#include <mach/mach.h>
#include <mach/mach_types.h>
#include <mach/vm_statistics.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#if defined(KWSYS_SYS_HAS_IFADDRS_H)
#include <ifaddrs.h>
#include <net/if.h>
#define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN
#endif
#if !(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ - 0 >= 1050)
#undef KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE
#endif
#endif
#if defined(__linux) || defined(__sun) || defined(_SCO_DS)
#include <fenv.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sys/socket.h>
#if defined(KWSYS_SYS_HAS_IFADDRS_H)
#include <ifaddrs.h>
#include <net/if.h>
#if !defined(__LSB_VERSION__) /* LSB has no getifaddrs */
#define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN
#endif
#endif
#if defined(KWSYS_CXX_HAS_RLIMIT64)
typedef struct rlimit64 ResourceLimitType;
#define GetResourceLimit getrlimit64
#else
typedef struct rlimit ResourceLimitType;
#define GetResourceLimit getrlimit
#endif
#elif defined(__hpux)
#include <sys/param.h>
#include <sys/pstat.h>
#if defined(KWSYS_SYS_HAS_MPCTL_H)
#include <sys/mpctl.h>
#endif
#endif
#ifdef __HAIKU__
#include <OS.h>
#endif
#if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
#include <execinfo.h>
#if defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE)
#include <cxxabi.h>
#endif
#if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
#include <dlfcn.h>
#endif
#else
#undef KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE
#undef KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP
#endif
#include <ctype.h> // int isdigit(int c);
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if defined(KWSYS_USE_LONG_LONG)
#if defined(KWSYS_IOS_HAS_OSTREAM_LONG_LONG)
#define iostreamLongLong(x) (x)
#else
#define iostreamLongLong(x) ((long)(x))
#endif
#elif defined(KWSYS_USE___INT64)
#if defined(KWSYS_IOS_HAS_OSTREAM___INT64)
#define iostreamLongLong(x) (x)
#else
#define iostreamLongLong(x) ((long)(x))
#endif
#else
#error "No Long Long"
#endif
#if defined(KWSYS_CXX_HAS_ATOLL)
#define atoLongLong atoll
#else
#if defined(KWSYS_CXX_HAS__ATOI64)
#define atoLongLong _atoi64
#elif defined(KWSYS_CXX_HAS_ATOL)
#define atoLongLong atol
#else
#define atoLongLong atoi
#endif
#endif
#if defined(_MSC_VER) && (_MSC_VER >= 1300) && !defined(_WIN64) && \
!defined(__clang__)
#define USE_ASM_INSTRUCTIONS 1
#else
#define USE_ASM_INSTRUCTIONS 0
#endif
#if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__clang__)
#include <intrin.h>
#define USE_CPUID_INTRINSICS 1
#else
#define USE_CPUID_INTRINSICS 0
#endif
#if USE_ASM_INSTRUCTIONS || USE_CPUID_INTRINSICS || \
defined(KWSYS_CXX_HAS_BORLAND_ASM_CPUID)
#define USE_CPUID 1
#else
#define USE_CPUID 0
#endif
#if USE_CPUID
#define CPUID_AWARE_COMPILER
/**
* call CPUID instruction
*
* Will return false if the instruction failed.
*/
static bool call_cpuid(int select, int result[4])
{
#if USE_CPUID_INTRINSICS
__cpuid(result, select);
return true;
#else
int tmp[4];
#if defined(_MSC_VER)
// Use SEH to determine CPUID presence
__try {
_asm {
#ifdef CPUID_AWARE_COMPILER
; we must push/pop the registers <<CPUID>> writes to, as the
; optimiser does not know about <<CPUID>>, and so does not expect
; these registers to change.
push eax
push ebx
push ecx
push edx
#endif
; <<CPUID>>
mov eax, select
#ifdef CPUID_AWARE_COMPILER
cpuid
#else
_asm _emit 0x0f
_asm _emit 0xa2
#endif
mov tmp[0 * TYPE int], eax
mov tmp[1 * TYPE int], ebx
mov tmp[2 * TYPE int], ecx
mov tmp[3 * TYPE int], edx
#ifdef CPUID_AWARE_COMPILER
pop edx
pop ecx
pop ebx
pop eax
#endif
}
} __except (1) {
return false;
}
memcpy(result, tmp, sizeof(tmp));
#elif defined(KWSYS_CXX_HAS_BORLAND_ASM_CPUID)
unsigned int a, b, c, d;
__asm {
mov EAX, select;
cpuid
mov a, EAX;
mov b, EBX;
mov c, ECX;
mov d, EDX;
}
result[0] = a;
result[1] = b;
result[2] = c;
result[3] = d;
#endif
// The cpuid instruction succeeded.
return true;
#endif
}
#endif
namespace KWSYS_NAMESPACE {
template <typename T>
T min(T a, T b)
{
return a < b ? a : b;
}
extern "C" {
typedef void (*SigAction)(int, siginfo_t*, void*);
}
// Define SystemInformationImplementation class
typedef void (*DELAY_FUNC)(unsigned int uiMS);
class SystemInformationImplementation
{
public:
typedef SystemInformation::LongLong LongLong;
SystemInformationImplementation();
~SystemInformationImplementation();
const char* GetVendorString();
const char* GetVendorID();
std::string GetTypeID();
std::string GetFamilyID();
std::string GetModelID();
std::string GetModelName();
std::string GetSteppingCode();
const char* GetExtendedProcessorName();
const char* GetProcessorSerialNumber();
int GetProcessorCacheSize();
unsigned int GetLogicalProcessorsPerPhysical();
float GetProcessorClockFrequency();
int GetProcessorAPICID();
int GetProcessorCacheXSize(long int);
bool DoesCPUSupportFeature(long int);
const char* GetOSName();
const char* GetHostname();
int GetFullyQualifiedDomainName(std::string& fqdn);
const char* GetOSRelease();
const char* GetOSVersion();
const char* GetOSPlatform();
bool Is64Bits();
unsigned int GetNumberOfLogicalCPU(); // per physical cpu
unsigned int GetNumberOfPhysicalCPU();
bool DoesCPUSupportCPUID();
// Retrieve memory information in megabyte.
size_t GetTotalVirtualMemory();
size_t GetAvailableVirtualMemory();
size_t GetTotalPhysicalMemory();
size_t GetAvailablePhysicalMemory();
LongLong GetProcessId();
// Retrieve memory information in kib
LongLong GetHostMemoryTotal();
LongLong GetHostMemoryAvailable(const char* envVarName);
LongLong GetHostMemoryUsed();
LongLong GetProcMemoryAvailable(const char* hostLimitEnvVarName,
const char* procLimitEnvVarName);
LongLong GetProcMemoryUsed();
double GetLoadAverage();
// enable/disable stack trace signal handler.
static void SetStackTraceOnError(int enable);
// get current stack
static std::string GetProgramStack(int firstFrame, int wholePath);
/** Run the different checks */
void RunCPUCheck();
void RunOSCheck();
void RunMemoryCheck();
public:
typedef struct tagID
{
int Type;
int Family;
int Model;
int Revision;
int ExtendedFamily;
int ExtendedModel;
std::string ProcessorName;
std::string Vendor;
std::string SerialNumber;
std::string ModelName;
} ID;
typedef struct tagCPUPowerManagement
{
bool HasVoltageID;
bool HasFrequencyID;
bool HasTempSenseDiode;
} CPUPowerManagement;
typedef struct tagCPUExtendedFeatures
{
bool Has3DNow;
bool Has3DNowPlus;
bool SupportsMP;
bool HasMMXPlus;
bool HasSSEMMX;
bool SupportsHyperthreading;
unsigned int LogicalProcessorsPerPhysical;
int APIC_ID;
CPUPowerManagement PowerManagement;
} CPUExtendedFeatures;
typedef struct CPUtagFeatures
{
bool HasFPU;
bool HasTSC;
bool HasMMX;
bool HasSSE;
bool HasSSEFP;
bool HasSSE2;
bool HasIA64;
bool HasAPIC;
bool HasCMOV;
bool HasMTRR;
bool HasACPI;
bool HasSerial;
bool HasThermal;
int CPUSpeed;
int L1CacheSize;
int L2CacheSize;
int L3CacheSize;
CPUExtendedFeatures ExtendedFeatures;
} CPUFeatures;
enum Manufacturer
{
AMD,
Intel,
NSC,
UMC,
Cyrix,
NexGen,
IDT,
Rise,
Transmeta,
Sun,
IBM,
Motorola,
HP,
UnknownManufacturer
};
protected:
// For windows
bool RetrieveCPUFeatures();
bool RetrieveCPUIdentity();
bool RetrieveCPUCacheDetails();
bool RetrieveClassicalCPUCacheDetails();
bool RetrieveCPUClockSpeed();
bool RetrieveClassicalCPUClockSpeed();
bool RetrieveCPUExtendedLevelSupport(int);
bool RetrieveExtendedCPUFeatures();
bool RetrieveProcessorSerialNumber();
bool RetrieveCPUPowerManagement();
bool RetrieveClassicalCPUIdentity();
bool RetrieveExtendedCPUIdentity();
// Processor information
Manufacturer ChipManufacturer;
CPUFeatures Features;
ID ChipID;
float CPUSpeedInMHz;
unsigned int NumberOfLogicalCPU;
unsigned int NumberOfPhysicalCPU;
int CPUCount(); // For windows
unsigned char LogicalCPUPerPhysicalCPU();
unsigned char GetAPICId(); // For windows
bool IsHyperThreadingSupported();
static LongLong GetCyclesDifference(DELAY_FUNC, unsigned int); // For windows
// For Linux and Cygwin, /proc/cpuinfo formats are slightly different
bool RetreiveInformationFromCpuInfoFile();
std::string ExtractValueFromCpuInfoFile(std::string buffer, const char* word,
size_t init = 0);
bool QueryLinuxMemory();
bool QueryCygwinMemory();
static void Delay(unsigned int);
static void DelayOverhead(unsigned int);
void FindManufacturer(const std::string& family = "");
// For Mac
bool ParseSysCtl();
int CallSwVers(const char* arg, std::string& ver);
void TrimNewline(std::string&);
std::string ExtractValueFromSysCtl(const char* word);
std::string SysCtlBuffer;
// For Solaris
bool QuerySolarisMemory();
bool QuerySolarisProcessor();
std::string ParseValueFromKStat(const char* arguments);
std::string RunProcess(std::vector<const char*> args);
// For Haiku OS
bool QueryHaikuInfo();
// For QNX
bool QueryQNXMemory();
bool QueryQNXProcessor();
// For OpenBSD, FreeBSD, NetBSD, DragonFly
bool QueryBSDMemory();
bool QueryBSDProcessor();
// For HP-UX
bool QueryHPUXMemory();
bool QueryHPUXProcessor();
// For Microsoft Windows
bool QueryWindowsMemory();
// For AIX
bool QueryAIXMemory();
bool QueryProcessorBySysconf();
bool QueryProcessor();
// Evaluate the memory information.
bool QueryMemoryBySysconf();
bool QueryMemory();
size_t TotalVirtualMemory;
size_t AvailableVirtualMemory;
size_t TotalPhysicalMemory;
size_t AvailablePhysicalMemory;
size_t CurrentPositionInFile;
// Operating System information
bool QueryOSInformation();
std::string OSName;
std::string Hostname;
std::string OSRelease;
std::string OSVersion;
std::string OSPlatform;
};
SystemInformation::SystemInformation()
{
this->Implementation = new SystemInformationImplementation;
}
SystemInformation::~SystemInformation()
{
delete this->Implementation;
}
const char* SystemInformation::GetVendorString()
{
return this->Implementation->GetVendorString();
}
const char* SystemInformation::GetVendorID()
{
return this->Implementation->GetVendorID();
}
std::string SystemInformation::GetTypeID()
{
return this->Implementation->GetTypeID();
}
std::string SystemInformation::GetFamilyID()
{
return this->Implementation->GetFamilyID();
}
std::string SystemInformation::GetModelID()
{
return this->Implementation->GetModelID();
}
std::string SystemInformation::GetModelName()
{
return this->Implementation->GetModelName();
}
std::string SystemInformation::GetSteppingCode()
{
return this->Implementation->GetSteppingCode();
}
const char* SystemInformation::GetExtendedProcessorName()
{
return this->Implementation->GetExtendedProcessorName();
}
const char* SystemInformation::GetProcessorSerialNumber()
{
return this->Implementation->GetProcessorSerialNumber();
}
int SystemInformation::GetProcessorCacheSize()
{
return this->Implementation->GetProcessorCacheSize();
}
unsigned int SystemInformation::GetLogicalProcessorsPerPhysical()
{
return this->Implementation->GetLogicalProcessorsPerPhysical();
}
float SystemInformation::GetProcessorClockFrequency()
{
return this->Implementation->GetProcessorClockFrequency();
}
int SystemInformation::GetProcessorAPICID()
{
return this->Implementation->GetProcessorAPICID();
}
int SystemInformation::GetProcessorCacheXSize(long int l)
{
return this->Implementation->GetProcessorCacheXSize(l);
}
bool SystemInformation::DoesCPUSupportFeature(long int i)
{
return this->Implementation->DoesCPUSupportFeature(i);
}
std::string SystemInformation::GetCPUDescription()
{
std::ostringstream oss;
oss << this->GetNumberOfPhysicalCPU() << " core ";
if (this->GetModelName().empty()) {
oss << this->GetProcessorClockFrequency() << " MHz "
<< this->GetVendorString() << " " << this->GetExtendedProcessorName();
} else {
oss << this->GetModelName();
}
// remove extra spaces
std::string tmp = oss.str();
size_t pos;
while ((pos = tmp.find(" ")) != std::string::npos) {
tmp.replace(pos, 2, " ");
}
return tmp;
}
const char* SystemInformation::GetOSName()
{
return this->Implementation->GetOSName();
}
const char* SystemInformation::GetHostname()
{
return this->Implementation->GetHostname();
}
std::string SystemInformation::GetFullyQualifiedDomainName()
{
std::string fqdn;
this->Implementation->GetFullyQualifiedDomainName(fqdn);
return fqdn;
}
const char* SystemInformation::GetOSRelease()
{
return this->Implementation->GetOSRelease();
}
const char* SystemInformation::GetOSVersion()
{
return this->Implementation->GetOSVersion();
}
const char* SystemInformation::GetOSPlatform()
{
return this->Implementation->GetOSPlatform();
}
int SystemInformation::GetOSIsWindows()
{
#if defined(_WIN32)
return 1;
#else
return 0;
#endif
}
int SystemInformation::GetOSIsLinux()
{
#if defined(__linux)
return 1;
#else
return 0;
#endif
}
int SystemInformation::GetOSIsApple()
{
#if defined(__APPLE__)
return 1;
#else
return 0;
#endif
}
std::string SystemInformation::GetOSDescription()
{
std::ostringstream oss;
oss << this->GetOSName() << " " << this->GetOSRelease() << " "
<< this->GetOSVersion();
return oss.str();
}
bool SystemInformation::Is64Bits()
{
return this->Implementation->Is64Bits();
}
unsigned int SystemInformation::GetNumberOfLogicalCPU() // per physical cpu
{
return this->Implementation->GetNumberOfLogicalCPU();
}
unsigned int SystemInformation::GetNumberOfPhysicalCPU()
{
return this->Implementation->GetNumberOfPhysicalCPU();
}
bool SystemInformation::DoesCPUSupportCPUID()
{
return this->Implementation->DoesCPUSupportCPUID();
}
// Retrieve memory information in megabyte.
size_t SystemInformation::GetTotalVirtualMemory()
{
return this->Implementation->GetTotalVirtualMemory();
}
size_t SystemInformation::GetAvailableVirtualMemory()
{
return this->Implementation->GetAvailableVirtualMemory();
}
size_t SystemInformation::GetTotalPhysicalMemory()
{
return this->Implementation->GetTotalPhysicalMemory();
}
size_t SystemInformation::GetAvailablePhysicalMemory()
{
return this->Implementation->GetAvailablePhysicalMemory();
}
std::string SystemInformation::GetMemoryDescription(
const char* hostLimitEnvVarName, const char* procLimitEnvVarName)
{
std::ostringstream oss;
oss << "Host Total: " << iostreamLongLong(this->GetHostMemoryTotal())
<< " KiB, Host Available: "
<< iostreamLongLong(this->GetHostMemoryAvailable(hostLimitEnvVarName))
<< " KiB, Process Available: "
<< iostreamLongLong(this->GetProcMemoryAvailable(hostLimitEnvVarName,
procLimitEnvVarName))
<< " KiB";
return oss.str();
}
// host memory info in units of KiB.
SystemInformation::LongLong SystemInformation::GetHostMemoryTotal()
{
return this->Implementation->GetHostMemoryTotal();
}
SystemInformation::LongLong SystemInformation::GetHostMemoryAvailable(
const char* hostLimitEnvVarName)
{
return this->Implementation->GetHostMemoryAvailable(hostLimitEnvVarName);
}
SystemInformation::LongLong SystemInformation::GetHostMemoryUsed()
{
return this->Implementation->GetHostMemoryUsed();
}
// process memory info in units of KiB.
SystemInformation::LongLong SystemInformation::GetProcMemoryAvailable(
const char* hostLimitEnvVarName, const char* procLimitEnvVarName)
{
return this->Implementation->GetProcMemoryAvailable(hostLimitEnvVarName,
procLimitEnvVarName);
}
SystemInformation::LongLong SystemInformation::GetProcMemoryUsed()
{
return this->Implementation->GetProcMemoryUsed();
}
double SystemInformation::GetLoadAverage()
{
return this->Implementation->GetLoadAverage();
}
SystemInformation::LongLong SystemInformation::GetProcessId()
{
return this->Implementation->GetProcessId();
}
void SystemInformation::SetStackTraceOnError(int enable)
{
SystemInformationImplementation::SetStackTraceOnError(enable);
}
std::string SystemInformation::GetProgramStack(int firstFrame, int wholePath)
{
return SystemInformationImplementation::GetProgramStack(firstFrame,
wholePath);
}
/** Run the different checks */
void SystemInformation::RunCPUCheck()
{
this->Implementation->RunCPUCheck();
}
void SystemInformation::RunOSCheck()
{
this->Implementation->RunOSCheck();
}
void SystemInformation::RunMemoryCheck()
{
this->Implementation->RunMemoryCheck();
}
// --------------------------------------------------------------
// SystemInformationImplementation starts here
#define STORE_TLBCACHE_INFO(x, y) x = (x < (y)) ? (y) : x
#define TLBCACHE_INFO_UNITS (15)
#define CLASSICAL_CPU_FREQ_LOOP 10000000
#define RDTSC_INSTRUCTION _asm _emit 0x0f _asm _emit 0x31
#define MMX_FEATURE 0x00000001
#define MMX_PLUS_FEATURE 0x00000002
#define SSE_FEATURE 0x00000004
#define SSE2_FEATURE 0x00000008
#define AMD_3DNOW_FEATURE 0x00000010
#define AMD_3DNOW_PLUS_FEATURE 0x00000020
#define IA64_FEATURE 0x00000040
#define MP_CAPABLE 0x00000080
#define HYPERTHREAD_FEATURE 0x00000100
#define SERIALNUMBER_FEATURE 0x00000200
#define APIC_FEATURE 0x00000400
#define SSE_FP_FEATURE 0x00000800
#define SSE_MMX_FEATURE 0x00001000
#define CMOV_FEATURE 0x00002000
#define MTRR_FEATURE 0x00004000
#define L1CACHE_FEATURE 0x00008000
#define L2CACHE_FEATURE 0x00010000
#define L3CACHE_FEATURE 0x00020000
#define ACPI_FEATURE 0x00040000
#define THERMALMONITOR_FEATURE 0x00080000
#define TEMPSENSEDIODE_FEATURE 0x00100000
#define FREQUENCYID_FEATURE 0x00200000
#define VOLTAGEID_FREQUENCY 0x00400000
// Status Flag
#define HT_NOT_CAPABLE 0
#define HT_ENABLED 1
#define HT_DISABLED 2
#define HT_SUPPORTED_NOT_ENABLED 3
#define HT_CANNOT_DETECT 4
// EDX[28] Bit 28 is set if HT is supported
#define HT_BIT 0x10000000
// EAX[11:8] Bit 8-11 contains family processor ID.
