|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
/// \file common.h
|
|
|
|
/// \brief Common functions needed in many places in liblzma
|
|
|
|
//
|
|
|
|
// Author: Lasse Collin
|
|
|
|
//
|
|
|
|
// This file has been put into the public domain.
|
|
|
|
// You can do whatever you want with this file.
|
|
|
|
//
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
#include "common.h"
|
|
|
|
|
|
|
|
|
|
|
|
/////////////
|
|
|
|
// Version //
|
|
|
|
/////////////
|
|
|
|
|
|
|
|
extern LZMA_API(uint32_t)
|
|
|
|
lzma_version_number(void)
|
|
|
|
{
|
|
|
|
return LZMA_VERSION;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(const char *)
|
|
|
|
lzma_version_string(void)
|
|
|
|
{
|
|
|
|
return LZMA_VERSION_STRING;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////
|
|
|
|
// Memory allocation //
|
|
|
|
///////////////////////
|
|
|
|
|
|
|
|
extern void * lzma_attribute((__malloc__)) lzma_attr_alloc_size(1)
|
|
|
|
lzma_alloc(size_t size, const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
// Some malloc() variants return NULL if called with size == 0.
|
|
|
|
if (size == 0)
|
|
|
|
size = 1;
|
|
|
|
|
|
|
|
void *ptr;
|
|
|
|
|
|
|
|
if (allocator != NULL && allocator->alloc != NULL)
|
|
|
|
ptr = allocator->alloc(allocator->opaque, 1, size);
|
|
|
|
else
|
|
|
|
ptr = malloc(size);
|
|
|
|
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern void * lzma_attribute((__malloc__)) lzma_attr_alloc_size(1)
|
|
|
|
lzma_alloc_zero(size_t size, const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
// Some calloc() variants return NULL if called with size == 0.
|
|
|
|
if (size == 0)
|
|
|
|
size = 1;
|
|
|
|
|
|
|
|
void *ptr;
|
|
|
|
|
|
|
|
if (allocator != NULL && allocator->alloc != NULL) {
|
|
|
|
ptr = allocator->alloc(allocator->opaque, 1, size);
|
|
|
|
if (ptr != NULL)
|
|
|
|
memzero(ptr, size);
|
|
|
|
} else {
|
|
|
|
ptr = calloc(1, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern void
|
|
|
|
lzma_free(void *ptr, const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
if (allocator != NULL && allocator->free != NULL)
|
|
|
|
allocator->free(allocator->opaque, ptr);
|
|
|
|
else
|
|
|
|
free(ptr);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////
|
|
|
|
// Misc //
|
|
|
|
//////////
|
|
|
|
|
|
|
|
extern size_t
|
|
|
|
lzma_bufcpy(const uint8_t *restrict in, size_t *restrict in_pos,
|
|
|
|
size_t in_size, uint8_t *restrict out,
|
|
|
|
size_t *restrict out_pos, size_t out_size)
|
|
|
|
{
|
|
|
|
const size_t in_avail = in_size - *in_pos;
|
|
|
|
const size_t out_avail = out_size - *out_pos;
|
|
|
|
const size_t copy_size = my_min(in_avail, out_avail);
|
|
|
|
|
|
|
|
memcpy(out + *out_pos, in + *in_pos, copy_size);
|
|
|
|
|
|
|
|
*in_pos += copy_size;
|
|
|
|
*out_pos += copy_size;
|
|
|
|
|
|
|
|
return copy_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern lzma_ret
|
|
|
|
lzma_next_filter_init(lzma_next_coder *next, const lzma_allocator *allocator,
|
|
|
|
const lzma_filter_info *filters)
|
|
|
|
{
|
|
|
|
lzma_next_coder_init(filters[0].init, next, allocator);
|
|
|
|
next->id = filters[0].id;
|
|
|
|
return filters[0].init == NULL
|
|
|
|
? LZMA_OK : filters[0].init(next, allocator, filters);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern lzma_ret
|
|
|
|
lzma_next_filter_update(lzma_next_coder *next, const lzma_allocator *allocator,
|
|
|
|
const lzma_filter *reversed_filters)
|
|
|
|
{
|
|
|
|
// Check that the application isn't trying to change the Filter ID.
|
|
|
|
// End of filters is indicated with LZMA_VLI_UNKNOWN in both
|
|
|
|
// reversed_filters[0].id and next->id.
