|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
/// \file index.c
|
|
|
|
/// \brief Handling of .xz Indexes and some other Stream information
|
|
|
|
//
|
|
|
|
// Author: Lasse Collin
|
|
|
|
//
|
|
|
|
// This file has been put into the public domain.
|
|
|
|
// You can do whatever you want with this file.
|
|
|
|
//
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
#include "index.h"
|
|
|
|
#include "stream_flags_common.h"
|
|
|
|
|
|
|
|
|
|
|
|
/// \brief How many Records to allocate at once
|
|
|
|
///
|
|
|
|
/// This should be big enough to avoid making lots of tiny allocations
|
|
|
|
/// but small enough to avoid too much unused memory at once.
|
|
|
|
#define INDEX_GROUP_SIZE 512
|
|
|
|
|
|
|
|
|
|
|
|
/// \brief How many Records can be allocated at once at maximum
|
|
|
|
#define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
|
|
|
|
|
|
|
|
|
|
|
|
/// \brief Base structure for index_stream and index_group structures
|
|
|
|
typedef struct index_tree_node_s index_tree_node;
|
|
|
|
struct index_tree_node_s {
|
|
|
|
/// Uncompressed start offset of this Stream (relative to the
|
|
|
|
/// beginning of the file) or Block (relative to the beginning
|
|
|
|
/// of the Stream)
|
|
|
|
lzma_vli uncompressed_base;
|
|
|
|
|
|
|
|
/// Compressed start offset of this Stream or Block
|
|
|
|
lzma_vli compressed_base;
|
|
|
|
|
|
|
|
index_tree_node *parent;
|
|
|
|
index_tree_node *left;
|
|
|
|
index_tree_node *right;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/// \brief AVL tree to hold index_stream or index_group structures
|
|
|
|
typedef struct {
|
|
|
|
/// Root node
|
|
|
|
index_tree_node *root;
|
|
|
|
|
|
|
|
/// Leftmost node. Since the tree will be filled sequentially,
|
|
|
|
/// this won't change after the first node has been added to
|
|
|
|
/// the tree.
|
|
|
|
index_tree_node *leftmost;
|
|
|
|
|
|
|
|
/// The rightmost node in the tree. Since the tree is filled
|
|
|
|
/// sequentially, this is always the node where to add the new data.
|
|
|
|
index_tree_node *rightmost;
|
|
|
|
|
|
|
|
/// Number of nodes in the tree
|
|
|
|
uint32_t count;
|
|
|
|
|
|
|
|
} index_tree;
|
|
|
|
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
lzma_vli uncompressed_sum;
|
|
|
|
lzma_vli unpadded_sum;
|
|
|
|
} index_record;
|
|
|
|
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
/// Every Record group is part of index_stream.groups tree.
|
|
|
|
index_tree_node node;
|
|
|
|
|
|
|
|
/// Number of Blocks in this Stream before this group.
|
|
|
|
lzma_vli number_base;
|
|
|
|
|
|
|
|
/// Number of Records that can be put in records[].
|
|
|
|
size_t allocated;
|
|
|
|
|
|
|
|
/// Index of the last Record in use.
|
|
|
|
size_t last;
|
|
|
|
|
|
|
|
/// The sizes in this array are stored as cumulative sums relative
|
|
|
|
/// to the beginning of the Stream. This makes it possible to
|
|
|
|
/// use binary search in lzma_index_locate().
|
|
|
|
///
|
|
|
|
/// Note that the cumulative summing is done specially for
|
|
|
|
/// unpadded_sum: The previous value is rounded up to the next
|
|
|
|
/// multiple of four before adding the Unpadded Size of the new
|
|
|
|
/// Block. The total encoded size of the Blocks in the Stream
|
|
|
|
/// is records[last].unpadded_sum in the last Record group of
|
|
|
|
/// the Stream.
|
|
|
|
///
|
|
|
|
/// For example, if the Unpadded Sizes are 39, 57, and 81, the
|
|
|
|
/// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
|
|
|
|
/// The total encoded size of these Blocks is 184.
|
|
|
|
///
|
|
|
|
/// This is a flexible array, because it makes easy to optimize
|
|
|
|
/// memory usage in case someone concatenates many Streams that
|
|
|
|
/// have only one or few Blocks.
|
|
|
|
index_record records[];
|
|
|
|
|
|
|
|
} index_group;
|
|
|
|
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
/// Every index_stream is a node in the tree of Streams.