#define FAMILY_ID 0x0F00
#define PENTIUM4_ID 0x0F00
// EAX[23:20] Bit 20-23 contains extended family processor ID
#define EXT_FAMILY_ID 0x0F00000
// EBX[23:16] Bit 16-23 in ebx contains the number of logical
#define NUM_LOGICAL_BITS 0x00FF0000
// processors per physical processor when execute cpuid with
// eax set to 1
// EBX[31:24] Bits 24-31 (8 bits) return the 8-bit unique
#define INITIAL_APIC_ID_BITS 0xFF000000
// initial APIC ID for the processor this code is running on.
// Default value = 0xff if HT is not supported
// Hide implementation details in an anonymous namespace.
namespace {
// *****************************************************************************
#if defined(__linux) || defined(__APPLE__)
int LoadLines(FILE* file, std::vector<std::string>& lines)
{
// Load each line in the given file into a the vector.
int nRead = 0;
const int bufSize = 1024;
char buf[bufSize] = { '\0' };
while (!feof(file) && !ferror(file)) {
errno = 0;
if (fgets(buf, bufSize, file) == 0) {
if (ferror(file) && (errno == EINTR)) {
clearerr(file);
}
continue;
}
char* pBuf = buf;
while (*pBuf) {
if (*pBuf == '\n')
*pBuf = '\0';
pBuf += 1;
}
lines.push_back(buf);
++nRead;
}
if (ferror(file)) {
return 0;
}
return nRead;
}
#if defined(__linux)
// *****************************************************************************
int LoadLines(const char* fileName, std::vector<std::string>& lines)
{
FILE* file = fopen(fileName, "r");
if (file == 0) {
return 0;
}
int nRead = LoadLines(file, lines);
fclose(file);
return nRead;
}
#endif
// ****************************************************************************
template <typename T>
int NameValue(std::vector<std::string>& lines, std::string name, T& value)
{
size_t nLines = lines.size();
for (size_t i = 0; i < nLines; ++i) {
size_t at = lines[i].find(name);
if (at == std::string::npos) {
continue;
}
std::istringstream is(lines[i].substr(at + name.size()));
is >> value;
return 0;
}
return -1;
}
#endif
#if defined(__linux)
// ****************************************************************************
template <typename T>
int GetFieldsFromFile(const char* fileName, const char** fieldNames, T* values)
{
std::vector<std::string> fields;
if (!LoadLines(fileName, fields)) {
return -1;
}
int i = 0;
while (fieldNames[i] != NULL) {
int ierr = NameValue(fields, fieldNames[i], values[i]);
if (ierr) {
return -(i + 2);
}
i += 1;
}
return 0;
}
// ****************************************************************************
template <typename T>
int GetFieldFromFile(const char* fileName, const char* fieldName, T& value)
{
const char* fieldNames[2] = { fieldName, NULL };
T values[1] = { T(0) };
int ierr = GetFieldsFromFile(fileName, fieldNames, values);
if (ierr) {
return ierr;
}
value = values[0];
return 0;
}
#endif
// ****************************************************************************
#if defined(__APPLE__)
template <typename T>
int GetFieldsFromCommand(const char* command, const char** fieldNames,
T* values)
{
FILE* file = popen(command, "r");
if (file == 0) {
return -1;
}
std::vector<std::string> fields;
int nl = LoadLines(file, fields);
pclose(file);
if (nl == 0) {
return -1;
}
int i = 0;
while (fieldNames[i] != NULL) {
int ierr = NameValue(fields, fieldNames[i], values[i]);
if (ierr) {
return -(i + 2);
}
i += 1;
}
return 0;
}
#endif
// ****************************************************************************
#if !defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__)
void StacktraceSignalHandler(int sigNo, siginfo_t* sigInfo,
void* /*sigContext*/)
{
#if defined(__linux) || defined(__APPLE__)
std::ostringstream oss;
oss << std::endl
<< "========================================================="
<< std::endl
<< "Process id " << getpid() << " ";
switch (sigNo) {
case SIGINT:
oss << "Caught SIGINT";
break;
case SIGTERM:
oss << "Caught SIGTERM";
break;
case SIGABRT:
oss << "Caught SIGABRT";
break;
case SIGFPE:
oss << "Caught SIGFPE at " << (sigInfo->si_addr == 0 ? "0x" : "")
<< sigInfo->si_addr << " ";
switch (sigInfo->si_code) {
#if defined(FPE_INTDIV)
case FPE_INTDIV:
oss << "integer division by zero";
break;
#endif
#if defined(FPE_INTOVF)
case FPE_INTOVF:
oss << "integer overflow";
break;
#endif
case FPE_FLTDIV:
oss << "floating point divide by zero";
break;
case FPE_FLTOVF:
oss << "floating point overflow";
break;
case FPE_FLTUND:
oss << "floating point underflow";
break;
case FPE_FLTRES:
oss << "floating point inexact result";
break;
case FPE_FLTINV:
oss << "floating point invalid operation";
break;
#if defined(FPE_FLTSUB)
case FPE_FLTSUB:
oss << "floating point subscript out of range";
break;
#endif
default:
oss << "code " << sigInfo->si_code;
break;
}
break;
case SIGSEGV:
oss << "Caught SIGSEGV at " << (sigInfo->si_addr == 0 ? "0x" : "")
<< sigInfo->si_addr << " ";
switch (sigInfo->si_code) {
case SEGV_MAPERR:
oss << "address not mapped to object";
break;
case SEGV_ACCERR:
oss << "invalid permission for mapped object";
break;
default:
oss << "code " << sigInfo->si_code;
break;
}
break;
case SIGBUS:
oss << "Caught SIGBUS at " << (sigInfo->si_addr == 0 ? "0x" : "")
<< sigInfo->si_addr << " ";
switch (sigInfo->si_code) {
case BUS_ADRALN:
oss << "invalid address alignment";
break;
#if defined(BUS_ADRERR)
case BUS_ADRERR:
oss << "nonexistent physical address";
break;
#endif
#if defined(BUS_OBJERR)
case BUS_OBJERR:
oss << "object-specific hardware error";
break;
#endif
#if defined(BUS_MCEERR_AR)
case BUS_MCEERR_AR:
oss << "Hardware memory error consumed on a machine check; action "
"required.";
break;
#endif
#if defined(BUS_MCEERR_AO)
case BUS_MCEERR_AO:
oss << "Hardware memory error detected in process but not consumed; "
"action optional.";
break;
#endif
default:
oss << "code " << sigInfo->si_code;
break;
}
break;
case SIGILL:
oss << "Caught SIGILL at " << (sigInfo->si_addr == 0 ? "0x" : "")
<< sigInfo->si_addr << " ";
switch (sigInfo->si_code) {
case ILL_ILLOPC:
oss << "illegal opcode";
break;
#if defined(ILL_ILLOPN)
case ILL_ILLOPN:
oss << "illegal operand";
break;
#endif
#if defined(ILL_ILLADR)
case ILL_ILLADR:
oss << "illegal addressing mode.";
break;
#endif
case ILL_ILLTRP:
oss << "illegal trap";
break;
case ILL_PRVOPC:
oss << "privileged opcode";
break;
#if defined(ILL_PRVREG)
case ILL_PRVREG:
oss << "privileged register";
break;
#endif
#if defined(ILL_COPROC)
case ILL_COPROC:
oss << "co-processor error";
break;
#endif
#if defined(ILL_BADSTK)
case ILL_BADSTK:
oss << "internal stack error";
break;
#endif
default:
oss << "code " << sigInfo->si_code;
break;
}
break;
default:
oss << "Caught " << sigNo << " code " << sigInfo->si_code;
break;
}
oss << std::endl
<< "Program Stack:" << std::endl
<< SystemInformationImplementation::GetProgramStack(2, 0)
<< "========================================================="
<< std::endl;
std::cerr << oss.str() << std::endl;
// restore the previously registered handlers
// and abort
SystemInformationImplementation::SetStackTraceOnError(0);
abort();
#else
// avoid warning C4100
(void)sigNo;
(void)sigInfo;
#endif
}
#endif
#if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
#define safes(_arg) ((_arg) ? (_arg) : "???")
// Description:
// A container for symbol properties. Each instance
// must be Initialized.
class SymbolProperties
{
public:
SymbolProperties();
// Description:
// The SymbolProperties instance must be initialized by
// passing a stack address.
void Initialize(void* address);
// Description:
// Get the symbol's stack address.
void* GetAddress() const { return this->Address; }
// Description:
// If not set paths will be removed. eg, from a binary
// or source file.
void SetReportPath(int rp) { this->ReportPath = rp; }
// Description:
// Set/Get the name of the binary file that the symbol
// is found in.
void SetBinary(const char* binary) { this->Binary = safes(binary); }
std::string GetBinary() const;
// Description:
// Set the name of the function that the symbol is found in.
// If c++ demangling is supported it will be demangled.
void SetFunction(const char* function)
{
this->Function = this->Demangle(function);
}
std::string GetFunction() const { return this->Function; }
// Description:
// Set/Get the name of the source file where the symbol
// is defined.
void SetSourceFile(const char* sourcefile)
{
this->SourceFile = safes(sourcefile);
}
std::string GetSourceFile() const
{
return this->GetFileName(this->SourceFile);
}
// Description:
// Set/Get the line number where the symbol is defined
void SetLineNumber(long linenumber) { this->LineNumber = linenumber; }
long GetLineNumber() const { return this->LineNumber; }
// Description:
// Set the address where the biinary image is mapped
// into memory.
void SetBinaryBaseAddress(void* address)
{
this->BinaryBaseAddress = address;
}
private:
void* GetRealAddress() const
{
return (void*)((char*)this->Address - (char*)this->BinaryBaseAddress);
}
std::string GetFileName(const std::string& path) const;
std::string Demangle(const char* symbol) const;
private:
std::string Binary;
void* BinaryBaseAddress;
void* Address;
std::string SourceFile;
std::string Function;
long LineNumber;
int ReportPath;
};
// --------------------------------------------------------------------------
std::ostream& operator<<(std::ostream& os, const SymbolProperties& sp)
{
#if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
os << std::hex << sp.GetAddress() << " : " << sp.GetFunction() << " [("
<< sp.GetBinary() << ") " << sp.GetSourceFile() << ":" << std::dec
<< sp.GetLineNumber() << "]";
#elif defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
void* addr = sp.GetAddress();
char** syminfo = backtrace_symbols(&addr, 1);
os << safes(syminfo[0]);
free(syminfo);
#else
(void)os;
(void)sp;
#endif
return os;
}
// --------------------------------------------------------------------------
SymbolProperties::SymbolProperties()
{
// not using an initializer list
// to avoid some PGI compiler warnings
this->SetBinary("???");
this->SetBinaryBaseAddress(NULL);
this->Address = NULL;
this->SetSourceFile("???");
this->SetFunction("???");
this->SetLineNumber(-1);
this->SetReportPath(0);
// avoid PGI compiler warnings
this->GetRealAddress();
this->GetFunction();
this->GetSourceFile();
this->GetLineNumber();
}
// --------------------------------------------------------------------------
std::string SymbolProperties::GetFileName(const std::string& path) const
{
std::string file(path);
if (!this->ReportPath) {
size_t at = file.rfind("/");
if (at != std::string::npos) {
file = file.substr(at + 1, std::string::npos);
}
}
return file;
}
// --------------------------------------------------------------------------
std::string SymbolProperties::GetBinary() const
{
// only linux has proc fs
#if defined(__linux__)
if (this->Binary == "/proc/self/exe") {
std::string binary;
char buf[1024] = { '\0' };
ssize_t ll = 0;
if ((ll = readlink("/proc/self/exe", buf, 1024)) > 0) {
buf[ll] = '\0';
binary = buf;
} else {
binary = "/proc/self/exe";
}
return this->GetFileName(binary);
}
#endif
return this->GetFileName(this->Binary);
}
// --------------------------------------------------------------------------
std::string SymbolProperties::Demangle(const char* symbol) const
{
std::string result = safes(symbol);
#if defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE)
int status = 0;
size_t bufferLen = 1024;
char* buffer = (char*)malloc(1024);
char* demangledSymbol =
abi::__cxa_demangle(symbol, buffer, &bufferLen, &status);
if (!status) {
result = demangledSymbol;
}
free(buffer);
#else
(void)symbol;
#endif
return result;
}
// --------------------------------------------------------------------------
void SymbolProperties::Initialize(void* address)
{
this->Address = address;
#if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
// first fallback option can demangle c++ functions
Dl_info info;
int ierr = dladdr(this->Address, &info);
if (ierr && info.dli_sname && info.dli_saddr) {
this->SetBinary(info.dli_fname);
this->SetFunction(info.dli_sname);
}
#else
// second fallback use builtin backtrace_symbols
// to decode the bactrace.
#endif
}
#endif // don't define this class if we're not using it
// --------------------------------------------------------------------------
#if defined(_WIN32) || defined(__CYGWIN__)
#define KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes
#endif
#if defined(_MSC_VER) && _MSC_VER < 1310
#undef KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes
#endif
#if defined(KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes)
double calculateCPULoad(unsigned __int64 idleTicks,
unsigned __int64 totalTicks)
{
static double previousLoad = -0.0;
static unsigned __int64 previousIdleTicks = 0;
static unsigned __int64 previousTotalTicks = 0;
unsigned __int64 const idleTicksSinceLastTime =
idleTicks - previousIdleTicks;
unsigned __int64 const totalTicksSinceLastTime =
totalTicks - previousTotalTicks;
double load;
if (previousTotalTicks == 0 || totalTicksSinceLastTime == 0) {
// No new information. Use previous result.
load = previousLoad;
} else {
// Calculate load since last time.
load = 1.0 - double(idleTicksSinceLastTime) / totalTicksSinceLastTime;
// Smooth if possible.
if (previousLoad > 0) {
load = 0.25 * load + 0.75 * previousLoad;
}
}
previousLoad = load;
previousIdleTicks = idleTicks;
previousTotalTicks = totalTicks;
return load;
}
unsigned __int64 fileTimeToUInt64(FILETIME const& ft)
{
LARGE_INTEGER out;
out.HighPart = ft.dwHighDateTime;
out.LowPart = ft.dwLowDateTime;
return out.QuadPart;
}
#endif
} // anonymous namespace
SystemInformationImplementation::SystemInformationImplementation()
{
this->TotalVirtualMemory = 0;
this->AvailableVirtualMemory = 0;
this->TotalPhysicalMemory = 0;
this->AvailablePhysicalMemory = 0;
this->CurrentPositionInFile = 0;
this->ChipManufacturer = UnknownManufacturer;
memset(&this->Features, 0, sizeof(CPUFeatures));
this->ChipID.Type = 0;
this->ChipID.Family = 0;
this->ChipID.Model = 0;
this->ChipID.Revision = 0;
this->ChipID.ExtendedFamily = 0;
this->ChipID.ExtendedModel = 0;
this->CPUSpeedInMHz = 0;
this->NumberOfLogicalCPU = 0;
this->NumberOfPhysicalCPU = 0;
this->OSName = "";
this->Hostname = "";
this->OSRelease = "";
this->OSVersion = "";
this->OSPlatform = "";
}
SystemInformationImplementation::~SystemInformationImplementation()
{
}
void SystemInformationImplementation::RunCPUCheck()
{
#ifdef _WIN32
// Check to see if this processor supports CPUID.
bool supportsCPUID = DoesCPUSupportCPUID();
if (supportsCPUID) {
// Retrieve the CPU details.
RetrieveCPUIdentity();
this->FindManufacturer();
RetrieveCPUFeatures();
}
// These two may be called without support for the CPUID instruction.
// (But if the instruction is there, they should be called *after*
// the above call to RetrieveCPUIdentity... that's why the two if
// blocks exist with the same "if (supportsCPUID)" logic...
//
if (!RetrieveCPUClockSpeed()) {
RetrieveClassicalCPUClockSpeed();
}
if (supportsCPUID) {
// Retrieve cache information.
if (!RetrieveCPUCacheDetails()) {
RetrieveClassicalCPUCacheDetails();
}
// Retrieve the extended CPU details.
if (!RetrieveExtendedCPUIdentity()) {
RetrieveClassicalCPUIdentity();
}
RetrieveExtendedCPUFeatures();
RetrieveCPUPowerManagement();
// Now attempt to retrieve the serial number (if possible).
RetrieveProcessorSerialNumber();
}
this->CPUCount();
#elif defined(__APPLE__)
this->ParseSysCtl();
#elif defined(__SVR4) && defined(__sun)
this->QuerySolarisProcessor();
#elif defined(__HAIKU__)
this->QueryHaikuInfo();
#elif defined(__QNX__)
this->QueryQNXProcessor();
#elif defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \
defined(__DragonFly__)
this->QueryBSDProcessor();
#elif defined(__hpux)
this->QueryHPUXProcessor();
#elif defined(__linux) || defined(__CYGWIN__)
this->RetreiveInformationFromCpuInfoFile();
#else
this->QueryProcessor();
#endif
}
void SystemInformationImplementation::RunOSCheck()
{
this->QueryOSInformation();
}
void SystemInformationImplementation::RunMemoryCheck()
{
#if defined(__APPLE__)
this->ParseSysCtl();
#elif defined(__SVR4) && defined(__sun)
this->QuerySolarisMemory();
#elif defined(__HAIKU__)
this->QueryHaikuInfo();
#elif defined(__QNX__)
this->QueryQNXMemory();
#elif defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \
defined(__DragonFly__)
this->QueryBSDMemory();
#elif defined(__CYGWIN__)
this->QueryCygwinMemory();
#elif defined(_WIN32)
this->QueryWindowsMemory();
#elif defined(__hpux)
this->QueryHPUXMemory();
#elif defined(__linux)
this->QueryLinuxMemory();
#elif defined(_AIX)
this->QueryAIXMemory();
#else
this->QueryMemory();
#endif
}
/** Get the vendor string */
const char* SystemInformationImplementation::GetVendorString()
{
return this->ChipID.Vendor.c_str();
}
/** Get the OS Name */
const char* SystemInformationImplementation::GetOSName()
{
return this->OSName.c_str();
}
/** Get the hostname */
const char* SystemInformationImplementation::GetHostname()
{
if (this->Hostname.empty()) {
this->Hostname = "localhost";
#if defined(_WIN32)
WORD wVersionRequested;
WSADATA wsaData;
char name[255];
wVersionRequested = MAKEWORD(2, 0);
if (WSAStartup(wVersionRequested, &wsaData) == 0) {
gethostname(name, sizeof(name));
WSACleanup();
}
this->Hostname = name;
#else
struct utsname unameInfo;
int errorFlag = uname(&unameInfo);
if (errorFlag == 0) {
this->Hostname = unameInfo.nodename;
}
#endif
}
return this->Hostname.c_str();
}
/** Get the FQDN */
int SystemInformationImplementation::GetFullyQualifiedDomainName(
std::string& fqdn)
{
// in the event of absolute failure return localhost.
fqdn = "localhost";
#if defined(_WIN32)
int ierr;
// TODO - a more robust implementation for windows, see comments
// in unix implementation.