|
|
|
|
if (reversed_filters[0].id != next->id)
|
|
|
|
return LZMA_PROG_ERROR;
|
|
|
|
|
|
|
|
if (reversed_filters[0].id == LZMA_VLI_UNKNOWN)
|
|
|
|
return LZMA_OK;
|
|
|
|
|
|
|
|
assert(next->update != NULL);
|
|
|
|
return next->update(next->coder, allocator, NULL, reversed_filters);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern void
|
|
|
|
lzma_next_end(lzma_next_coder *next, const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
if (next->init != (uintptr_t)(NULL)) {
|
|
|
|
// To avoid tiny end functions that simply call
|
|
|
|
// lzma_free(coder, allocator), we allow leaving next->end
|
|
|
|
// NULL and call lzma_free() here.
|
|
|
|
if (next->end != NULL)
|
|
|
|
next->end(next->coder, allocator);
|
|
|
|
else
|
|
|
|
lzma_free(next->coder, allocator);
|
|
|
|
|
|
|
|
// Reset the variables so the we don't accidentally think
|
|
|
|
// that it is an already initialized coder.
|
|
|
|
*next = LZMA_NEXT_CODER_INIT;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////
|
|
|
|
// External to internal API wrapper //
|
|
|
|
//////////////////////////////////////
|
|
|
|
|
|
|
|
extern lzma_ret
|
|
|
|
lzma_strm_init(lzma_stream *strm)
|
|
|
|
{
|
|
|
|
if (strm == NULL)
|
|
|
|
return LZMA_PROG_ERROR;
|
|
|
|
|
|
|
|
if (strm->internal == NULL) {
|
|
|
|
strm->internal = lzma_alloc(sizeof(lzma_internal),
|
|
|
|
strm->allocator);
|
|
|
|
if (strm->internal == NULL)
|
|
|
|
return LZMA_MEM_ERROR;
|
|
|
|
|
|
|
|
strm->internal->next = LZMA_NEXT_CODER_INIT;
|
|
|
|
}
|
|
|
|
|
|
|
|
memzero(strm->internal->supported_actions,
|
|
|
|
sizeof(strm->internal->supported_actions));
|
|
|
|
strm->internal->sequence = ISEQ_RUN;
|
|
|
|
strm->internal->allow_buf_error = false;
|
|
|
|
|
|
|
|
strm->total_in = 0;
|
|
|
|
strm->total_out = 0;
|
|
|
|
|
|
|
|
return LZMA_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_ret)
|
|
|
|
lzma_code(lzma_stream *strm, lzma_action action)
|
|
|
|
{
|
|
|
|
// Sanity checks
|
|
|
|
if ((strm->next_in == NULL && strm->avail_in != 0)
|
|
|
|
|| (strm->next_out == NULL && strm->avail_out != 0)
|
|
|
|
|| strm->internal == NULL
|
|
|
|
|| strm->internal->next.code == NULL
|
|
|
|
|| (unsigned int)(action) > LZMA_ACTION_MAX
|
|
|
|
|| !strm->internal->supported_actions[action])
|
|
|
|
return LZMA_PROG_ERROR;
|
|
|
|
|
|
|
|
// Check if unsupported members have been set to non-zero or non-NULL,
|
|
|
|
// which would indicate that some new feature is wanted.
|
|
|
|
if (strm->reserved_ptr1 != NULL
|
|
|
|
|| strm->reserved_ptr2 != NULL
|
|
|
|
|| strm->reserved_ptr3 != NULL
|
|
|
|
|| strm->reserved_ptr4 != NULL
|
|
|
|
|| strm->reserved_int1 != 0
|
|
|
|
|| strm->reserved_int2 != 0
|
|
|
|
|| strm->reserved_int3 != 0
|
|
|
|
|| strm->reserved_int4 != 0
|
|
|
|
|| strm->reserved_enum1 != LZMA_RESERVED_ENUM
|
|
|
|
|| strm->reserved_enum2 != LZMA_RESERVED_ENUM)
|
|
|
|
return LZMA_OPTIONS_ERROR;
|
|
|
|
|
|
|
|
switch (strm->internal->sequence) {
|
|
|
|
case ISEQ_RUN:
|
|
|
|
switch (action) {
|
|
|
|
case LZMA_RUN:
|
|
|
|
break;
|
|
|
|
|
|
|
|
case LZMA_SYNC_FLUSH:
|
|
|
|
strm->internal->sequence = ISEQ_SYNC_FLUSH;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case LZMA_FULL_FLUSH:
|
|
|
|
strm->internal->sequence = ISEQ_FULL_FLUSH;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case LZMA_FINISH:
|
|
|
|
strm->internal->sequence = ISEQ_FINISH;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case LZMA_FULL_BARRIER:
|
|
|
|
strm->internal->sequence = ISEQ_FULL_BARRIER;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ISEQ_SYNC_FLUSH:
|
|
|
|
// The same action must be used until we return
|
|
|
|
// LZMA_STREAM_END, and the amount of input must not change.