|
|
|
|
index_tree_node node;
|
|
|
|
|
|
|
|
/// Number of this Stream (first one is 1)
|
|
|
|
uint32_t number;
|
|
|
|
|
|
|
|
/// Total number of Blocks before this Stream
|
|
|
|
lzma_vli block_number_base;
|
|
|
|
|
|
|
|
/// Record groups of this Stream are stored in a tree.
|
|
|
|
/// It's a T-tree with AVL-tree balancing. There are
|
|
|
|
/// INDEX_GROUP_SIZE Records per node by default.
|
|
|
|
/// This keeps the number of memory allocations reasonable
|
|
|
|
/// and finding a Record is fast.
|
|
|
|
index_tree groups;
|
|
|
|
|
|
|
|
/// Number of Records in this Stream
|
|
|
|
lzma_vli record_count;
|
|
|
|
|
|
|
|
/// Size of the List of Records field in this Stream. This is used
|
|
|
|
/// together with record_count to calculate the size of the Index
|
|
|
|
/// field and thus the total size of the Stream.
|
|
|
|
lzma_vli index_list_size;
|
|
|
|
|
|
|
|
/// Stream Flags of this Stream. This is meaningful only if
|
|
|
|
/// the Stream Flags have been told us with lzma_index_stream_flags().
|
|
|
|
/// Initially stream_flags.version is set to UINT32_MAX to indicate
|
|
|
|
/// that the Stream Flags are unknown.
|
|
|
|
lzma_stream_flags stream_flags;
|
|
|
|
|
|
|
|
/// Amount of Stream Padding after this Stream. This defaults to
|
|
|
|
/// zero and can be set with lzma_index_stream_padding().
|
|
|
|
lzma_vli stream_padding;
|
|
|
|
|
|
|
|
} index_stream;
|
|
|
|
|
|
|
|
|
|
|
|
struct lzma_index_s {
|
|
|
|
/// AVL-tree containing the Stream(s). Often there is just one
|
|
|
|
/// Stream, but using a tree keeps lookups fast even when there
|
|
|
|
/// are many concatenated Streams.
|
|
|
|
index_tree streams;
|
|
|
|
|
|
|
|
/// Uncompressed size of all the Blocks in the Stream(s)
|
|
|
|
lzma_vli uncompressed_size;
|
|
|
|
|
|
|
|
/// Total size of all the Blocks in the Stream(s)
|
|
|
|
lzma_vli total_size;
|
|
|
|
|
|
|
|
/// Total number of Records in all Streams in this lzma_index
|
|
|
|
lzma_vli record_count;
|
|
|
|
|
|
|
|
/// Size of the List of Records field if all the Streams in this
|
|
|
|
/// lzma_index were packed into a single Stream (makes it simpler to
|
|
|
|
/// take many .xz files and combine them into a single Stream).
|
|
|
|
///
|
|
|
|
/// This value together with record_count is needed to calculate
|
|
|
|
/// Backward Size that is stored into Stream Footer.
|
|
|
|
lzma_vli index_list_size;
|
|
|
|
|
|
|
|
/// How many Records to allocate at once in lzma_index_append().
|
|
|
|
/// This defaults to INDEX_GROUP_SIZE but can be overridden with
|
|
|
|
/// lzma_index_prealloc().
|
|
|
|
size_t prealloc;
|
|
|
|
|
|
|
|
/// Bitmask indicating what integrity check types have been used
|
|
|
|
/// as set by lzma_index_stream_flags(). The bit of the last Stream
|
|
|
|
/// is not included here, since it is possible to change it by
|
|
|
|
/// calling lzma_index_stream_flags() again.
|
|
|
|
uint32_t checks;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
index_tree_init(index_tree *tree)
|
|
|
|
{
|
|
|
|
tree->root = NULL;
|
|
|
|
tree->leftmost = NULL;
|
|
|
|
tree->rightmost = NULL;
|
|
|
|
tree->count = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Helper for index_tree_end()
|
|
|
|
static void
|
|
|
|
index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator,
|
|
|
|
void (*free_func)(void *node, const lzma_allocator *allocator))
|
|
|
|
{
|
|
|
|
// The tree won't ever be very huge, so recursion should be fine.
|
|
|
|
// 20 levels in the tree is likely quite a lot already in practice.
|
|
|
|
if (node->left != NULL)
|
|
|
|
index_tree_node_end(node->left, allocator, free_func);
|
|
|
|
|
|
|
|
if (node->right != NULL)
|
|
|
|
index_tree_node_end(node->right, allocator, free_func);
|
|
|
|
|
|
|
|
free_func(node, allocator);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Free the memory allocated for a tree. Each node is freed using the
|
|
|
|
/// given free_func which is either &lzma_free or &index_stream_end.