WSADATA wsaData;
WORD ver = MAKEWORD(2, 0);
ierr = WSAStartup(ver, &wsaData);
if (ierr) {
return -1;
}
char base[256] = { '\0' };
ierr = gethostname(base, 256);
if (ierr) {
WSACleanup();
return -2;
}
fqdn = base;
HOSTENT* hent = gethostbyname(base);
if (hent) {
fqdn = hent->h_name;
}
WSACleanup();
return 0;
#elif defined(KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN)
// gethostname typical returns an alias for loopback interface
// we want the fully qualified domain name. Because there are
// any number of interfaces on this system we look for the
// first of these that contains the name returned by gethostname
// and is longer. failing that we return gethostname and indicate
// with a failure code. Return of a failure code is not necessarilly
// an indication of an error. for instance gethostname may return
// the fully qualified domain name, or there may not be one if the
// system lives on a private network such as in the case of a cluster
// node.
int ierr = 0;
char base[NI_MAXHOST];
ierr = gethostname(base, NI_MAXHOST);
if (ierr) {
return -1;
}
size_t baseSize = strlen(base);
fqdn = base;
struct ifaddrs* ifas;
struct ifaddrs* ifa;
ierr = getifaddrs(&ifas);
if (ierr) {
return -2;
}
for (ifa = ifas; ifa != NULL; ifa = ifa->ifa_next) {
int fam = ifa->ifa_addr ? ifa->ifa_addr->sa_family : -1;
// Skip Loopback interfaces
if (((fam == AF_INET) || (fam == AF_INET6)) &&
!(ifa->ifa_flags & IFF_LOOPBACK)) {
char host[NI_MAXHOST] = { '\0' };
const size_t addrlen = (fam == AF_INET ? sizeof(struct sockaddr_in)
: sizeof(struct sockaddr_in6));
ierr = getnameinfo(ifa->ifa_addr, static_cast<socklen_t>(addrlen), host,
NI_MAXHOST, NULL, 0, NI_NAMEREQD);
if (ierr) {
// don't report the failure now since we may succeed on another
// interface. If all attempts fail then return the failure code.
ierr = -3;
continue;
}
std::string candidate = host;
if ((candidate.find(base) != std::string::npos) &&
baseSize < candidate.size()) {
// success, stop now.
ierr = 0;
fqdn = candidate;
break;
}
}
}
freeifaddrs(ifas);
return ierr;
#else
/* TODO: Implement on more platforms. */
fqdn = this->GetHostname();
return -1;
#endif
}
/** Get the OS release */
const char* SystemInformationImplementation::GetOSRelease()
{
return this->OSRelease.c_str();
}
/** Get the OS version */
const char* SystemInformationImplementation::GetOSVersion()
{
return this->OSVersion.c_str();
}
/** Get the OS platform */
const char* SystemInformationImplementation::GetOSPlatform()
{
return this->OSPlatform.c_str();
}
/** Get the vendor ID */
const char* SystemInformationImplementation::GetVendorID()
{
// Return the vendor ID.
switch (this->ChipManufacturer) {
case Intel:
return "Intel Corporation";
case AMD:
return "Advanced Micro Devices";
case NSC:
return "National Semiconductor";
case Cyrix:
return "Cyrix Corp., VIA Inc.";
case NexGen:
return "NexGen Inc., Advanced Micro Devices";
case IDT:
return "IDT\\Centaur, Via Inc.";
case UMC:
return "United Microelectronics Corp.";
case Rise:
return "Rise";
case Transmeta:
return "Transmeta";
case Sun:
return "Sun Microelectronics";
case IBM:
return "IBM";
case Motorola:
return "Motorola";
case HP:
return "Hewlett-Packard";
case UnknownManufacturer:
default:
return "Unknown Manufacturer";
}
}
/** Return the type ID of the CPU */
std::string SystemInformationImplementation::GetTypeID()
{
std::ostringstream str;
str << this->ChipID.Type;
return str.str();
}
/** Return the family of the CPU present */
std::string SystemInformationImplementation::GetFamilyID()
{
std::ostringstream str;
str << this->ChipID.Family;
return str.str();
}
// Return the model of CPU present */
std::string SystemInformationImplementation::GetModelID()
{
std::ostringstream str;
str << this->ChipID.Model;
return str.str();
}
// Return the model name of CPU present */
std::string SystemInformationImplementation::GetModelName()
{
return this->ChipID.ModelName;
}
/** Return the stepping code of the CPU present. */
std::string SystemInformationImplementation::GetSteppingCode()
{
std::ostringstream str;
str << this->ChipID.Revision;
return str.str();
}
/** Return the stepping code of the CPU present. */
const char* SystemInformationImplementation::GetExtendedProcessorName()
{
return this->ChipID.ProcessorName.c_str();
}
/** Return the serial number of the processor
* in hexadecimal: xxxx-xxxx-xxxx-xxxx-xxxx-xxxx. */
const char* SystemInformationImplementation::GetProcessorSerialNumber()
{
return this->ChipID.SerialNumber.c_str();
}
/** Return the logical processors per physical */
unsigned int SystemInformationImplementation::GetLogicalProcessorsPerPhysical()
{
return this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical;
}
/** Return the processor clock frequency. */
float SystemInformationImplementation::GetProcessorClockFrequency()
{
return this->CPUSpeedInMHz;
}
/** Return the APIC ID. */
int SystemInformationImplementation::GetProcessorAPICID()
{
return this->Features.ExtendedFeatures.APIC_ID;
}
/** Return the L1 cache size. */
int SystemInformationImplementation::GetProcessorCacheSize()
{
return this->Features.L1CacheSize;
}
/** Return the chosen cache size. */
int SystemInformationImplementation::GetProcessorCacheXSize(long int dwCacheID)
{
switch (dwCacheID) {
case L1CACHE_FEATURE:
return this->Features.L1CacheSize;
case L2CACHE_FEATURE:
return this->Features.L2CacheSize;
case L3CACHE_FEATURE:
return this->Features.L3CacheSize;
}
return -1;
}
bool SystemInformationImplementation::DoesCPUSupportFeature(long int dwFeature)
{
bool bHasFeature = false;
// Check for MMX instructions.
if (((dwFeature & MMX_FEATURE) != 0) && this->Features.HasMMX)
bHasFeature = true;
// Check for MMX+ instructions.
if (((dwFeature & MMX_PLUS_FEATURE) != 0) &&
this->Features.ExtendedFeatures.HasMMXPlus)
bHasFeature = true;
// Check for SSE FP instructions.
if (((dwFeature & SSE_FEATURE) != 0) && this->Features.HasSSE)
bHasFeature = true;
// Check for SSE FP instructions.
if (((dwFeature & SSE_FP_FEATURE) != 0) && this->Features.HasSSEFP)
bHasFeature = true;
// Check for SSE MMX instructions.
if (((dwFeature & SSE_MMX_FEATURE) != 0) &&
this->Features.ExtendedFeatures.HasSSEMMX)
bHasFeature = true;
// Check for SSE2 instructions.
if (((dwFeature & SSE2_FEATURE) != 0) && this->Features.HasSSE2)
bHasFeature = true;
// Check for 3DNow! instructions.
if (((dwFeature & AMD_3DNOW_FEATURE) != 0) &&
this->Features.ExtendedFeatures.Has3DNow)
bHasFeature = true;
// Check for 3DNow+ instructions.
if (((dwFeature & AMD_3DNOW_PLUS_FEATURE) != 0) &&
this->Features.ExtendedFeatures.Has3DNowPlus)
bHasFeature = true;
// Check for IA64 instructions.
if (((dwFeature & IA64_FEATURE) != 0) && this->Features.HasIA64)
bHasFeature = true;
// Check for MP capable.
if (((dwFeature & MP_CAPABLE) != 0) &&
this->Features.ExtendedFeatures.SupportsMP)
bHasFeature = true;
// Check for a serial number for the processor.
if (((dwFeature & SERIALNUMBER_FEATURE) != 0) && this->Features.HasSerial)
bHasFeature = true;
// Check for a local APIC in the processor.
if (((dwFeature & APIC_FEATURE) != 0) && this->Features.HasAPIC)
bHasFeature = true;
// Check for CMOV instructions.
if (((dwFeature & CMOV_FEATURE) != 0) && this->Features.HasCMOV)
bHasFeature = true;
// Check for MTRR instructions.
if (((dwFeature & MTRR_FEATURE) != 0) && this->Features.HasMTRR)
bHasFeature = true;
// Check for L1 cache size.
if (((dwFeature & L1CACHE_FEATURE) != 0) &&
(this->Features.L1CacheSize != -1))
bHasFeature = true;
// Check for L2 cache size.
if (((dwFeature & L2CACHE_FEATURE) != 0) &&
(this->Features.L2CacheSize != -1))
bHasFeature = true;
// Check for L3 cache size.
if (((dwFeature & L3CACHE_FEATURE) != 0) &&
(this->Features.L3CacheSize != -1))
bHasFeature = true;
// Check for ACPI capability.
if (((dwFeature & ACPI_FEATURE) != 0) && this->Features.HasACPI)
bHasFeature = true;
// Check for thermal monitor support.
if (((dwFeature & THERMALMONITOR_FEATURE) != 0) && this->Features.HasThermal)
bHasFeature = true;
// Check for temperature sensing diode support.
if (((dwFeature & TEMPSENSEDIODE_FEATURE) != 0) &&
this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode)
bHasFeature = true;
// Check for frequency ID support.
if (((dwFeature & FREQUENCYID_FEATURE) != 0) &&
this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID)
bHasFeature = true;
// Check for voltage ID support.
if (((dwFeature & VOLTAGEID_FREQUENCY) != 0) &&
this->Features.ExtendedFeatures.PowerManagement.HasVoltageID)
bHasFeature = true;
return bHasFeature;
}
void SystemInformationImplementation::Delay(unsigned int uiMS)
{
#ifdef _WIN32
LARGE_INTEGER Frequency, StartCounter, EndCounter;
__int64 x;
// Get the frequency of the high performance counter.
if (!QueryPerformanceFrequency(&Frequency))
return;
x = Frequency.QuadPart / 1000 * uiMS;
// Get the starting position of the counter.
QueryPerformanceCounter(&StartCounter);
do {
// Get the ending position of the counter.
QueryPerformanceCounter(&EndCounter);
} while (EndCounter.QuadPart - StartCounter.QuadPart < x);
#endif
(void)uiMS;
}
bool SystemInformationImplementation::DoesCPUSupportCPUID()
{
#if USE_CPUID
int dummy[4] = { 0, 0, 0, 0 };
#if USE_ASM_INSTRUCTIONS
return call_cpuid(0, dummy);
#else
call_cpuid(0, dummy);
return dummy[0] || dummy[1] || dummy[2] || dummy[3];
#endif
#else
// Assume no cpuid instruction.
return false;
#endif
}
bool SystemInformationImplementation::RetrieveCPUFeatures()
{
#if USE_CPUID
int cpuinfo[4] = { 0, 0, 0, 0 };
if (!call_cpuid(1, cpuinfo)) {
return false;
}
// Retrieve the features of CPU present.
this->Features.HasFPU =
((cpuinfo[3] & 0x00000001) != 0); // FPU Present --> Bit 0
this->Features.HasTSC =
((cpuinfo[3] & 0x00000010) != 0); // TSC Present --> Bit 4
this->Features.HasAPIC =
((cpuinfo[3] & 0x00000200) != 0); // APIC Present --> Bit 9
this->Features.HasMTRR =
((cpuinfo[3] & 0x00001000) != 0); // MTRR Present --> Bit 12
this->Features.HasCMOV =
((cpuinfo[3] & 0x00008000) != 0); // CMOV Present --> Bit 15
this->Features.HasSerial =
((cpuinfo[3] & 0x00040000) != 0); // Serial Present --> Bit 18
this->Features.HasACPI =
((cpuinfo[3] & 0x00400000) != 0); // ACPI Capable --> Bit 22
this->Features.HasMMX =
((cpuinfo[3] & 0x00800000) != 0); // MMX Present --> Bit 23
this->Features.HasSSE =
((cpuinfo[3] & 0x02000000) != 0); // SSE Present --> Bit 25
this->Features.HasSSE2 =
((cpuinfo[3] & 0x04000000) != 0); // SSE2 Present --> Bit 26
this->Features.HasThermal =
((cpuinfo[3] & 0x20000000) != 0); // Thermal Monitor Present --> Bit 29
this->Features.HasIA64 =
((cpuinfo[3] & 0x40000000) != 0); // IA64 Present --> Bit 30
#if USE_ASM_INSTRUCTIONS
// Retrieve extended SSE capabilities if SSE is available.
if (this->Features.HasSSE) {
// Attempt to __try some SSE FP instructions.
__try {
// Perform: orps xmm0, xmm0
_asm
{
_emit 0x0f
_emit 0x56
_emit 0xc0
}
// SSE FP capable processor.
this->Features.HasSSEFP = true;
} __except (1) {
// bad instruction - processor or OS cannot handle SSE FP.
this->Features.HasSSEFP = false;
}
} else {
// Set the advanced SSE capabilities to not available.
this->Features.HasSSEFP = false;
}
#else
this->Features.HasSSEFP = false;
#endif
// Retrieve Intel specific extended features.
if (this->ChipManufacturer == Intel) {
this->Features.ExtendedFeatures.SupportsHyperthreading =
((cpuinfo[3] & 0x10000000) !=
0); // Intel specific: Hyperthreading --> Bit 28
this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical =
(this->Features.ExtendedFeatures.SupportsHyperthreading)
? ((cpuinfo[1] & 0x00FF0000) >> 16)
: 1;
if ((this->Features.ExtendedFeatures.SupportsHyperthreading) &&
(this->Features.HasAPIC)) {
// Retrieve APIC information if there is one present.
this->Features.ExtendedFeatures.APIC_ID =
((cpuinfo[1] & 0xFF000000) >> 24);
}
}
return true;
#else
return false;
#endif
}
/** Find the manufacturer given the vendor id */
void SystemInformationImplementation::FindManufacturer(
const std::string& family)
{
if (this->ChipID.Vendor == "GenuineIntel")
this->ChipManufacturer = Intel; // Intel Corp.
else if (this->ChipID.Vendor == "UMC UMC UMC ")
this->ChipManufacturer = UMC; // United Microelectronics Corp.
else if (this->ChipID.Vendor == "AuthenticAMD")
this->ChipManufacturer = AMD; // Advanced Micro Devices
else if (this->ChipID.Vendor == "AMD ISBETTER")
this->ChipManufacturer = AMD; // Advanced Micro Devices (1994)
else if (this->ChipID.Vendor == "CyrixInstead")
this->ChipManufacturer = Cyrix; // Cyrix Corp., VIA Inc.
else if (this->ChipID.Vendor == "NexGenDriven")
this->ChipManufacturer = NexGen; // NexGen Inc. (now AMD)
else if (this->ChipID.Vendor == "CentaurHauls")
this->ChipManufacturer = IDT; // IDT/Centaur (now VIA)
else if (this->ChipID.Vendor == "RiseRiseRise")
this->ChipManufacturer = Rise; // Rise
else if (this->ChipID.Vendor == "GenuineTMx86")
this->ChipManufacturer = Transmeta; // Transmeta
else if (this->ChipID.Vendor == "TransmetaCPU")
this->ChipManufacturer = Transmeta; // Transmeta
else if (this->ChipID.Vendor == "Geode By NSC")
this->ChipManufacturer = NSC; // National Semiconductor
else if (this->ChipID.Vendor == "Sun")
this->ChipManufacturer = Sun; // Sun Microelectronics
else if (this->ChipID.Vendor == "IBM")
this->ChipManufacturer = IBM; // IBM Microelectronics
else if (this->ChipID.Vendor == "Hewlett-Packard")
this->ChipManufacturer = HP; // Hewlett-Packard
else if (this->ChipID.Vendor == "Motorola")
this->ChipManufacturer = Motorola; // Motorola Microelectronics
else if (family.substr(0, 7) == "PA-RISC")
this->ChipManufacturer = HP; // Hewlett-Packard
else
this->ChipManufacturer = UnknownManufacturer; // Unknown manufacturer
}
/** */
bool SystemInformationImplementation::RetrieveCPUIdentity()
{
#if USE_CPUID
int localCPUVendor[4];
int localCPUSignature[4];
if (!call_cpuid(0, localCPUVendor)) {
return false;
}
if (!call_cpuid(1, localCPUSignature)) {
return false;
}
// Process the returned information.
// ; eax = 0 --> eax: maximum value of CPUID instruction.
// ; ebx: part 1 of 3; CPU signature.
// ; edx: part 2 of 3; CPU signature.
// ; ecx: part 3 of 3; CPU signature.
char vbuf[13];
memcpy(&(vbuf[0]), &(localCPUVendor[1]), sizeof(int));
memcpy(&(vbuf[4]), &(localCPUVendor[3]), sizeof(int));
memcpy(&(vbuf[8]), &(localCPUVendor[2]), sizeof(int));
vbuf[12] = '\0';
this->ChipID.Vendor = vbuf;
// Retrieve the family of CPU present.