|
|
|
|
if (action != LZMA_SYNC_FLUSH
|
|
|
|
|| strm->internal->avail_in != strm->avail_in)
|
|
|
|
return LZMA_PROG_ERROR;
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ISEQ_FULL_FLUSH:
|
|
|
|
if (action != LZMA_FULL_FLUSH
|
|
|
|
|| strm->internal->avail_in != strm->avail_in)
|
|
|
|
return LZMA_PROG_ERROR;
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ISEQ_FINISH:
|
|
|
|
if (action != LZMA_FINISH
|
|
|
|
|| strm->internal->avail_in != strm->avail_in)
|
|
|
|
return LZMA_PROG_ERROR;
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ISEQ_FULL_BARRIER:
|
|
|
|
if (action != LZMA_FULL_BARRIER
|
|
|
|
|| strm->internal->avail_in != strm->avail_in)
|
|
|
|
return LZMA_PROG_ERROR;
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ISEQ_END:
|
|
|
|
return LZMA_STREAM_END;
|
|
|
|
|
|
|
|
case ISEQ_ERROR:
|
|
|
|
default:
|
|
|
|
return LZMA_PROG_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t in_pos = 0;
|
|
|
|
size_t out_pos = 0;
|
|
|
|
lzma_ret ret = strm->internal->next.code(
|
|
|
|
strm->internal->next.coder, strm->allocator,
|
|
|
|
strm->next_in, &in_pos, strm->avail_in,
|
|
|
|
strm->next_out, &out_pos, strm->avail_out, action);
|
|
|
|
|
|
|
|
strm->next_in += in_pos;
|
|
|
|
strm->avail_in -= in_pos;
|
|
|
|
strm->total_in += in_pos;
|
|
|
|
|
|
|
|
strm->next_out += out_pos;
|
|
|
|
strm->avail_out -= out_pos;
|
|
|
|
strm->total_out += out_pos;
|
|
|
|
|
|
|
|
strm->internal->avail_in = strm->avail_in;
|
|
|
|
|
|
|
|
// Cast is needed to silence a warning about LZMA_TIMED_OUT, which
|
|
|
|
// isn't part of lzma_ret enumeration.
|
|
|
|
switch ((unsigned int)(ret)) {
|
|
|
|
case LZMA_OK:
|
|
|
|
// Don't return LZMA_BUF_ERROR when it happens the first time.
|
|
|
|
// This is to avoid returning LZMA_BUF_ERROR when avail_out
|
|
|
|
// was zero but still there was no more data left to written
|
|
|
|
// to next_out.
|
|
|
|
if (out_pos == 0 && in_pos == 0) {
|
|
|
|
if (strm->internal->allow_buf_error)
|
|
|
|
ret = LZMA_BUF_ERROR;
|
|
|
|
else
|
|
|
|
strm->internal->allow_buf_error = true;
|
|
|
|
} else {
|
|
|
|
strm->internal->allow_buf_error = false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case LZMA_TIMED_OUT:
|
|
|
|
strm->internal->allow_buf_error = false;
|
|
|
|
ret = LZMA_OK;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case LZMA_STREAM_END:
|
|
|
|
if (strm->internal->sequence == ISEQ_SYNC_FLUSH
|
|
|
|
|| strm->internal->sequence == ISEQ_FULL_FLUSH
|
|
|
|
|| strm->internal->sequence
|
|
|
|
== ISEQ_FULL_BARRIER)
|
|
|
|
strm->internal->sequence = ISEQ_RUN;
|
|
|
|
else
|
|
|
|
strm->internal->sequence = ISEQ_END;
|
|
|
|
|
|
|
|
// Fall through
|
|
|
|
|
|
|
|
case LZMA_NO_CHECK:
|
|
|
|
case LZMA_UNSUPPORTED_CHECK:
|
|
|
|
case LZMA_GET_CHECK:
|
|
|
|
case LZMA_MEMLIMIT_ERROR:
|
|
|
|
// Something else than LZMA_OK, but not a fatal error,
|
|
|
|
// that is, coding may be continued (except if ISEQ_END).