// ; eax = 1 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type,
// bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision
// ; ebx: 31..24 - default APIC ID, 23..16 - logical processor ID,
// 15..8 - CFLUSH chunk size , 7..0 - brand ID
// ; edx: CPU feature flags
this->ChipID.ExtendedFamily =
((localCPUSignature[0] & 0x0FF00000) >> 20); // Bits 27..20 Used
this->ChipID.ExtendedModel =
((localCPUSignature[0] & 0x000F0000) >> 16); // Bits 19..16 Used
this->ChipID.Type =
((localCPUSignature[0] & 0x0000F000) >> 12); // Bits 15..12 Used
this->ChipID.Family =
((localCPUSignature[0] & 0x00000F00) >> 8); // Bits 11..8 Used
this->ChipID.Model =
((localCPUSignature[0] & 0x000000F0) >> 4); // Bits 7..4 Used
this->ChipID.Revision =
((localCPUSignature[0] & 0x0000000F) >> 0); // Bits 3..0 Used
return true;
#else
return false;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveCPUCacheDetails()
{
#if USE_CPUID
int L1Cache[4] = { 0, 0, 0, 0 };
int L2Cache[4] = { 0, 0, 0, 0 };
// Check to see if what we are about to do is supported...
if (RetrieveCPUExtendedLevelSupport(0x80000005)) {
if (!call_cpuid(0x80000005, L1Cache)) {
return false;
}
// Save the L1 data cache size (in KB) from ecx: bits 31..24 as well as
// data cache size from edx: bits 31..24.
this->Features.L1CacheSize = ((L1Cache[2] & 0xFF000000) >> 24);
this->Features.L1CacheSize += ((L1Cache[3] & 0xFF000000) >> 24);
} else {
// Store -1 to indicate the cache could not be queried.
this->Features.L1CacheSize = -1;
}
// Check to see if what we are about to do is supported...
if (RetrieveCPUExtendedLevelSupport(0x80000006)) {
if (!call_cpuid(0x80000006, L2Cache)) {
return false;
}
// Save the L2 unified cache size (in KB) from ecx: bits 31..16.
this->Features.L2CacheSize = ((L2Cache[2] & 0xFFFF0000) >> 16);
} else {
// Store -1 to indicate the cache could not be queried.
this->Features.L2CacheSize = -1;
}
// Define L3 as being not present as we cannot test for it.
this->Features.L3CacheSize = -1;
#endif
// Return failure if we cannot detect either cache with this method.
return ((this->Features.L1CacheSize == -1) &&
(this->Features.L2CacheSize == -1))
? false
: true;
}
/** */
bool SystemInformationImplementation::RetrieveClassicalCPUCacheDetails()
{
#if USE_CPUID
int TLBCode = -1, TLBData = -1, L1Code = -1, L1Data = -1, L1Trace = -1,
L2Unified = -1, L3Unified = -1;
int TLBCacheData[4] = { 0, 0, 0, 0 };
int TLBPassCounter = 0;
int TLBCacheUnit = 0;
do {
if (!call_cpuid(2, TLBCacheData)) {
return false;
}
int bob = ((TLBCacheData[0] & 0x00FF0000) >> 16);
(void)bob;
// Process the returned TLB and cache information.
for (int nCounter = 0; nCounter < TLBCACHE_INFO_UNITS; nCounter++) {
// First of all - decide which unit we are dealing with.
switch (nCounter) {
// eax: bits 8..15 : bits 16..23 : bits 24..31
case 0:
TLBCacheUnit = ((TLBCacheData[0] & 0x0000FF00) >> 8);
break;
case 1:
TLBCacheUnit = ((TLBCacheData[0] & 0x00FF0000) >> 16);
break;
case 2:
TLBCacheUnit = ((TLBCacheData[0] & 0xFF000000) >> 24);
break;
// ebx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
case 3:
TLBCacheUnit = ((TLBCacheData[1] & 0x000000FF) >> 0);
break;
case 4:
TLBCacheUnit = ((TLBCacheData[1] & 0x0000FF00) >> 8);
break;
case 5:
TLBCacheUnit = ((TLBCacheData[1] & 0x00FF0000) >> 16);
break;
case 6:
TLBCacheUnit = ((TLBCacheData[1] & 0xFF000000) >> 24);
break;
// ecx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
case 7:
TLBCacheUnit = ((TLBCacheData[2] & 0x000000FF) >> 0);
break;
case 8:
TLBCacheUnit = ((TLBCacheData[2] & 0x0000FF00) >> 8);
break;
case 9:
TLBCacheUnit = ((TLBCacheData[2] & 0x00FF0000) >> 16);
break;
case 10:
TLBCacheUnit = ((TLBCacheData[2] & 0xFF000000) >> 24);
break;
// edx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
case 11:
TLBCacheUnit = ((TLBCacheData[3] & 0x000000FF) >> 0);
break;
case 12:
TLBCacheUnit = ((TLBCacheData[3] & 0x0000FF00) >> 8);
break;
case 13:
TLBCacheUnit = ((TLBCacheData[3] & 0x00FF0000) >> 16);
break;
case 14:
TLBCacheUnit = ((TLBCacheData[3] & 0xFF000000) >> 24);
break;
// Default case - an error has occurred.
default:
return false;
}
// Now process the resulting unit to see what it means....
switch (TLBCacheUnit) {
case 0x00:
break;
case 0x01:
STORE_TLBCACHE_INFO(TLBCode, 4);
break;
case 0x02:
STORE_TLBCACHE_INFO(TLBCode, 4096);
break;
case 0x03:
STORE_TLBCACHE_INFO(TLBData, 4);
break;
case 0x04:
STORE_TLBCACHE_INFO(TLBData, 4096);
break;
case 0x06:
STORE_TLBCACHE_INFO(L1Code, 8);
break;
case 0x08:
STORE_TLBCACHE_INFO(L1Code, 16);
break;
case 0x0a:
STORE_TLBCACHE_INFO(L1Data, 8);
break;
case 0x0c:
STORE_TLBCACHE_INFO(L1Data, 16);
break;
case 0x10:
STORE_TLBCACHE_INFO(L1Data, 16);
break; // <-- FIXME: IA-64 Only
case 0x15:
STORE_TLBCACHE_INFO(L1Code, 16);
break; // <-- FIXME: IA-64 Only
case 0x1a:
STORE_TLBCACHE_INFO(L2Unified, 96);
break; // <-- FIXME: IA-64 Only
case 0x22:
STORE_TLBCACHE_INFO(L3Unified, 512);
break;
case 0x23:
STORE_TLBCACHE_INFO(L3Unified, 1024);
break;
case 0x25:
STORE_TLBCACHE_INFO(L3Unified, 2048);
break;
case 0x29:
STORE_TLBCACHE_INFO(L3Unified, 4096);
break;
case 0x39:
STORE_TLBCACHE_INFO(L2Unified, 128);
break;
case 0x3c:
STORE_TLBCACHE_INFO(L2Unified, 256);
break;
case 0x40:
STORE_TLBCACHE_INFO(L2Unified, 0);
break; // <-- FIXME: No integrated L2 cache (P6 core) or L3 cache (P4
// core).
case 0x41:
STORE_TLBCACHE_INFO(L2Unified, 128);
break;
case 0x42:
STORE_TLBCACHE_INFO(L2Unified, 256);
break;
case 0x43:
STORE_TLBCACHE_INFO(L2Unified, 512);
break;
case 0x44:
STORE_TLBCACHE_INFO(L2Unified, 1024);
break;
case 0x45:
STORE_TLBCACHE_INFO(L2Unified, 2048);
break;
case 0x50:
STORE_TLBCACHE_INFO(TLBCode, 4096);
break;
case 0x51:
STORE_TLBCACHE_INFO(TLBCode, 4096);
break;
case 0x52:
STORE_TLBCACHE_INFO(TLBCode, 4096);
break;
case 0x5b:
STORE_TLBCACHE_INFO(TLBData, 4096);
break;
case 0x5c:
STORE_TLBCACHE_INFO(TLBData, 4096);
break;
case 0x5d:
STORE_TLBCACHE_INFO(TLBData, 4096);
break;
case 0x66:
STORE_TLBCACHE_INFO(L1Data, 8);
break;
case 0x67:
STORE_TLBCACHE_INFO(L1Data, 16);
break;
case 0x68:
STORE_TLBCACHE_INFO(L1Data, 32);
break;
case 0x70:
STORE_TLBCACHE_INFO(L1Trace, 12);
break;
case 0x71:
STORE_TLBCACHE_INFO(L1Trace, 16);
break;
case 0x72:
STORE_TLBCACHE_INFO(L1Trace, 32);
break;
case 0x77:
STORE_TLBCACHE_INFO(L1Code, 16);
break; // <-- FIXME: IA-64 Only
case 0x79:
STORE_TLBCACHE_INFO(L2Unified, 128);
break;
case 0x7a:
STORE_TLBCACHE_INFO(L2Unified, 256);
break;
case 0x7b:
STORE_TLBCACHE_INFO(L2Unified, 512);
break;
case 0x7c:
STORE_TLBCACHE_INFO(L2Unified, 1024);
break;
case 0x7e:
STORE_TLBCACHE_INFO(L2Unified, 256);
break;
case 0x81:
STORE_TLBCACHE_INFO(L2Unified, 128);
break;
case 0x82:
STORE_TLBCACHE_INFO(L2Unified, 256);
break;
case 0x83:
STORE_TLBCACHE_INFO(L2Unified, 512);
break;
case 0x84:
STORE_TLBCACHE_INFO(L2Unified, 1024);
break;
case 0x85:
STORE_TLBCACHE_INFO(L2Unified, 2048);
break;
case 0x88:
STORE_TLBCACHE_INFO(L3Unified, 2048);
break; // <-- FIXME: IA-64 Only
case 0x89:
STORE_TLBCACHE_INFO(L3Unified, 4096);
break; // <-- FIXME: IA-64 Only
case 0x8a:
STORE_TLBCACHE_INFO(L3Unified, 8192);
break; // <-- FIXME: IA-64 Only
case 0x8d:
STORE_TLBCACHE_INFO(L3Unified, 3096);
break; // <-- FIXME: IA-64 Only
case 0x90:
STORE_TLBCACHE_INFO(TLBCode, 262144);
break; // <-- FIXME: IA-64 Only
case 0x96:
STORE_TLBCACHE_INFO(TLBCode, 262144);
break; // <-- FIXME: IA-64 Only
case 0x9b:
STORE_TLBCACHE_INFO(TLBCode, 262144);
break; // <-- FIXME: IA-64 Only
// Default case - an error has occurred.
default:
return false;
}
}
// Increment the TLB pass counter.
TLBPassCounter++;
} while ((TLBCacheData[0] & 0x000000FF) > TLBPassCounter);
// Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
if ((L1Code == -1) && (L1Data == -1) && (L1Trace == -1)) {
this->Features.L1CacheSize = -1;
} else if ((L1Code == -1) && (L1Data == -1) && (L1Trace != -1)) {
this->Features.L1CacheSize = L1Trace;
} else if ((L1Code != -1) && (L1Data == -1)) {
this->Features.L1CacheSize = L1Code;
} else if ((L1Code == -1) && (L1Data != -1)) {
this->Features.L1CacheSize = L1Data;
} else if ((L1Code != -1) && (L1Data != -1)) {
this->Features.L1CacheSize = L1Code + L1Data;
} else {
this->Features.L1CacheSize = -1;
}
// Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
if (L2Unified == -1) {
this->Features.L2CacheSize = -1;
} else {
this->Features.L2CacheSize = L2Unified;
}
// Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
if (L3Unified == -1) {
this->Features.L3CacheSize = -1;
} else {
this->Features.L3CacheSize = L3Unified;
}
return true;
#else
return false;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveCPUClockSpeed()
{
bool retrieved = false;
#if defined(_WIN32)
unsigned int uiRepetitions = 1;
unsigned int uiMSecPerRepetition = 50;
__int64 i64Total = 0;
__int64 i64Overhead = 0;
// Check if the TSC implementation works at all
if (this->Features.HasTSC &&
GetCyclesDifference(SystemInformationImplementation::Delay,
uiMSecPerRepetition) > 0) {
for (unsigned int nCounter = 0; nCounter < uiRepetitions; nCounter++) {
i64Total += GetCyclesDifference(SystemInformationImplementation::Delay,
uiMSecPerRepetition);
i64Overhead += GetCyclesDifference(
SystemInformationImplementation::DelayOverhead, uiMSecPerRepetition);
}
// Calculate the MHz speed.
i64Total -= i64Overhead;
i64Total /= uiRepetitions;
i64Total /= uiMSecPerRepetition;
i64Total /= 1000;
// Save the CPU speed.
this->CPUSpeedInMHz = (float)i64Total;
retrieved = true;
}
// If RDTSC is not supported, we fallback to trying to read this value
// from the registry:
if (!retrieved) {
HKEY hKey = NULL;
LONG err =
RegOpenKeyExW(HKEY_LOCAL_MACHINE,
L"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0,
KEY_READ, &hKey);
if (ERROR_SUCCESS == err) {
DWORD dwType = 0;
DWORD data = 0;
DWORD dwSize = sizeof(DWORD);
err =
RegQueryValueExW(hKey, L"~MHz", 0, &dwType, (LPBYTE)&data, &dwSize);
if (ERROR_SUCCESS == err) {
this->CPUSpeedInMHz = (float)data;
retrieved = true;
}
RegCloseKey(hKey);
hKey = NULL;
}
}
#endif
return retrieved;
}
/** */
bool SystemInformationImplementation::RetrieveClassicalCPUClockSpeed()
{
#if USE_ASM_INSTRUCTIONS
LARGE_INTEGER liStart, liEnd, liCountsPerSecond;
double dFrequency, dDifference;
// Attempt to get a starting tick count.
QueryPerformanceCounter(&liStart);
__try {
_asm {
mov eax, 0x80000000
mov ebx, CLASSICAL_CPU_FREQ_LOOP
Timer_Loop:
bsf ecx,eax
dec ebx
jnz Timer_Loop
}
} __except (1) {
return false;
}
// Attempt to get a starting tick count.
QueryPerformanceCounter(&liEnd);
// Get the difference... NB: This is in seconds....
QueryPerformanceFrequency(&liCountsPerSecond);
dDifference = (((double)liEnd.QuadPart - (double)liStart.QuadPart) /
(double)liCountsPerSecond.QuadPart);
// Calculate the clock speed.
if (this->ChipID.Family == 3) {
// 80386 processors.... Loop time is 115 cycles!
dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 115) / dDifference) / 1000000);
} else if (this->ChipID.Family == 4) {
// 80486 processors.... Loop time is 47 cycles!
dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 47) / dDifference) / 1000000);
} else if (this->ChipID.Family == 5) {
// Pentium processors.... Loop time is 43 cycles!
dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 43) / dDifference) / 1000000);
}
// Save the clock speed.
this->Features.CPUSpeed = (int)dFrequency;
return true;
#else
return false;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveCPUExtendedLevelSupport(
int CPULevelToCheck)
{
int cpuinfo[4] = { 0, 0, 0, 0 };
// The extended CPUID is supported by various vendors starting with the
// following CPU models:
//
// Manufacturer & Chip Name | Family Model Revision
//
// AMD K6, K6-2 | 5 6 x
// Cyrix GXm, Cyrix III "Joshua" | 5 4 x
// IDT C6-2 | 5 8 x
// VIA Cyrix III | 6 5 x
// Transmeta Crusoe | 5 x x
// Intel Pentium 4 | f x x
//
// We check to see if a supported processor is present...
if (this->ChipManufacturer == AMD) {
if (this->ChipID.Family < 5)
return false;
if ((this->ChipID.Family == 5) && (this->ChipID.Model < 6))
return false;
} else if (this->ChipManufacturer == Cyrix) {
if (this->ChipID.Family < 5)
return false;
if ((this->ChipID.Family == 5) && (this->ChipID.Model < 4))
return false;
if ((this->ChipID.Family == 6) && (this->ChipID.Model < 5))
return false;
} else if (this->ChipManufacturer == IDT) {
if (this->ChipID.Family < 5)
return false;
if ((this->ChipID.Family == 5) && (this->ChipID.Model < 8))
return false;
} else if (this->ChipManufacturer == Transmeta) {
if (this->ChipID.Family < 5)
return false;
} else if (this->ChipManufacturer == Intel) {
if (this->ChipID.Family < 0xf) {
return false;
}
}
#if USE_CPUID
if (!call_cpuid(0x80000000, cpuinfo)) {
return false;
}
#endif
// Now we have to check the level wanted vs level returned...
int nLevelWanted = (CPULevelToCheck & 0x7FFFFFFF);
int nLevelReturn = (cpuinfo[0] & 0x7FFFFFFF);
// Check to see if the level provided is supported...
if (nLevelWanted > nLevelReturn) {
return false;
}
return true;
}
/** */
bool SystemInformationImplementation::RetrieveExtendedCPUFeatures()
{
// Check that we are not using an Intel processor as it does not support
// this.
if (this->ChipManufacturer == Intel) {
return false;
}
// Check to see if what we are about to do is supported...
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000001))) {
return false;
}
#if USE_CPUID
int localCPUExtendedFeatures[4] = { 0, 0, 0, 0 };
if (!call_cpuid(0x80000001, localCPUExtendedFeatures)) {
return false;
}
// Retrieve the extended features of CPU present.
this->Features.ExtendedFeatures.Has3DNow =
((localCPUExtendedFeatures[3] & 0x80000000) !=
0); // 3DNow Present --> Bit 31.
this->Features.ExtendedFeatures.Has3DNowPlus =
((localCPUExtendedFeatures[3] & 0x40000000) !=
0); // 3DNow+ Present -- > Bit 30.
this->Features.ExtendedFeatures.HasSSEMMX =
((localCPUExtendedFeatures[3] & 0x00400000) !=
0); // SSE MMX Present --> Bit 22.
this->Features.ExtendedFeatures.SupportsMP =
((localCPUExtendedFeatures[3] & 0x00080000) !=
0); // MP Capable -- > Bit 19.
// Retrieve AMD specific extended features.
if (this->ChipManufacturer == AMD) {
this->Features.ExtendedFeatures.HasMMXPlus =
((localCPUExtendedFeatures[3] & 0x00400000) !=
0); // AMD specific: MMX-SSE --> Bit 22
}
// Retrieve Cyrix specific extended features.
if (this->ChipManufacturer == Cyrix) {
this->Features.ExtendedFeatures.HasMMXPlus =
((localCPUExtendedFeatures[3] & 0x01000000) !=
0); // Cyrix specific: Extended MMX --> Bit 24
}
return true;
#else
return false;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveProcessorSerialNumber()
{
// Check to see if the processor supports the processor serial number.
if (!this->Features.HasSerial) {
return false;
}
#if USE_CPUID
int SerialNumber[4];
if (!call_cpuid(3, SerialNumber)) {
return false;
}
// Process the returned information.
// ; eax = 3 --> ebx: top 32 bits are the processor signature bits --> NB:
// Transmeta only ?!?
// ; ecx: middle 32 bits are the processor signature bits
// ; edx: bottom 32 bits are the processor signature bits
char sn[128];
sprintf(sn, "%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x",
((SerialNumber[1] & 0xff000000) >> 24),
((SerialNumber[1] & 0x00ff0000) >> 16),
((SerialNumber[1] & 0x0000ff00) >> 8),
((SerialNumber[1] & 0x000000ff) >> 0),
((SerialNumber[2] & 0xff000000) >> 24),
((SerialNumber[2] & 0x00ff0000) >> 16),
((SerialNumber[2] & 0x0000ff00) >> 8),
((SerialNumber[2] & 0x000000ff) >> 0),
((SerialNumber[3] & 0xff000000) >> 24),
((SerialNumber[3] & 0x00ff0000) >> 16),
((SerialNumber[3] & 0x0000ff00) >> 8),
((SerialNumber[3] & 0x000000ff) >> 0));
this->ChipID.SerialNumber = sn;
return true;
#else
return false;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveCPUPowerManagement()
{
// Check to see if what we are about to do is supported...
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000007))) {
this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = false;
this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = false;
this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = false;
return false;
}
#if USE_CPUID
int localCPUPowerManagement[4] = { 0, 0, 0, 0 };
if (!call_cpuid(0x80000007, localCPUPowerManagement)) {
return false;
}
// Check for the power management capabilities of the CPU.
this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode =
((localCPUPowerManagement[3] & 0x00000001) != 0);
this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID =
((localCPUPowerManagement[3] & 0x00000002) != 0);
this->Features.ExtendedFeatures.PowerManagement.HasVoltageID =
((localCPUPowerManagement[3] & 0x00000004) != 0);
return true;
#else
return false;
#endif
}
#if USE_CPUID
// Used only in USE_CPUID implementation below.
static void SystemInformationStripLeadingSpace(std::string& str)
{
// Because some manufacturers have leading white space - we have to
// post-process the name.
std::string::size_type pos = str.find_first_not_of(" ");
if (pos != std::string::npos) {
str = str.substr(pos);
}
}
#endif
/** */
bool SystemInformationImplementation::RetrieveExtendedCPUIdentity()
{
// Check to see if what we are about to do is supported...
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000002)))
return false;
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000003)))
return false;
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000004)))
return false;
#if USE_CPUID
int CPUExtendedIdentity[12];
if (!call_cpuid(0x80000002, CPUExtendedIdentity)) {
return false;
}
if (!call_cpuid(0x80000003, CPUExtendedIdentity + 4)) {
return false;
}
if (!call_cpuid(0x80000004, CPUExtendedIdentity + 8)) {
return false;
}
// Process the returned information.
char nbuf[49];
memcpy(&(nbuf[0]), &(CPUExtendedIdentity[0]), sizeof(int));
memcpy(&(nbuf[4]), &(CPUExtendedIdentity[1]), sizeof(int));
memcpy(&(nbuf[8]), &(CPUExtendedIdentity[2]), sizeof(int));
memcpy(&(nbuf[12]), &(CPUExtendedIdentity[3]), sizeof(int));
memcpy(&(nbuf[16]), &(CPUExtendedIdentity[4]), sizeof(int));
memcpy(&(nbuf[20]), &(CPUExtendedIdentity[5]), sizeof(int));
memcpy(&(nbuf[24]), &(CPUExtendedIdentity[6]), sizeof(int));
memcpy(&(nbuf[28]), &(CPUExtendedIdentity[7]), sizeof(int));
memcpy(&(nbuf[32]), &(CPUExtendedIdentity[8]), sizeof(int));
memcpy(&(nbuf[36]), &(CPUExtendedIdentity[9]), sizeof(int));
memcpy(&(nbuf[40]), &(CPUExtendedIdentity[10]), sizeof(int));
memcpy(&(nbuf[44]), &(CPUExtendedIdentity[11]), sizeof(int));
nbuf[48] = '\0';
this->ChipID.ProcessorName = nbuf;
this->ChipID.ModelName = nbuf;
// Because some manufacturers have leading white space - we have to
// post-process the name.
SystemInformationStripLeadingSpace(this->ChipID.ProcessorName);
return true;
#else
return false;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveClassicalCPUIdentity()
{
// Start by decided which manufacturer we are using....
switch (this->ChipManufacturer) {
case Intel:
// Check the family / model / revision to determine the CPU ID.
switch (this->ChipID.Family) {
case 3:
this->ChipID.ProcessorName = "Newer i80386 family";
break;
case 4:
switch (this->ChipID.Model) {
case 0:
this->ChipID.ProcessorName = "i80486DX-25/33";
break;
case 1:
this->ChipID.ProcessorName = "i80486DX-50";
break;
case 2:
this->ChipID.ProcessorName = "i80486SX";
break;
case 3:
this->ChipID.ProcessorName = "i80486DX2";
break;
case 4:
this->ChipID.ProcessorName = "i80486SL";
break;
case 5:
this->ChipID.ProcessorName = "i80486SX2";
break;
case 7:
this->ChipID.ProcessorName = "i80486DX2 WriteBack";
break;
case 8:
this->ChipID.ProcessorName = "i80486DX4";
break;
case 9:
this->ChipID.ProcessorName = "i80486DX4 WriteBack";
break;
default:
this->ChipID.ProcessorName = "Unknown 80486 family";
return false;
}
break;
case 5:
switch (this->ChipID.Model) {
case 0:
this->ChipID.ProcessorName = "P5 A-Step";
break;
case 1:
this->ChipID.ProcessorName = "P5";
break;
case 2:
this->ChipID.ProcessorName = "P54C";
break;
case 3:
this->ChipID.ProcessorName = "P24T OverDrive";
break;
case 4:
this->ChipID.ProcessorName = "P55C";
break;
case 7:
this->ChipID.ProcessorName = "P54C";
break;
case 8:
this->ChipID.ProcessorName = "P55C (0.25micron)";
break;
default:
this->ChipID.ProcessorName = "Unknown Pentium family";
return false;
}
break;
case 6:
switch (this->ChipID.Model) {
case 0:
this->ChipID.ProcessorName = "P6 A-Step";
break;
case 1:
this->ChipID.ProcessorName = "P6";
break;
case 3:
this->ChipID.ProcessorName = "Pentium II (0.28 micron)";
break;
case 5:
this->ChipID.ProcessorName = "Pentium II (0.25 micron)";
break;
case 6:
this->ChipID.ProcessorName = "Pentium II With On-Die L2 Cache";
break;
case 7:
this->ChipID.ProcessorName = "Pentium III (0.25 micron)";
break;
case 8:
this->ChipID.ProcessorName =
"Pentium III (0.18 micron) With 256 KB On-Die L2 Cache ";
break;
case 0xa:
this->ChipID.ProcessorName =
"Pentium III (0.18 micron) With 1 Or 2 MB On-Die L2 Cache ";
break;
case 0xb:
this->ChipID.ProcessorName = "Pentium III (0.13 micron) With "
"256 Or 512 KB On-Die L2 Cache ";
break;
case 23:
this->ChipID.ProcessorName =
"Intel(R) Core(TM)2 Duo CPU T9500 @ 2.60GHz";
break;
default:
this->ChipID.ProcessorName = "Unknown P6 family";
return false;
}
break;
case 7:
this->ChipID.ProcessorName = "Intel Merced (IA-64)";
break;
case 0xf:
// Check the extended family bits...
switch (this->ChipID.ExtendedFamily) {
case 0:
switch (this->ChipID.Model) {
case 0:
this->ChipID.ProcessorName = "Pentium IV (0.18 micron)";
break;
case 1:
this->ChipID.ProcessorName = "Pentium IV (0.18 micron)";
break;
case 2:
this->ChipID.ProcessorName = "Pentium IV (0.13 micron)";
break;
default:
this->ChipID.ProcessorName = "Unknown Pentium 4 family";
return false;
}
break;
case 1:
this->ChipID.ProcessorName = "Intel McKinley (IA-64)";
break;
default:
this->ChipID.ProcessorName = "Pentium";
}
break;
default:
this->ChipID.ProcessorName = "Unknown Intel family";
return false;
}
break;
case AMD:
// Check the family / model / revision to determine the CPU ID.
switch (this->ChipID.Family) {
case 4:
switch (this->ChipID.Model) {
case 3:
this->ChipID.ProcessorName = "80486DX2";
break;
case 7:
this->ChipID.ProcessorName = "80486DX2 WriteBack";
break;
case 8:
this->ChipID.ProcessorName = "80486DX4";
break;
case 9:
this->ChipID.ProcessorName = "80486DX4 WriteBack";
break;
case 0xe:
this->ChipID.ProcessorName = "5x86";
break;
case 0xf:
this->ChipID.ProcessorName = "5x86WB";
break;
default:
this->ChipID.ProcessorName = "Unknown 80486 family";
return false;
}
break;
case 5:
switch (this->ChipID.Model) {
case 0:
this->ChipID.ProcessorName = "SSA5 (PR75, PR90 = PR100)";
break;
case 1:
this->ChipID.ProcessorName = "5k86 (PR120 = PR133)";
break;
case 2:
this->ChipID.ProcessorName = "5k86 (PR166)";
break;
case 3:
this->ChipID.ProcessorName = "5k86 (PR200)";
break;
case 6:
this->ChipID.ProcessorName = "K6 (0.30 micron)";
break;
case 7:
this->ChipID.ProcessorName = "K6 (0.25 micron)";
break;
case 8:
this->ChipID.ProcessorName = "K6-2";
break;
case 9:
this->ChipID.ProcessorName = "K6-III";
break;
case 0xd:
this->ChipID.ProcessorName = "K6-2+ or K6-III+ (0.18 micron)";
break;
default:
this->ChipID.ProcessorName = "Unknown 80586 family";
return false;
}
break;
case 6:
switch (this->ChipID.Model) {
case 1:
this->ChipID.ProcessorName = "Athlon- (0.25 micron)";
break;
case 2:
this->ChipID.ProcessorName = "Athlon- (0.18 micron)";
break;
case 3:
this->ChipID.ProcessorName = "Duron- (SF core)";
break;
case 4:
this->ChipID.ProcessorName = "Athlon- (Thunderbird core)";
break;
case 6:
this->ChipID.ProcessorName = "Athlon- (Palomino core)";
break;
case 7:
this->ChipID.ProcessorName = "Duron- (Morgan core)";
break;
case 8:
if (this->Features.ExtendedFeatures.SupportsMP)
this->ChipID.ProcessorName = "Athlon - MP (Thoroughbred core)";
else
this->ChipID.ProcessorName = "Athlon - XP (Thoroughbred core)";
break;
default:
this->ChipID.ProcessorName = "Unknown K7 family";
return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown AMD family";
return false;
}
break;
case Transmeta:
switch (this->ChipID.Family) {
case 5:
switch (this->ChipID.Model) {
case 4:
this->ChipID.ProcessorName = "Crusoe TM3x00 and TM5x00";
break;
default:
this->ChipID.ProcessorName = "Unknown Crusoe family";
return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown Transmeta family";
return false;
}
break;
case Rise:
switch (this->ChipID.Family) {
case 5:
switch (this->ChipID.Model) {
case 0:
this->ChipID.ProcessorName = "mP6 (0.25 micron)";
break;
case 2:
this->ChipID.ProcessorName = "mP6 (0.18 micron)";
break;
default:
this->ChipID.ProcessorName = "Unknown Rise family";
return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown Rise family";
return false;
}
break;
case UMC:
switch (this->ChipID.Family) {
case 4:
switch (this->ChipID.Model) {
case 1:
this->ChipID.ProcessorName = "U5D";
break;
case 2:
this->ChipID.ProcessorName = "U5S";
break;
default:
this->ChipID.ProcessorName = "Unknown UMC family";
return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown UMC family";
return false;
}
break;
case IDT:
switch (this->ChipID.Family) {
case 5:
switch (this->ChipID.Model) {
case 4:
this->ChipID.ProcessorName = "C6";
break;
case 8:
this->ChipID.ProcessorName = "C2";
break;
case 9:
this->ChipID.ProcessorName = "C3";
break;
default:
this->ChipID.ProcessorName = "Unknown IDT\\Centaur family";
return false;
}
break;
case 6:
switch (this->ChipID.Model) {
case 6:
this->ChipID.ProcessorName = "VIA Cyrix III - Samuel";
break;
default:
this->ChipID.ProcessorName = "Unknown IDT\\Centaur family";
return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown IDT\\Centaur family";
return false;
}
break;
case Cyrix:
switch (this->ChipID.Family) {
case 4:
switch (this->ChipID.Model) {
case 4:
this->ChipID.ProcessorName = "MediaGX GX = GXm";
break;
case 9:
this->ChipID.ProcessorName = "5x86";
break;
default:
this->ChipID.ProcessorName = "Unknown Cx5x86 family";
return false;
}
break;
case 5:
switch (this->ChipID.Model) {
case 2:
this->ChipID.ProcessorName = "Cx6x86";
break;
case 4:
this->ChipID.ProcessorName = "MediaGX GXm";
break;
default:
this->ChipID.ProcessorName = "Unknown Cx6x86 family";
return false;
}
break;
case 6:
switch (this->ChipID.Model) {
case 0:
this->ChipID.ProcessorName = "6x86MX";
break;
case 5:
this->ChipID.ProcessorName = "Cyrix M2 Core";
break;
case 6:
this->ChipID.ProcessorName = "WinChip C5A Core";
break;
case 7:
this->ChipID.ProcessorName = "WinChip C5B\\C5C Core";
break;
case 8:
this->ChipID.ProcessorName = "WinChip C5C-T Core";
break;
default:
this->ChipID.ProcessorName = "Unknown 6x86MX\\Cyrix III family";
return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown Cyrix family";
return false;
}
break;
case NexGen:
switch (this->ChipID.Family) {
case 5:
switch (this->ChipID.Model) {
case 0:
this->ChipID.ProcessorName = "Nx586 or Nx586FPU";
break;
default:
this->ChipID.ProcessorName = "Unknown NexGen family";
return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown NexGen family";
return false;
}
break;
case NSC:
this->ChipID.ProcessorName = "Cx486SLC \\ DLC \\ Cx486S A-Step";
break;
case Sun:
case IBM:
case Motorola:
case HP:
case UnknownManufacturer:
default:
this->ChipID.ProcessorName =
"Unknown family"; // We cannot identify the processor.
return false;
}
return true;
}
/** Extract a value from the CPUInfo file */
std::string SystemInformationImplementation::ExtractValueFromCpuInfoFile(
std::string buffer, const char* word, size_t init)
{
size_t pos = buffer.find(word, init);
if (pos != buffer.npos) {
this->CurrentPositionInFile = pos;
pos = buffer.find(":", pos);
size_t pos2 = buffer.find("\n", pos);
if (pos != buffer.npos && pos2 != buffer.npos) {
// It may happen that the beginning matches, but this is still not the
// requested key.
// An example is looking for "cpu" when "cpu family" comes first. So we
// check that
// we have only spaces from here to pos, otherwise we search again.
for (size_t i = this->CurrentPositionInFile + strlen(word); i < pos;
++i) {
if (buffer[i] != ' ' && buffer[i] != '\t') {
return this->ExtractValueFromCpuInfoFile(buffer, word, pos2);
}
}
return buffer.substr(pos + 2, pos2 - pos - 2);
}
}
this->CurrentPositionInFile = buffer.npos;
return "";
}
/** Query for the cpu status */
bool SystemInformationImplementation::RetreiveInformationFromCpuInfoFile()
{
this->NumberOfLogicalCPU = 0;
this->NumberOfPhysicalCPU = 0;
std::string buffer;
FILE* fd = fopen("/proc/cpuinfo", "r");
if (!fd) {
std::cout << "Problem opening /proc/cpuinfo" << std::endl;
return false;
}
size_t fileSize = 0;
while (!feof(fd)) {
buffer += static_cast<char>(fgetc(fd));
fileSize++;
}
fclose(fd);
buffer.resize(fileSize - 2);
// Number of logical CPUs (combination of multiple processors, multi-core
// and hyperthreading)
size_t pos = buffer.find("processor\t");
while (pos != buffer.npos) {
this->NumberOfLogicalCPU++;
pos = buffer.find("processor\t", pos + 1);
}
#ifdef __linux
// Find the largest physical id.
int maxId = -1;
std::string idc = this->ExtractValueFromCpuInfoFile(buffer, "physical id");
while (this->CurrentPositionInFile != buffer.npos) {
int id = atoi(idc.c_str());
if (id > maxId) {
maxId = id;
}
idc = this->ExtractValueFromCpuInfoFile(buffer, "physical id",
this->CurrentPositionInFile + 1);
}
// Physical ids returned by Linux don't distinguish cores.
// We want to record the total number of cores in this->NumberOfPhysicalCPU
// (checking only the first proc)
std::string cores = this->ExtractValueFromCpuInfoFile(buffer, "cpu cores");
int numberOfCoresPerCPU = atoi(cores.c_str());
if (maxId > 0) {
this->NumberOfPhysicalCPU =
static_cast<unsigned int>(numberOfCoresPerCPU * (maxId + 1));
} else {
// Linux Sparc: get cpu count
this->NumberOfPhysicalCPU =
atoi(this->ExtractValueFromCpuInfoFile(buffer, "ncpus active").c_str());
}
#else // __CYGWIN__
// does not have "physical id" entries, neither "cpu cores"
// this has to be fixed for hyper-threading.
std::string cpucount =
this->ExtractValueFromCpuInfoFile(buffer, "cpu count");
this->NumberOfPhysicalCPU = this->NumberOfLogicalCPU =
atoi(cpucount.c_str());
#endif
// gotta have one, and if this is 0 then we get a / by 0n
// better to have a bad answer than a crash
if (this->NumberOfPhysicalCPU <= 0) {
this->NumberOfPhysicalCPU = 1;
}
// LogicalProcessorsPerPhysical>1 => hyperthreading.
this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical =
this->NumberOfLogicalCPU / this->NumberOfPhysicalCPU;
// CPU speed (checking only the first processor)
std::string CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer, "cpu MHz");
if (!CPUSpeed.empty()) {
this->CPUSpeedInMHz = static_cast<float>(atof(CPUSpeed.c_str()));
}
#ifdef __linux
else {
// Linux Sparc: CPU speed is in Hz and encoded in hexadecimal
CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer, "Cpu0ClkTck");
this->CPUSpeedInMHz =
static_cast<float>(strtoull(CPUSpeed.c_str(), 0, 16)) / 1000000.0f;
}
#endif
// Chip family
std::string familyStr =
this->ExtractValueFromCpuInfoFile(buffer, "cpu family");
if (familyStr.empty()) {
familyStr = this->ExtractValueFromCpuInfoFile(buffer, "CPU architecture");
}
this->ChipID.Family = atoi(familyStr.c_str());
// Chip Vendor
this->ChipID.Vendor = this->ExtractValueFromCpuInfoFile(buffer, "vendor_id");
this->FindManufacturer(familyStr);
// second try for setting family
if (this->ChipID.Family == 0 && this->ChipManufacturer == HP) {
if (familyStr == "PA-RISC 1.1a")
this->ChipID.Family = 0x11a;
else if (familyStr == "PA-RISC 2.0")
this->ChipID.Family = 0x200;
// If you really get CMake to work on a machine not belonging to
// any of those families I owe you a dinner if you get it to
// contribute nightly builds regularly.
}
// Chip Model
this->ChipID.Model =
atoi(this->ExtractValueFromCpuInfoFile(buffer, "model").c_str());
if (!this->RetrieveClassicalCPUIdentity()) {
// Some platforms (e.g. PA-RISC) tell us their CPU name here.
// Note: x86 does not.
std::string cpuname = this->ExtractValueFromCpuInfoFile(buffer, "cpu");
if (!cpuname.empty()) {
this->ChipID.ProcessorName = cpuname;
}
}
// Chip revision
std::string cpurev = this->ExtractValueFromCpuInfoFile(buffer, "stepping");
if (cpurev.empty()) {
cpurev = this->ExtractValueFromCpuInfoFile(buffer, "CPU revision");
}
this->ChipID.Revision = atoi(cpurev.c_str());
// Chip Model Name
this->ChipID.ModelName =
this->ExtractValueFromCpuInfoFile(buffer, "model name").c_str();
// L1 Cache size
// Different architectures may show different names for the caches.