|
|
|
|
strm->internal->allow_buf_error = false;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
// All the other errors are fatal; coding cannot be continued.
|
|
|
|
assert(ret != LZMA_BUF_ERROR);
|
|
|
|
strm->internal->sequence = ISEQ_ERROR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(void)
|
|
|
|
lzma_end(lzma_stream *strm)
|
|
|
|
{
|
|
|
|
if (strm != NULL && strm->internal != NULL) {
|
|
|
|
lzma_next_end(&strm->internal->next, strm->allocator);
|
|
|
|
lzma_free(strm->internal, strm->allocator);
|
|
|
|
strm->internal = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(void)
|
|
|
|
lzma_get_progress(lzma_stream *strm,
|
|
|
|
uint64_t *progress_in, uint64_t *progress_out)
|
|
|
|
{
|
|
|
|
if (strm->internal->next.get_progress != NULL) {
|
|
|
|
strm->internal->next.get_progress(strm->internal->next.coder,
|
|
|
|
progress_in, progress_out);
|
|
|
|
} else {
|
|
|
|
*progress_in = strm->total_in;
|
|
|
|
*progress_out = strm->total_out;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_check)
|
|
|
|
lzma_get_check(const lzma_stream *strm)
|
|
|
|
{
|
|
|
|
// Return LZMA_CHECK_NONE if we cannot know the check type.
|
|
|
|
// It's a bug in the application if this happens.
|
|
|
|
if (strm->internal->next.get_check == NULL)
|
|
|
|
return LZMA_CHECK_NONE;
|
|
|
|
|
|
|
|
return strm->internal->next.get_check(strm->internal->next.coder);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(uint64_t)
|
|
|
|
lzma_memusage(const lzma_stream *strm)
|
|
|
|
{
|
|
|
|
uint64_t memusage;
|
|
|
|
uint64_t old_memlimit;
|
|
|
|
|
|
|
|
if (strm == NULL || strm->internal == NULL
|
|
|
|
|| strm->internal->next.memconfig == NULL
|
|
|
|
|| strm->internal->next.memconfig(
|
|
|
|
strm->internal->next.coder,
|
|
|
|
&memusage, &old_memlimit, 0) != LZMA_OK)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return memusage;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(uint64_t)
|
|
|
|
lzma_memlimit_get(const lzma_stream *strm)
|
|
|
|
{
|
|
|
|
uint64_t old_memlimit;
|
|
|
|
uint64_t memusage;
|
|
|
|
|
|
|
|
if (strm == NULL || strm->internal == NULL
|
|
|
|
|| strm->internal->next.memconfig == NULL
|
|
|
|
|| strm->internal->next.memconfig(
|
|
|
|
strm->internal->next.coder,
|
|
|
|
&memusage, &old_memlimit, 0) != LZMA_OK)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return old_memlimit;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_ret)
|
|
|
|
lzma_memlimit_set(lzma_stream *strm, uint64_t new_memlimit)
|
|
|
|
{
|
|
|
|
// Dummy variables to simplify memconfig functions
|
|
|
|
uint64_t old_memlimit;
|
|
|
|
uint64_t memusage;
|
|
|
|
|
|
|
|
if (strm == NULL || strm->internal == NULL
|
|
|
|
|| strm->internal->next.memconfig == NULL)
|
|
|
|
return LZMA_PROG_ERROR;
|
|
|
|
|
|
|
|
// Zero is a special value that cannot be used as an actual limit.
|
|
|
|
// If 0 was specified, use 1 instead.
|
|
|
|
if (new_memlimit == 0)
|
|
|
|
new_memlimit = 1;
|
|
|
|
|
|
|
|
return strm->internal->next.memconfig(strm->internal->next.coder,
|
|
|
|
&memusage, &old_memlimit, new_memlimit);
|
|
|
|
}
|