// Sum up everything we find.
std::vector<const char*> cachename;
cachename.clear();
cachename.push_back("cache size"); // e.g. x86
cachename.push_back("I-cache"); // e.g. PA-RISC
cachename.push_back("D-cache"); // e.g. PA-RISC
this->Features.L1CacheSize = 0;
for (size_t index = 0; index < cachename.size(); index++) {
std::string cacheSize =
this->ExtractValueFromCpuInfoFile(buffer, cachename[index]);
if (!cacheSize.empty()) {
pos = cacheSize.find(" KB");
if (pos != cacheSize.npos) {
cacheSize = cacheSize.substr(0, pos);
}
this->Features.L1CacheSize += atoi(cacheSize.c_str());
}
}
// processor feature flags (probably x86 specific)
std::string cpuflags = this->ExtractValueFromCpuInfoFile(buffer, "flags");
if (!cpurev.empty()) {
// now we can match every flags as space + flag + space
cpuflags = " " + cpuflags + " ";
if ((cpuflags.find(" fpu ") != std::string::npos)) {
this->Features.HasFPU = true;
}
if ((cpuflags.find(" tsc ") != std::string::npos)) {
this->Features.HasTSC = true;
}
if ((cpuflags.find(" mmx ") != std::string::npos)) {
this->Features.HasMMX = true;
}
if ((cpuflags.find(" sse ") != std::string::npos)) {
this->Features.HasSSE = true;
}
if ((cpuflags.find(" sse2 ") != std::string::npos)) {
this->Features.HasSSE2 = true;
}
if ((cpuflags.find(" apic ") != std::string::npos)) {
this->Features.HasAPIC = true;
}
if ((cpuflags.find(" cmov ") != std::string::npos)) {
this->Features.HasCMOV = true;
}
if ((cpuflags.find(" mtrr ") != std::string::npos)) {
this->Features.HasMTRR = true;
}
if ((cpuflags.find(" acpi ") != std::string::npos)) {
this->Features.HasACPI = true;
}
if ((cpuflags.find(" 3dnow ") != std::string::npos)) {
this->Features.ExtendedFeatures.Has3DNow = true;
}
}
return true;
}
bool SystemInformationImplementation::QueryProcessorBySysconf()
{
#if defined(_SC_NPROC_ONLN) && !defined(_SC_NPROCESSORS_ONLN)
// IRIX names this slightly different
#define _SC_NPROCESSORS_ONLN _SC_NPROC_ONLN
#endif
#ifdef _SC_NPROCESSORS_ONLN
long c = sysconf(_SC_NPROCESSORS_ONLN);
if (c <= 0) {
return false;
}
this->NumberOfPhysicalCPU = static_cast<unsigned int>(c);
this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryProcessor()
{
return this->QueryProcessorBySysconf();
}
/**
Get total system RAM in units of KiB.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetHostMemoryTotal()
{
#if defined(_WIN32)
#if defined(_MSC_VER) && _MSC_VER < 1300
MEMORYSTATUS stat;
stat.dwLength = sizeof(stat);
GlobalMemoryStatus(&stat);
return stat.dwTotalPhys / 1024;
#else
MEMORYSTATUSEX statex;
statex.dwLength = sizeof(statex);
GlobalMemoryStatusEx(&statex);
return statex.ullTotalPhys / 1024;
#endif
#elif defined(__linux)
SystemInformation::LongLong memTotal = 0;
int ierr = GetFieldFromFile("/proc/meminfo", "MemTotal:", memTotal);
if (ierr) {
return -1;
}
return memTotal;
#elif defined(__APPLE__)
uint64_t mem;
size_t len = sizeof(mem);
int ierr = sysctlbyname("hw.memsize", &mem, &len, NULL, 0);
if (ierr) {
return -1;
}
return mem / 1024;
#else
return 0;
#endif
}
/**
Get total system RAM in units of KiB. This may differ from the
host total if a host-wide resource limit is applied.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetHostMemoryAvailable(
const char* hostLimitEnvVarName)
{
SystemInformation::LongLong memTotal = this->GetHostMemoryTotal();
// the following mechanism is provided for systems that
// apply resource limits across groups of processes.
// this is of use on certain SMP systems (eg. SGI UV)
// where the host has a large amount of ram but a given user's
// access to it is severly restricted. The system will
// apply a limit across a set of processes. Units are in KiB.
if (hostLimitEnvVarName) {
const char* hostLimitEnvVarValue = getenv(hostLimitEnvVarName);
if (hostLimitEnvVarValue) {
SystemInformation::LongLong hostLimit =
atoLongLong(hostLimitEnvVarValue);
if (hostLimit > 0) {
memTotal = min(hostLimit, memTotal);
}
}
}
return memTotal;
}
/**
Get total system RAM in units of KiB. This may differ from the
host total if a per-process resource limit is applied.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetProcMemoryAvailable(
const char* hostLimitEnvVarName, const char* procLimitEnvVarName)
{
SystemInformation::LongLong memAvail =
this->GetHostMemoryAvailable(hostLimitEnvVarName);
// the following mechanism is provide for systems where rlimits
// are not employed. Units are in KiB.
if (procLimitEnvVarName) {
const char* procLimitEnvVarValue = getenv(procLimitEnvVarName);
if (procLimitEnvVarValue) {
SystemInformation::LongLong procLimit =
atoLongLong(procLimitEnvVarValue);
if (procLimit > 0) {
memAvail = min(procLimit, memAvail);
}
}
}
#if defined(__linux)
int ierr;
ResourceLimitType rlim;
ierr = GetResourceLimit(RLIMIT_DATA, &rlim);
if ((ierr == 0) && (rlim.rlim_cur != RLIM_INFINITY)) {
memAvail =
min((SystemInformation::LongLong)rlim.rlim_cur / 1024, memAvail);
}
ierr = GetResourceLimit(RLIMIT_AS, &rlim);
if ((ierr == 0) && (rlim.rlim_cur != RLIM_INFINITY)) {
memAvail =
min((SystemInformation::LongLong)rlim.rlim_cur / 1024, memAvail);
}
#elif defined(__APPLE__)
struct rlimit rlim;
int ierr;
ierr = getrlimit(RLIMIT_DATA, &rlim);
if ((ierr == 0) && (rlim.rlim_cur != RLIM_INFINITY)) {
memAvail =
min((SystemInformation::LongLong)rlim.rlim_cur / 1024, memAvail);
}
ierr = getrlimit(RLIMIT_RSS, &rlim);
if ((ierr == 0) && (rlim.rlim_cur != RLIM_INFINITY)) {
memAvail =
min((SystemInformation::LongLong)rlim.rlim_cur / 1024, memAvail);
}
#endif
return memAvail;
}
/**
Get RAM used by all processes in the host, in units of KiB.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetHostMemoryUsed()
{
#if defined(_WIN32)
#if defined(_MSC_VER) && _MSC_VER < 1300
MEMORYSTATUS stat;
stat.dwLength = sizeof(stat);
GlobalMemoryStatus(&stat);
return (stat.dwTotalPhys - stat.dwAvailPhys) / 1024;
#else
MEMORYSTATUSEX statex;
statex.dwLength = sizeof(statex);
GlobalMemoryStatusEx(&statex);
return (statex.ullTotalPhys - statex.ullAvailPhys) / 1024;
#endif
#elif defined(__linux)
// First try to use MemAvailable, but it only works on newer kernels
const char* names2[3] = { "MemTotal:", "MemAvailable:", NULL };
SystemInformation::LongLong values2[2] = { SystemInformation::LongLong(0) };
int ierr = GetFieldsFromFile("/proc/meminfo", names2, values2);
if (ierr) {
const char* names4[5] = { "MemTotal:", "MemFree:", "Buffers:", "Cached:",
NULL };
SystemInformation::LongLong values4[4] = { SystemInformation::LongLong(
0) };
ierr = GetFieldsFromFile("/proc/meminfo", names4, values4);
if (ierr) {
return ierr;
}
SystemInformation::LongLong& memTotal = values4[0];
SystemInformation::LongLong& memFree = values4[1];
SystemInformation::LongLong& memBuffers = values4[2];
SystemInformation::LongLong& memCached = values4[3];
return memTotal - memFree - memBuffers - memCached;
}
SystemInformation::LongLong& memTotal = values2[0];
SystemInformation::LongLong& memAvail = values2[1];
return memTotal - memAvail;
#elif defined(__APPLE__)
SystemInformation::LongLong psz = getpagesize();
if (psz < 1) {
return -1;
}
const char* names[3] = { "Pages wired down:", "Pages active:", NULL };
SystemInformation::LongLong values[2] = { SystemInformation::LongLong(0) };
int ierr = GetFieldsFromCommand("vm_stat", names, values);
if (ierr) {
return -1;
}
SystemInformation::LongLong& vmWired = values[0];
SystemInformation::LongLong& vmActive = values[1];
return ((vmActive + vmWired) * psz) / 1024;
#else
return 0;
#endif
}
/**
Get system RAM used by the process associated with the given
process id in units of KiB.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetProcMemoryUsed()
{
#if defined(_WIN32) && defined(KWSYS_SYS_HAS_PSAPI)
long pid = GetCurrentProcessId();
HANDLE hProc;
hProc = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, false, pid);
if (hProc == 0) {
return -1;
}
PROCESS_MEMORY_COUNTERS pmc;
int ok = GetProcessMemoryInfo(hProc, &pmc, sizeof(pmc));
CloseHandle(hProc);
if (!ok) {
return -2;
}
return pmc.WorkingSetSize / 1024;
#elif defined(__linux)
SystemInformation::LongLong memUsed = 0;
int ierr = GetFieldFromFile("/proc/self/status", "VmRSS:", memUsed);
if (ierr) {
return -1;
}
return memUsed;
#elif defined(__APPLE__)
SystemInformation::LongLong memUsed = 0;
pid_t pid = getpid();
std::ostringstream oss;
oss << "ps -o rss= -p " << pid;
FILE* file = popen(oss.str().c_str(), "r");
if (file == 0) {
return -1;
}
oss.str("");
while (!feof(file) && !ferror(file)) {
char buf[256] = { '\0' };
errno = 0;
size_t nRead = fread(buf, 1, 256, file);
if (ferror(file) && (errno == EINTR)) {
clearerr(file);
}
if (nRead)
oss << buf;
}
int ierr = ferror(file);
pclose(file);
if (ierr) {
return -2;
}
std::istringstream iss(oss.str());
iss >> memUsed;
return memUsed;
#else
return 0;
#endif
}
double SystemInformationImplementation::GetLoadAverage()
{
#if defined(KWSYS_CXX_HAS_GETLOADAVG)
double loadavg[3] = { 0.0, 0.0, 0.0 };
if (getloadavg(loadavg, 3) > 0) {
return loadavg[0];
}
return -0.0;
#elif defined(KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes)
// Old windows.h headers do not provide GetSystemTimes.
typedef BOOL(WINAPI * GetSystemTimesType)(LPFILETIME, LPFILETIME,
LPFILETIME);
static GetSystemTimesType pGetSystemTimes =
(GetSystemTimesType)GetProcAddress(GetModuleHandleW(L"kernel32"),
"GetSystemTimes");
FILETIME idleTime, kernelTime, userTime;
if (pGetSystemTimes && pGetSystemTimes(&idleTime, &kernelTime, &userTime)) {
unsigned __int64 const idleTicks = fileTimeToUInt64(idleTime);
unsigned __int64 const totalTicks =
fileTimeToUInt64(kernelTime) + fileTimeToUInt64(userTime);
return calculateCPULoad(idleTicks, totalTicks) * GetNumberOfPhysicalCPU();
}
return -0.0;
#else
// Not implemented on this platform.
return -0.0;
#endif
}
/**
Get the process id of the running process.
*/
SystemInformation::LongLong SystemInformationImplementation::GetProcessId()
{
#if defined(_WIN32)
return GetCurrentProcessId();
#elif defined(__linux) || defined(__APPLE__)
return getpid();
#else
return -1;
#endif
}
/**
return current program stack in a string
demangle cxx symbols if possible.
*/
std::string SystemInformationImplementation::GetProgramStack(int firstFrame,
int wholePath)
{
std::string programStack = ""
#if !defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
"WARNING: The stack could not be examined "
"because backtrace is not supported.\n"
#elif !defined(KWSYS_SYSTEMINFORMATION_HAS_DEBUG_BUILD)
"WARNING: The stack trace will not use advanced "
"capabilities because this is a release build.\n"
#else
#if !defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
"WARNING: Function names will not be demangled "
"because "
"dladdr is not available.\n"
#endif
#if !defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE)
"WARNING: Function names will not be demangled "
"because cxxabi is not available.\n"
#endif
#endif
;
std::ostringstream oss;
#if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
void* stackSymbols[256];
int nFrames = backtrace(stackSymbols, 256);
for (int i = firstFrame; i < nFrames; ++i) {
SymbolProperties symProps;
symProps.SetReportPath(wholePath);
symProps.Initialize(stackSymbols[i]);
oss << symProps << std::endl;
}
#else
(void)firstFrame;
(void)wholePath;
#endif
programStack += oss.str();
return programStack;
}
/**
when set print stack trace in response to common signals.
*/
void SystemInformationImplementation::SetStackTraceOnError(int enable)
{
#if !defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__)
static int saOrigValid = 0;
static struct sigaction saABRTOrig;
static struct sigaction saSEGVOrig;
static struct sigaction saTERMOrig;
static struct sigaction saINTOrig;
static struct sigaction saILLOrig;
static struct sigaction saBUSOrig;
static struct sigaction saFPEOrig;
if (enable && !saOrigValid) {
// save the current actions
sigaction(SIGABRT, 0, &saABRTOrig);
sigaction(SIGSEGV, 0, &saSEGVOrig);
sigaction(SIGTERM, 0, &saTERMOrig);
sigaction(SIGINT, 0, &saINTOrig);
sigaction(SIGILL, 0, &saILLOrig);
sigaction(SIGBUS, 0, &saBUSOrig);
sigaction(SIGFPE, 0, &saFPEOrig);
// enable read, disable write
saOrigValid = 1;
// install ours
struct sigaction sa;
sa.sa_sigaction = (SigAction)StacktraceSignalHandler;
sa.sa_flags = SA_SIGINFO | SA_RESETHAND;
#ifdef SA_RESTART
sa.sa_flags |= SA_RESTART;
#endif
sigemptyset(&sa.sa_mask);
sigaction(SIGABRT, &sa, 0);
sigaction(SIGSEGV, &sa, 0);
sigaction(SIGTERM, &sa, 0);
sigaction(SIGINT, &sa, 0);
sigaction(SIGILL, &sa, 0);
sigaction(SIGBUS, &sa, 0);
sigaction(SIGFPE, &sa, 0);
} else if (!enable && saOrigValid) {
// restore previous actions
sigaction(SIGABRT, &saABRTOrig, 0);
sigaction(SIGSEGV, &saSEGVOrig, 0);
sigaction(SIGTERM, &saTERMOrig, 0);
sigaction(SIGINT, &saINTOrig, 0);
sigaction(SIGILL, &saILLOrig, 0);
sigaction(SIGBUS, &saBUSOrig, 0);
sigaction(SIGFPE, &saFPEOrig, 0);
// enable write, disable read
saOrigValid = 0;
}
#else
// avoid warning C4100
(void)enable;
#endif
}
bool SystemInformationImplementation::QueryWindowsMemory()
{
#if defined(_WIN32)
#if defined(_MSC_VER) && _MSC_VER < 1300
MEMORYSTATUS ms;
unsigned long tv, tp, av, ap;
ms.dwLength = sizeof(ms);
GlobalMemoryStatus(&ms);
#define MEM_VAL(value) dw##value
#else
MEMORYSTATUSEX ms;
DWORDLONG tv, tp, av, ap;
ms.dwLength = sizeof(ms);
if (0 == GlobalMemoryStatusEx(&ms)) {
return 0;
}
#define MEM_VAL(value) ull##value
#endif
tv = ms.MEM_VAL(TotalPageFile);
tp = ms.MEM_VAL(TotalPhys);
av = ms.MEM_VAL(AvailPageFile);
ap = ms.MEM_VAL(AvailPhys);
this->TotalVirtualMemory = tv >> 10 >> 10;
this->TotalPhysicalMemory = tp >> 10 >> 10;
this->AvailableVirtualMemory = av >> 10 >> 10;
this->AvailablePhysicalMemory = ap >> 10 >> 10;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryLinuxMemory()
{
#if defined(__linux)
unsigned long tv = 0;
unsigned long tp = 0;
unsigned long av = 0;
unsigned long ap = 0;
char buffer[1024]; // for reading lines
int linuxMajor = 0;
int linuxMinor = 0;
// Find the Linux kernel version first
struct utsname unameInfo;
int errorFlag = uname(&unameInfo);
if (errorFlag != 0) {
std::cout << "Problem calling uname(): " << strerror(errno) << std::endl;
return false;
}
if (strlen(unameInfo.release) >= 3) {
// release looks like "2.6.3-15mdk-i686-up-4GB"
char majorChar = unameInfo.release[0];
char minorChar = unameInfo.release[2];
if (isdigit(majorChar)) {
linuxMajor = majorChar - '0';
}
if (isdigit(minorChar)) {
linuxMinor = minorChar - '0';
}
}
FILE* fd = fopen("/proc/meminfo", "r");
if (!fd) {
std::cout << "Problem opening /proc/meminfo" << std::endl;
return false;
}
if (linuxMajor >= 3 || ((linuxMajor >= 2) && (linuxMinor >= 6))) {
// new /proc/meminfo format since kernel 2.6.x
// Rigorously, this test should check from the developping version 2.5.x
// that introduced the new format...
enum
{
mMemTotal,
mMemFree,
mBuffers,
mCached,
mSwapTotal,
mSwapFree
};
const char* format[6] = { "MemTotal:%lu kB", "MemFree:%lu kB",
"Buffers:%lu kB", "Cached:%lu kB",
"SwapTotal:%lu kB", "SwapFree:%lu kB" };
bool have[6] = { false, false, false, false, false, false };
unsigned long value[6];
int count = 0;
while (fgets(buffer, static_cast<int>(sizeof(buffer)), fd)) {
for (int i = 0; i < 6; ++i) {
if (!have[i] && sscanf(buffer, format[i], &value[i]) == 1) {
have[i] = true;
++count;
}
}
}
if (count == 6) {
this->TotalPhysicalMemory = value[mMemTotal] / 1024;
this->AvailablePhysicalMemory =
(value[mMemFree] + value[mBuffers] + value[mCached]) / 1024;
this->TotalVirtualMemory = value[mSwapTotal] / 1024;
this->AvailableVirtualMemory = value[mSwapFree] / 1024;
} else {
std::cout << "Problem parsing /proc/meminfo" << std::endl;
fclose(fd);
return false;
}
} else {
// /proc/meminfo format for kernel older than 2.6.x
unsigned long temp;
unsigned long cachedMem;
unsigned long buffersMem;
// Skip "total: used:..."
char* r = fgets(buffer, static_cast<int>(sizeof(buffer)), fd);
int status = 0;
if (r == buffer) {
status += fscanf(fd, "Mem: %lu %lu %lu %lu %lu %lu\n", &tp, &temp, &ap,
&temp, &buffersMem, &cachedMem);
}
if (status == 6) {
status += fscanf(fd, "Swap: %lu %lu %lu\n", &tv, &temp, &av);
}
if (status == 9) {
this->TotalVirtualMemory = tv >> 10 >> 10;
this->TotalPhysicalMemory = tp >> 10 >> 10;
this->AvailableVirtualMemory = av >> 10 >> 10;
this->AvailablePhysicalMemory =
(ap + buffersMem + cachedMem) >> 10 >> 10;
} else {
std::cout << "Problem parsing /proc/meminfo" << std::endl;
fclose(fd);
return false;
}
}
fclose(fd);
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryCygwinMemory()
{
#ifdef __CYGWIN__
// _SC_PAGE_SIZE does return the mmap() granularity on Cygwin,
// see http://cygwin.com/ml/cygwin/2006-06/msg00350.html
// Therefore just use 4096 as the page size of Windows.
long m = sysconf(_SC_PHYS_PAGES);
if (m < 0) {
return false;
}
this->TotalPhysicalMemory = m >> 8;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryAIXMemory()
{
#if defined(_AIX) && defined(_SC_AIX_REALMEM)
long c = sysconf(_SC_AIX_REALMEM);
if (c <= 0) {
return false;
}
this->TotalPhysicalMemory = c / 1024;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryMemoryBySysconf()
{
#if defined(_SC_PHYS_PAGES) && defined(_SC_PAGESIZE)
// Assume the mmap() granularity as returned by _SC_PAGESIZE is also
// the system page size. The only known system where this isn't true
// is Cygwin.
long p = sysconf(_SC_PHYS_PAGES);
long m = sysconf(_SC_PAGESIZE);
if (p < 0 || m < 0) {
return false;
}
// assume pagesize is a power of 2 and smaller 1 MiB
size_t pagediv = (1024 * 1024 / m);
this->TotalPhysicalMemory = p;
this->TotalPhysicalMemory /= pagediv;
#if defined(_SC_AVPHYS_PAGES)
p = sysconf(_SC_AVPHYS_PAGES);
if (p < 0) {
return false;
}
this->AvailablePhysicalMemory = p;
this->AvailablePhysicalMemory /= pagediv;
#endif
return true;
#else
return false;
#endif
}
/** Query for the memory status */
bool SystemInformationImplementation::QueryMemory()
{
return this->QueryMemoryBySysconf();
}
/** */
size_t SystemInformationImplementation::GetTotalVirtualMemory()
{
return this->TotalVirtualMemory;
}
/** */
size_t SystemInformationImplementation::GetAvailableVirtualMemory()
{
return this->AvailableVirtualMemory;
}
size_t SystemInformationImplementation::GetTotalPhysicalMemory()
{
return this->TotalPhysicalMemory;
}
/** */
size_t SystemInformationImplementation::GetAvailablePhysicalMemory()
{
return this->AvailablePhysicalMemory;
}
/** Get Cycle differences */
SystemInformation::LongLong
SystemInformationImplementation::GetCyclesDifference(DELAY_FUNC DelayFunction,
unsigned int uiParameter)
{
#if defined(_MSC_VER) && (_MSC_VER >= 1400)
unsigned __int64 stamp1, stamp2;
stamp1 = __rdtsc();
DelayFunction(uiParameter);
stamp2 = __rdtsc();
return stamp2 - stamp1;
#elif USE_ASM_INSTRUCTIONS
unsigned int edx1, eax1;
unsigned int edx2, eax2;
// Calculate the frequency of the CPU instructions.
__try {
_asm {
push uiParameter ; push parameter param
mov ebx, DelayFunction ; store func in ebx
RDTSC_INSTRUCTION
mov esi, eax ; esi = eax
mov edi, edx ; edi = edx
call ebx ; call the delay functions
RDTSC_INSTRUCTION
pop ebx
mov edx2, edx ; edx2 = edx
mov eax2, eax ; eax2 = eax
mov edx1, edi ; edx2 = edi
mov eax1, esi ; eax2 = esi
}
} __except (1) {
return -1;
}
return ((((__int64)edx2 << 32) + eax2) - (((__int64)edx1 << 32) + eax1));
#else
(void)DelayFunction;
(void)uiParameter;
return -1;
#endif
}
/** Compute the delay overhead */
void SystemInformationImplementation::DelayOverhead(unsigned int uiMS)
{
#if defined(_WIN32)
LARGE_INTEGER Frequency, StartCounter, EndCounter;
__int64 x;
// Get the frequency of the high performance counter.
if (!QueryPerformanceFrequency(&Frequency)) {
return;
}
x = Frequency.QuadPart / 1000 * uiMS;
// Get the starting position of the counter.
QueryPerformanceCounter(&StartCounter);
do {
// Get the ending position of the counter.
QueryPerformanceCounter(&EndCounter);
} while (EndCounter.QuadPart - StartCounter.QuadPart == x);
#endif
(void)uiMS;
}
/** Return the number of logical CPU per physical CPUs Works only for windows
*/
unsigned char SystemInformationImplementation::LogicalCPUPerPhysicalCPU(void)
{
#ifdef __APPLE__
size_t len = 4;
int cores_per_package = 0;
int err = sysctlbyname("machdep.cpu.cores_per_package", &cores_per_package,
&len, NULL, 0);
if (err != 0) {
return 1; // That name was not found, default to 1
}
return static_cast<unsigned char>(cores_per_package);
#else
int Regs[4] = { 0, 0, 0, 0 };
#if USE_CPUID
if (!this->IsHyperThreadingSupported()) {
return static_cast<unsigned char>(1); // HT not supported
}
call_cpuid(1, Regs);
#endif
return static_cast<unsigned char>((Regs[1] & NUM_LOGICAL_BITS) >> 16);
#endif
}
/** Works only for windows */
bool SystemInformationImplementation::IsHyperThreadingSupported()
{
if (this->Features.ExtendedFeatures.SupportsHyperthreading) {
return true;
}
#if USE_CPUID
int Regs[4] = { 0, 0, 0, 0 }, VendorId[4] = { 0, 0, 0, 0 };
// Get vendor id string
if (!call_cpuid(0, VendorId)) {
return false;
}
// eax contains family processor type
// edx has info about the availability of hyper-Threading
if (!call_cpuid(1, Regs)) {
return false;
}
if (((Regs[0] & FAMILY_ID) == PENTIUM4_ID) || (Regs[0] & EXT_FAMILY_ID)) {
if (VendorId[1] == 0x756e6547) // 'uneG'
{
if (VendorId[3] == 0x49656e69) // 'Ieni'
{
if (VendorId[2] == 0x6c65746e) // 'letn'
{
// Genuine Intel with hyper-Threading technology
this->Features.ExtendedFeatures.SupportsHyperthreading =
((Regs[3] & HT_BIT) != 0);
return this->Features.ExtendedFeatures.SupportsHyperthreading;
}
}
}
}
#endif
return 0; // Not genuine Intel processor
}
/** Return the APIC Id. Works only for windows. */
unsigned char SystemInformationImplementation::GetAPICId()
{
int Regs[4] = { 0, 0, 0, 0 };
#if USE_CPUID
if (!this->IsHyperThreadingSupported()) {
return static_cast<unsigned char>(-1); // HT not supported
} // Logical processor = 1
call_cpuid(1, Regs);
#endif
return static_cast<unsigned char>((Regs[1] & INITIAL_APIC_ID_BITS) >> 24);
}
/** Count the number of CPUs. Works only on windows. */
int SystemInformationImplementation::CPUCount()
{
#if defined(_WIN32)
unsigned char StatusFlag = 0;
SYSTEM_INFO info;
this->NumberOfPhysicalCPU = 0;
this->NumberOfLogicalCPU = 0;
info.dwNumberOfProcessors = 0;
GetSystemInfo(&info);
// Number of physical processors in a non-Intel system
// or in a 32-bit Intel system with Hyper-Threading technology disabled
this->NumberOfPhysicalCPU = (unsigned char)info.dwNumberOfProcessors;
if (this->IsHyperThreadingSupported()) {
unsigned char HT_Enabled = 0;
this->NumberOfLogicalCPU = this->LogicalCPUPerPhysicalCPU();
if (this->NumberOfLogicalCPU >=
1) // >1 Doesn't mean HT is enabled in the BIOS
{
HANDLE hCurrentProcessHandle;
#ifndef _WIN64
#define DWORD_PTR DWORD
#endif
DWORD_PTR dwProcessAffinity;
DWORD_PTR dwSystemAffinity;
DWORD dwAffinityMask;
// Calculate the appropriate shifts and mask based on the
// number of logical processors.
unsigned int i = 1;
unsigned char PHY_ID_MASK = 0xFF;
// unsigned char PHY_ID_SHIFT = 0;
while (i < this->NumberOfLogicalCPU) {
i *= 2;
PHY_ID_MASK <<= 1;
// PHY_ID_SHIFT++;
}
hCurrentProcessHandle = GetCurrentProcess();
GetProcessAffinityMask(hCurrentProcessHandle, &dwProcessAffinity,
&dwSystemAffinity);
// Check if available process affinity mask is equal to the
// available system affinity mask
if (dwProcessAffinity != dwSystemAffinity) {
StatusFlag = HT_CANNOT_DETECT;
this->NumberOfPhysicalCPU = (unsigned char)-1;
return StatusFlag;
}
dwAffinityMask = 1;
while (dwAffinityMask != 0 && dwAffinityMask <= dwProcessAffinity) {
// Check if this CPU is available
if (dwAffinityMask & dwProcessAffinity) {
if (SetProcessAffinityMask(hCurrentProcessHandle, dwAffinityMask)) {
unsigned char APIC_ID, LOG_ID;
Sleep(0); // Give OS time to switch CPU
APIC_ID = GetAPICId();
LOG_ID = APIC_ID & ~PHY_ID_MASK;
if (LOG_ID != 0) {
HT_Enabled = 1;
}
}
}
dwAffinityMask = dwAffinityMask << 1;
}
// Reset the processor affinity
SetProcessAffinityMask(hCurrentProcessHandle, dwProcessAffinity);
if (this->NumberOfLogicalCPU ==
1) // Normal P4 : HT is disabled in hardware
{
StatusFlag = HT_DISABLED;
} else {
if (HT_Enabled) {
// Total physical processors in a Hyper-Threading enabled system.
this->NumberOfPhysicalCPU /= (this->NumberOfLogicalCPU);
StatusFlag = HT_ENABLED;
} else {
StatusFlag = HT_SUPPORTED_NOT_ENABLED;
}
}
}
} else {
// Processors do not have Hyper-Threading technology
StatusFlag = HT_NOT_CAPABLE;
this->NumberOfLogicalCPU = 1;
}
return StatusFlag;
#else
return 0;
#endif
}
/** Return the number of logical CPUs on the system */
unsigned int SystemInformationImplementation::GetNumberOfLogicalCPU()
{
return this->NumberOfLogicalCPU;
}
/** Return the number of physical CPUs on the system */
unsigned int SystemInformationImplementation::GetNumberOfPhysicalCPU()
{
return this->NumberOfPhysicalCPU;
}
/** For Mac use sysctlbyname calls to find system info */
bool SystemInformationImplementation::ParseSysCtl()
{
#if defined(__APPLE__)
char retBuf[128];
int err = 0;
uint64_t value = 0;
size_t len = sizeof(value);
sysctlbyname("hw.memsize", &value, &len, NULL, 0);
this->TotalPhysicalMemory = static_cast<size_t>(value / 1048576);
// Parse values for Mac
this->AvailablePhysicalMemory = 0;
vm_statistics_data_t vmstat;
mach_msg_type_number_t count = HOST_VM_INFO_COUNT;
if (host_statistics(mach_host_self(), HOST_VM_INFO, (host_info_t)&vmstat,
&count) == KERN_SUCCESS) {
len = sizeof(value);
err = sysctlbyname("hw.pagesize", &value, &len, NULL, 0);
int64_t available_memory = vmstat.free_count * value;
this->AvailablePhysicalMemory =
static_cast<size_t>(available_memory / 1048576);
}
#ifdef VM_SWAPUSAGE
// Virtual memory.
int mib[2] = { CTL_VM, VM_SWAPUSAGE };
size_t miblen = sizeof(mib) / sizeof(mib[0]);
struct xsw_usage swap;
len = sizeof(swap);
err = sysctl(mib, miblen, &swap, &len, NULL, 0);
if (err == 0) {
this->AvailableVirtualMemory =
static_cast<size_t>(swap.xsu_avail / 1048576);
this->TotalVirtualMemory = static_cast<size_t>(swap.xsu_total / 1048576);
}
#else
this->AvailableVirtualMemory = 0;
this->TotalVirtualMemory = 0;
#endif
// CPU Info
len = sizeof(this->NumberOfPhysicalCPU);
sysctlbyname("hw.physicalcpu", &this->NumberOfPhysicalCPU, &len, NULL, 0);
len = sizeof(this->NumberOfLogicalCPU);
sysctlbyname("hw.logicalcpu", &this->NumberOfLogicalCPU, &len, NULL, 0);
this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical =
this->LogicalCPUPerPhysicalCPU();
len = sizeof(value);
sysctlbyname("hw.cpufrequency", &value, &len, NULL, 0);
this->CPUSpeedInMHz = static_cast<float>(value) / 1000000;
// Chip family
len = sizeof(this->ChipID.Family);
// Seems only the intel chips will have this name so if this fails it is
// probably a PPC machine
err =
sysctlbyname("machdep.cpu.family", &this->ChipID.Family, &len, NULL, 0);
if (err != 0) // Go back to names we know but are less descriptive
{
this->ChipID.Family = 0;
::memset(retBuf, 0, 128);
len = 32;
err = sysctlbyname("hw.machine", &retBuf, &len, NULL, 0);
std::string machineBuf(retBuf);
if (machineBuf.find_first_of("Power") != std::string::npos) {
this->ChipID.Vendor = "IBM";
len = sizeof(this->ChipID.Family);
err = sysctlbyname("hw.cputype", &this->ChipID.Family, &len, NULL, 0);
len = sizeof(this->ChipID.Model);
err = sysctlbyname("hw.cpusubtype", &this->ChipID.Model, &len, NULL, 0);
this->FindManufacturer();
}
} else // Should be an Intel Chip.
{
len = sizeof(this->ChipID.Family);
err =
sysctlbyname("machdep.cpu.family", &this->ChipID.Family, &len, NULL, 0);
::memset(retBuf, 0, 128);
len = 128;
err = sysctlbyname("machdep.cpu.vendor", retBuf, &len, NULL, 0);
// Chip Vendor
this->ChipID.Vendor = retBuf;
this->FindManufacturer();
// Chip Model
len = sizeof(value);
err = sysctlbyname("machdep.cpu.model", &value, &len, NULL, 0);
this->ChipID.Model = static_cast<int>(value);
// Chip Stepping
len = sizeof(value);
value = 0;
err = sysctlbyname("machdep.cpu.stepping", &value, &len, NULL, 0);
if (!err) {
this->ChipID.Revision = static_cast<int>(value);
}
// feature string
char* buf = 0;
size_t allocSize = 128;
err = 0;
len = 0;
// sysctlbyname() will return with err==0 && len==0 if the buffer is too
// small
while (err == 0 && len == 0) {
delete[] buf;
allocSize *= 2;
buf = new char[allocSize];
if (!buf) {
break;
}
buf[0] = ' ';
len = allocSize - 2; // keep space for leading and trailing space
err = sysctlbyname("machdep.cpu.features", buf + 1, &len, NULL, 0);
}
if (!err && buf && len) {
// now we can match every flags as space + flag + space
buf[len + 1] = ' ';
std::string cpuflags(buf, len + 2);
if ((cpuflags.find(" FPU ") != std::string::npos)) {
this->Features.HasFPU = true;
}
if ((cpuflags.find(" TSC ") != std::string::npos)) {
this->Features.HasTSC = true;
}
if ((cpuflags.find(" MMX ") != std::string::npos)) {
this->Features.HasMMX = true;
}
if ((cpuflags.find(" SSE ") != std::string::npos)) {
this->Features.HasSSE = true;
}
if ((cpuflags.find(" SSE2 ") != std::string::npos)) {
this->Features.HasSSE2 = true;
}
if ((cpuflags.find(" APIC ") != std::string::npos)) {
this->Features.HasAPIC = true;
}
if ((cpuflags.find(" CMOV ") != std::string::npos)) {
this->Features.HasCMOV = true;
}
if ((cpuflags.find(" MTRR ") != std::string::npos)) {
this->Features.HasMTRR = true;
}
if ((cpuflags.find(" ACPI ") != std::string::npos)) {
this->Features.HasACPI = true;
}
}
delete[] buf;
}
// brand string
::memset(retBuf, 0, sizeof(retBuf));
len = sizeof(retBuf);
err = sysctlbyname("machdep.cpu.brand_string", retBuf, &len, NULL, 0);
if (!err) {
this->ChipID.ProcessorName = retBuf;
this->ChipID.ModelName = retBuf;
}
// Cache size
len = sizeof(value);
err = sysctlbyname("hw.l1icachesize", &value, &len, NULL, 0);
this->Features.L1CacheSize = static_cast<int>(value);
len = sizeof(value);
err = sysctlbyname("hw.l2cachesize", &value, &len, NULL, 0);
this->Features.L2CacheSize = static_cast<int>(value);
return true;
#else
return false;
#endif
}
/** Extract a value from sysctl command */
std::string SystemInformationImplementation::ExtractValueFromSysCtl(
const char* word)
{
size_t pos = this->SysCtlBuffer.find(word);
if (pos != this->SysCtlBuffer.npos) {
pos = this->SysCtlBuffer.find(": ", pos);
size_t pos2 = this->SysCtlBuffer.find("\n", pos);
if (pos != this->SysCtlBuffer.npos && pos2 != this->SysCtlBuffer.npos) {
return this->SysCtlBuffer.substr(pos + 2, pos2 - pos - 2);
}
}
return "";
}
/** Run a given process */
std::string SystemInformationImplementation::RunProcess(
std::vector<const char*> args)
{
std::string buffer = "";
// Run the application
kwsysProcess* gp = kwsysProcess_New();
kwsysProcess_SetCommand(gp, &*args.begin());
kwsysProcess_SetOption(gp, kwsysProcess_Option_HideWindow, 1);
kwsysProcess_Execute(gp);
char* data = NULL;
int length;
double timeout = 255;
int pipe; // pipe id as returned by kwsysProcess_WaitForData()
while ((static_cast<void>(
pipe = kwsysProcess_WaitForData(gp, &data, &length, &timeout)),
(pipe == kwsysProcess_Pipe_STDOUT ||
pipe == kwsysProcess_Pipe_STDERR))) // wait for 1s
{
buffer.append(data, length);
}
kwsysProcess_WaitForExit(gp, 0);
int result = 0;
switch (kwsysProcess_GetState(gp)) {
case kwsysProcess_State_Exited: {
result = kwsysProcess_GetExitValue(gp);
} break;
case kwsysProcess_State_Error: {
std::cerr << "Error: Could not run " << args[0] << ":\n";
std::cerr << kwsysProcess_GetErrorString(gp) << "\n";
} break;
case kwsysProcess_State_Exception: {
std::cerr << "Error: " << args[0] << " terminated with an exception: "
<< kwsysProcess_GetExceptionString(gp) << "\n";
} break;
case kwsysProcess_State_Starting:
case kwsysProcess_State_Executing:
case kwsysProcess_State_Expired:
case kwsysProcess_State_Killed: {
// Should not get here.
std::cerr << "Unexpected ending state after running " << args[0]
<< std::endl;
} break;
}
kwsysProcess_Delete(gp);
if (result) {
std::cerr << "Error " << args[0] << " returned :" << result << "\n";
}
return buffer;
}
std::string SystemInformationImplementation::ParseValueFromKStat(
const char* arguments)
{
std::vector<const char*> args;
args.clear();
args.push_back("kstat");
args.push_back("-p");
std::string command = arguments;
size_t start = command.npos;
size_t pos = command.find(' ', 0);
while (pos != command.npos) {
bool inQuotes = false;
// Check if we are between quotes
size_t b0 = command.find('"', 0);
size_t b1 = command.find('"', b0 + 1);
while (b0 != command.npos && b1 != command.npos && b1 > b0) {
if (pos > b0 && pos < b1) {
inQuotes = true;
break;
}
b0 = command.find('"', b1 + 1);
b1 = command.find('"', b0 + 1);
}
if (!inQuotes) {
std::string arg = command.substr(start + 1, pos - start - 1);
// Remove the quotes if any
size_t quotes = arg.find('"');
while (quotes != arg.npos) {
arg.erase(quotes, 1);
quotes = arg.find('"');
}
args.push_back(arg.c_str());
start = pos;
}
pos = command.find(' ', pos + 1);
}
std::string lastArg = command.substr(start + 1, command.size() - start - 1);
args.push_back(lastArg.c_str());
args.push_back(0);
std::string buffer = this->RunProcess(args);
std::string value = "";
for (size_t i = buffer.size() - 1; i > 0; i--) {
if (buffer[i] == ' ' || buffer[i] == '\t') {
break;
}
if (buffer[i] != '\n' && buffer[i] != '\r') {
std::string val = value;
value = buffer[i];
value += val;
}
}
return value;
}
/** Querying for system information from Solaris */
bool SystemInformationImplementation::QuerySolarisMemory()
{
#if defined(__SVR4) && defined(__sun)
// Solaris allows querying this value by sysconf, but if this is
// a 32 bit process on a 64 bit host the returned memory will be
// limited to 4GiB. So if this is a 32 bit process or if the sysconf
// method fails use the kstat interface.
#if SIZEOF_VOID_P == 8
if (this->QueryMemoryBySysconf()) {
return true;
}
#endif
char* tail;
unsigned long totalMemory =
strtoul(this->ParseValueFromKStat("-s physmem").c_str(), &tail, 0);
this->TotalPhysicalMemory = totalMemory / 128;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QuerySolarisProcessor()
{
if (!this->QueryProcessorBySysconf()) {
return false;
}
// Parse values
this->CPUSpeedInMHz = static_cast<float>(
atoi(this->ParseValueFromKStat("-s clock_MHz").c_str()));
// Chip family
this->ChipID.Family = 0;
// Chip Model
this->ChipID.ProcessorName = this->ParseValueFromKStat("-s cpu_type");
this->ChipID.Model = 0;
// Chip Vendor
if (this->ChipID.ProcessorName != "i386") {
this->ChipID.Vendor = "Sun";
this->FindManufacturer();
}
return true;
}
/** Querying for system information from Haiku OS */
bool SystemInformationImplementation::QueryHaikuInfo()
{
#if defined(__HAIKU__)
// CPU count
system_info info;
get_system_info(&info);
this->NumberOfPhysicalCPU = info.cpu_count;
// CPU speed
uint32 topologyNodeCount = 0;
cpu_topology_node_info* topology = 0;
get_cpu_topology_info(0, &topologyNodeCount);
if (topologyNodeCount != 0)
topology = new cpu_topology_node_info[topologyNodeCount];
get_cpu_topology_info(topology, &topologyNodeCount);
for (uint32 i = 0; i < topologyNodeCount; i++) {
if (topology[i].type == B_TOPOLOGY_CORE) {
this->CPUSpeedInMHz =
topology[i].data.core.default_frequency / 1000000.0f;
break;
}
}
delete[] topology;
// Physical Memory
this->TotalPhysicalMemory = (info.max_pages * B_PAGE_SIZE) / (1024 * 1024);
this->AvailablePhysicalMemory = this->TotalPhysicalMemory -
((info.used_pages * B_PAGE_SIZE) / (1024 * 1024));
// NOTE: get_system_info_etc is currently a private call so just set to 0
// until it becomes public
this->TotalVirtualMemory = 0;
this->AvailableVirtualMemory = 0;
// Retrieve cpuid_info union for cpu 0
cpuid_info cpu_info;
get_cpuid(&cpu_info, 0, 0);
// Chip Vendor
// Use a temporary buffer so that we can add NULL termination to the string
char vbuf[13];
strncpy(vbuf, cpu_info.eax_0.vendor_id, 12);
vbuf[12] = '\0';
this->ChipID.Vendor = vbuf;
this->FindManufacturer();
// Retrieve cpuid_info union for cpu 0 this time using a register value of 1
get_cpuid(&cpu_info, 1, 0);
this->NumberOfLogicalCPU = cpu_info.eax_1.logical_cpus;
// Chip type
this->ChipID.Type = cpu_info.eax_1.type;
// Chip family
this->ChipID.Family = cpu_info.eax_1.family;
// Chip Model
this->ChipID.Model = cpu_info.eax_1.model;
// Chip Revision
this->ChipID.Revision = cpu_info.eax_1.stepping;
// Chip Extended Family
this->ChipID.ExtendedFamily = cpu_info.eax_1.extended_family;
// Chip Extended Model
this->ChipID.ExtendedModel = cpu_info.eax_1.extended_model;
// Get ChipID.ProcessorName from other information already gathered
this->RetrieveClassicalCPUIdentity();
// Cache size
this->Features.L1CacheSize = 0;
this->Features.L2CacheSize = 0;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryQNXMemory()
{
#if defined(__QNX__)
std::string buffer;
std::vector<const char*> args;
args.clear();
args.push_back("showmem");
args.push_back("-S");
args.push_back(0);
buffer = this->RunProcess(args);
args.clear();
size_t pos = buffer.find("System RAM:");
if (pos == buffer.npos)
return false;
pos = buffer.find(":", pos);
size_t pos2 = buffer.find("M (", pos);
if (pos2 == buffer.npos)
return false;
pos++;
while (buffer[pos] == ' ')
pos++;
this->TotalPhysicalMemory = atoi(buffer.substr(pos, pos2 - pos).c_str());
return true;
#endif
return false;
}
bool SystemInformationImplementation::QueryBSDMemory()
{
#if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \
defined(__DragonFly__)
int ctrl[2] = { CTL_HW, HW_PHYSMEM };
#if defined(HW_PHYSMEM64)
int64_t k;
ctrl[1] = HW_PHYSMEM64;
#else
int k;
#endif
size_t sz = sizeof(k);
if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0) {
return false;
}
this->TotalPhysicalMemory = k >> 10 >> 10;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryQNXProcessor()
{
#if defined(__QNX__)
// the output on my QNX 6.4.1 looks like this:
// Processor1: 686 Pentium II Stepping 3 2175MHz FPU
std::string buffer;
std::vector<const char*> args;
args.clear();
args.push_back("pidin");
args.push_back("info");
args.push_back(0);
buffer = this->RunProcess(args);
args.clear();
size_t pos = buffer.find("Processor1:");
if (pos == buffer.npos)
return false;
size_t pos2 = buffer.find("MHz", pos);
if (pos2 == buffer.npos)
return false;
size_t pos3 = pos2;
while (buffer[pos3] != ' ')
--pos3;
this->CPUSpeedInMHz = atoi(buffer.substr(pos3 + 1, pos2 - pos3 - 1).c_str());
pos2 = buffer.find(" Stepping", pos);
if (pos2 != buffer.npos) {
pos2 = buffer.find(" ", pos2 + 1);
if (pos2 != buffer.npos && pos2 < pos3) {
this->ChipID.Revision =
atoi(buffer.substr(pos2 + 1, pos3 - pos2).c_str());
}
}
this->NumberOfPhysicalCPU = 0;
do {
pos = buffer.find("\nProcessor", pos + 1);
++this->NumberOfPhysicalCPU;
} while (pos != buffer.npos);
this->NumberOfLogicalCPU = 1;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryBSDProcessor()
{
#if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \
defined(__DragonFly__)
int k;
size_t sz = sizeof(k);
int ctrl[2] = { CTL_HW, HW_NCPU };
if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0) {
return false;
}
this->NumberOfPhysicalCPU = k;
this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;
#if defined(HW_CPUSPEED)
ctrl[1] = HW_CPUSPEED;
if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0) {
return false;
}
this->CPUSpeedInMHz = (float)k;
#endif
#if defined(CPU_SSE)
ctrl[0] = CTL_MACHDEP;
ctrl[1] = CPU_SSE;
if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0) {
return false;
}
this->Features.HasSSE = (k > 0);
#endif
#if defined(CPU_SSE2)
ctrl[0] = CTL_MACHDEP;
ctrl[1] = CPU_SSE2;
if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0) {
return false;
}
this->Features.HasSSE2 = (k > 0);
#endif
#if defined(CPU_CPUVENDOR)
ctrl[0] = CTL_MACHDEP;
ctrl[1] = CPU_CPUVENDOR;
char vbuf[25];
::memset(vbuf, 0, sizeof(vbuf));
sz = sizeof(vbuf) - 1;
if (sysctl(ctrl, 2, vbuf, &sz, NULL, 0) != 0) {
return false;
}
this->ChipID.Vendor = vbuf;
this->FindManufacturer();
#endif
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryHPUXMemory()
{
#if defined(__hpux)
unsigned long tv = 0;
unsigned long tp = 0;
unsigned long av = 0;
unsigned long ap = 0;
struct pst_static pst;
struct pst_dynamic pdy;
unsigned long ps = 0;
if (pstat_getstatic(&pst, sizeof(pst), (size_t)1, 0) == -1) {
return false;
}
ps = pst.page_size;
tp = pst.physical_memory * ps;
tv = (pst.physical_memory + pst.pst_maxmem) * ps;
if (pstat_getdynamic(&pdy, sizeof(pdy), (size_t)1, 0) == -1) {
return false;
}
ap = tp - pdy.psd_rm * ps;
av = tv - pdy.psd_vm;
this->TotalVirtualMemory = tv >> 10 >> 10;
this->TotalPhysicalMemory = tp >> 10 >> 10;
this->AvailableVirtualMemory = av >> 10 >> 10;
this->AvailablePhysicalMemory = ap >> 10 >> 10;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryHPUXProcessor()
{
#if defined(__hpux)
#if defined(KWSYS_SYS_HAS_MPCTL_H)
int c = mpctl(MPC_GETNUMSPUS_SYS, 0, 0);
if (c <= 0) {
return false;
}
this->NumberOfPhysicalCPU = c;
this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;
long t = sysconf(_SC_CPU_VERSION);
if (t == -1) {
return false;
}
switch (t) {
case CPU_PA_RISC1_0:
this->ChipID.Vendor = "Hewlett-Packard";
this->ChipID.Family = 0x100;
break;
case CPU_PA_RISC1_1:
this->ChipID.Vendor = "Hewlett-Packard";
this->ChipID.Family = 0x110;
break;
case CPU_PA_RISC2_0:
this->ChipID.Vendor = "Hewlett-Packard";
this->ChipID.Family = 0x200;
break;
#if defined(CPU_HP_INTEL_EM_1_0) || defined(CPU_IA64_ARCHREV_0)
#ifdef CPU_HP_INTEL_EM_1_0
case CPU_HP_INTEL_EM_1_0:
#endif
#ifdef CPU_IA64_ARCHREV_0
case CPU_IA64_ARCHREV_0:
#endif
this->ChipID.Vendor = "GenuineIntel";
this->Features.HasIA64 = true;
break;
#endif
default:
return false;
}
this->FindManufacturer();
return true;
#else
return false;
#endif
#else
return false;
#endif
}
/** Query the operating system information */
bool SystemInformationImplementation::QueryOSInformation()
{
#if defined(_WIN32)
this->OSName = "Windows";
OSVERSIONINFOEXW osvi;
BOOL bIsWindows64Bit;
BOOL bOsVersionInfoEx;
char operatingSystem[256];
// Try calling GetVersionEx using the OSVERSIONINFOEX structure.
ZeroMemory(&osvi, sizeof(OSVERSIONINFOEXW));
osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEXW);
#ifdef KWSYS_WINDOWS_DEPRECATED_GetVersionEx
#pragma warning(push)
#ifdef __INTEL_COMPILER
#pragma warning(disable : 1478)
#else
#pragma warning(disable : 4996)
#endif
#endif
bOsVersionInfoEx = GetVersionExW((OSVERSIONINFOW*)&osvi);
if (!bOsVersionInfoEx) {
osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOW);
if (!GetVersionExW((OSVERSIONINFOW*)&osvi)) {
return false;
}
}
#ifdef KWSYS_WINDOWS_DEPRECATED_GetVersionEx
#pragma warning(pop)
#endif
switch (osvi.dwPlatformId) {
case VER_PLATFORM_WIN32_NT:
// Test for the product.
if (osvi.dwMajorVersion <= 4) {
this->OSRelease = "NT";
}
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 0) {
this->OSRelease = "2000";
}
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) {
this->OSRelease = "XP";
}
// XP Professional x64
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 2) {
this->OSRelease = "XP";
}
#ifdef VER_NT_WORKSTATION
// Test for product type.
if (bOsVersionInfoEx) {
if (osvi.wProductType == VER_NT_WORKSTATION) {
if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 0) {
this->OSRelease = "Vista";
}
if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 1) {
this->OSRelease = "7";
}
// VER_SUITE_PERSONAL may not be defined
#ifdef VER_SUITE_PERSONAL
else {
if (osvi.wSuiteMask & VER_SUITE_PERSONAL) {
this->OSRelease += " Personal";
} else {
this->OSRelease += " Professional";
}
}
#endif
} else if (osvi.wProductType == VER_NT_SERVER) {
// Check for .NET Server instead of Windows XP.
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) {
this->OSRelease = ".NET";
}
// Continue with the type detection.
if (osvi.wSuiteMask & VER_SUITE_DATACENTER) {
this->OSRelease += " DataCenter Server";
} else if (osvi.wSuiteMask & VER_SUITE_ENTERPRISE) {
this->OSRelease += " Advanced Server";
} else {
this->OSRelease += " Server";
}
}
sprintf(operatingSystem, "%ls (Build %ld)", osvi.szCSDVersion,
osvi.dwBuildNumber & 0xFFFF);
this->OSVersion = operatingSystem;
} else
#endif // VER_NT_WORKSTATION
{
HKEY hKey;
wchar_t szProductType[80];
DWORD dwBufLen;
// Query the registry to retrieve information.
RegOpenKeyExW(HKEY_LOCAL_MACHINE,
L"SYSTEM\\CurrentControlSet\\Control\\ProductOptions", 0,
KEY_QUERY_VALUE, &hKey);
RegQueryValueExW(hKey, L"ProductType", NULL, NULL,
(LPBYTE)szProductType, &dwBufLen);
RegCloseKey(hKey);
if (lstrcmpiW(L"WINNT", szProductType) == 0) {
this->OSRelease += " Professional";
}
if (lstrcmpiW(L"LANMANNT", szProductType) == 0) {
// Decide between Windows 2000 Advanced Server and Windows .NET
// Enterprise Server.
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) {
this->OSRelease += " Standard Server";
} else {
this->OSRelease += " Server";
}
}
if (lstrcmpiW(L"SERVERNT", szProductType) == 0) {
// Decide between Windows 2000 Advanced Server and Windows .NET
// Enterprise Server.
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) {
this->OSRelease += " Enterprise Server";
} else {
this->OSRelease += " Advanced Server";
}
}
}
// Display version, service pack (if any), and build number.
if (osvi.dwMajorVersion <= 4) {
// NB: NT 4.0 and earlier.
sprintf(operatingSystem, "version %ld.%ld %ls (Build %ld)",
osvi.dwMajorVersion, osvi.dwMinorVersion, osvi.szCSDVersion,
osvi.dwBuildNumber & 0xFFFF);
this->OSVersion = operatingSystem;
} else if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) {
// Windows XP and .NET server.
typedef BOOL(CALLBACK * LPFNPROC)(HANDLE, BOOL*);
HINSTANCE hKernelDLL;
LPFNPROC DLLProc;
// Load the Kernel32 DLL.
hKernelDLL = LoadLibraryW(L"kernel32");
if (hKernelDLL != NULL) {
// Only XP and .NET Server support IsWOW64Process so... Load
// dynamically!
DLLProc = (LPFNPROC)GetProcAddress(hKernelDLL, "IsWow64Process");
// If the function address is valid, call the function.
if (DLLProc != NULL)
(DLLProc)(GetCurrentProcess(), &bIsWindows64Bit);
else
bIsWindows64Bit = false;
// Free the DLL module.
FreeLibrary(hKernelDLL);
}
} else {
// Windows 2000 and everything else.
sprintf(operatingSystem, "%ls (Build %ld)", osvi.szCSDVersion,
osvi.dwBuildNumber & 0xFFFF);
this->OSVersion = operatingSystem;
}
break;
case VER_PLATFORM_WIN32_WINDOWS:
// Test for the product.
if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 0) {
this->OSRelease = "95";
if (osvi.szCSDVersion[1] == 'C') {
this->OSRelease += "OSR 2.5";
} else if (osvi.szCSDVersion[1] == 'B') {
this->OSRelease += "OSR 2";
}
}
if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 10) {
this->OSRelease = "98";
if (osvi.szCSDVersion[1] == 'A') {
this->OSRelease += "SE";
}
}
if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 90) {
this->OSRelease = "Me";
}
break;
case VER_PLATFORM_WIN32s:
this->OSRelease = "Win32s";
break;
default:
this->OSRelease = "Unknown";
break;
}
// Get the hostname
WORD wVersionRequested;
WSADATA wsaData;
char name[255];
wVersionRequested = MAKEWORD(2, 0);
if (WSAStartup(wVersionRequested, &wsaData) == 0) {
gethostname(name, sizeof(name));
WSACleanup();
}
this->Hostname = name;
const char* arch = getenv("PROCESSOR_ARCHITECTURE");
if (arch) {
this->OSPlatform = arch;
}
#else
struct utsname unameInfo;
int errorFlag = uname(&unameInfo);
if (errorFlag == 0) {
this->OSName = unameInfo.sysname;
this->Hostname = unameInfo.nodename;
this->OSRelease = unameInfo.release;
this->OSVersion = unameInfo.version;
this->OSPlatform = unameInfo.machine;
}
#ifdef __APPLE__
this->OSName = "Unknown Apple OS";
this->OSRelease = "Unknown product version";
this->OSVersion = "Unknown build version";
this->CallSwVers("-productName", this->OSName);
this->CallSwVers("-productVersion", this->OSRelease);
this->CallSwVers("-buildVersion", this->OSVersion);
#endif
#endif
return true;
}
int SystemInformationImplementation::CallSwVers(const char* arg,
std::string& ver)
{
#ifdef __APPLE__
std::vector<const char*> args;
args.push_back("sw_vers");
args.push_back(arg);
args.push_back(0);
ver = this->RunProcess(args);
this->TrimNewline(ver);
#else
// avoid C4100
(void)arg;
(void)ver;
#endif
return 0;
}
void SystemInformationImplementation::TrimNewline(std::string& output)
{
// remove \r
std::string::size_type pos = 0;
while ((pos = output.find("\r", pos)) != std::string::npos) {
output.erase(pos);
}
// remove \n
pos = 0;
while ((pos = output.find("\n", pos)) != std::string::npos) {
output.erase(pos);
}
}
/** Return true if the machine is 64 bits */
bool SystemInformationImplementation::Is64Bits()
{
return (sizeof(void*) == 8);
}
}