|
|
|
|
/// The latter is used to free the Record groups from each index_stream
|
|
|
|
/// before freeing the index_stream itself.
|
|
|
|
static void
|
|
|
|
index_tree_end(index_tree *tree, const lzma_allocator *allocator,
|
|
|
|
void (*free_func)(void *node, const lzma_allocator *allocator))
|
|
|
|
{
|
|
|
|
assert(free_func != NULL);
|
|
|
|
|
|
|
|
if (tree->root != NULL)
|
|
|
|
index_tree_node_end(tree->root, allocator, free_func);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Add a new node to the tree. node->uncompressed_base and
|
|
|
|
/// node->compressed_base must have been set by the caller already.
|
|
|
|
static void
|
|
|
|
index_tree_append(index_tree *tree, index_tree_node *node)
|
|
|
|
{
|
|
|
|
node->parent = tree->rightmost;
|
|
|
|
node->left = NULL;
|
|
|
|
node->right = NULL;
|
|
|
|
|
|
|
|
++tree->count;
|
|
|
|
|
|
|
|
// Handle the special case of adding the first node.
|
|
|
|
if (tree->root == NULL) {
|
|
|
|
tree->root = node;
|
|
|
|
tree->leftmost = node;
|
|
|
|
tree->rightmost = node;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The tree is always filled sequentially.
|
|
|
|
assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
|
|
|
|
assert(tree->rightmost->compressed_base < node->compressed_base);
|
|
|
|
|
|
|
|
// Add the new node after the rightmost node. It's the correct
|
|
|
|
// place due to the reason above.
|
|
|
|
tree->rightmost->right = node;
|
|
|
|
tree->rightmost = node;
|
|
|
|
|
|
|
|
// Balance the AVL-tree if needed. We don't need to keep the balance
|
|
|
|
// factors in nodes, because we always fill the tree sequentially,
|
|
|
|
// and thus know the state of the tree just by looking at the node
|
|
|
|
// count. From the node count we can calculate how many steps to go
|
|
|
|
// up in the tree to find the rotation root.
|
|
|
|
uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
|
|
|
|
if (up != 0) {
|
|
|
|
// Locate the root node for the rotation.
|
|
|
|
up = ctz32(tree->count) + 2;
|
|
|
|
do {
|
|
|
|
node = node->parent;
|
|
|
|
} while (--up > 0);
|
|
|
|
|
|
|
|
// Rotate left using node as the rotation root.
|
|
|
|
index_tree_node *pivot = node->right;
|
|
|
|
|
|
|
|
if (node->parent == NULL) {
|
|
|
|
tree->root = pivot;
|
|
|
|
} else {
|
|
|
|
assert(node->parent->right == node);
|
|
|
|
node->parent->right = pivot;
|
|
|
|
}
|
|
|
|
|
|
|
|
pivot->parent = node->parent;
|
|
|
|
|
|
|
|
node->right = pivot->left;
|
|
|
|
if (node->right != NULL)
|
|
|
|
node->right->parent = node;
|
|
|
|
|
|
|
|
pivot->left = node;
|
|
|
|
node->parent = pivot;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Get the next node in the tree. Return NULL if there are no more nodes.
|
|
|
|
static void *
|
|
|
|
index_tree_next(const index_tree_node *node)
|
|
|
|
{
|
|
|
|
if (node->right != NULL) {
|
|
|
|
node = node->right;
|
|
|
|
while (node->left != NULL)
|
|
|
|
node = node->left;
|
|
|
|
|
|
|
|
return (void *)(node);
|
|
|
|
}
|
|
|
|
|
|
|
|
while (node->parent != NULL && node->parent->right == node)
|
|
|
|
node = node->parent;
|
|
|
|
|
|
|
|
return (void *)(node->parent);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Locate a node that contains the given uncompressed offset. It is
|
|
|
|
/// caller's job to check that target is not bigger than the uncompressed
|
|
|
|
/// size of the tree (the last node would be returned in that case still).
|
|
|
|
static void *
|
|
|
|
index_tree_locate(const index_tree *tree, lzma_vli target)
|
|
|
|
{
|
|
|
|
const index_tree_node *result = NULL;
|
|
|
|
const index_tree_node *node = tree->root;
|
|
|
|
|
|
|
|
assert(tree->leftmost == NULL
|
|
|
|
|| tree->leftmost->uncompressed_base == 0);
|
|
|
|
|
|
|
|
// Consecutive nodes may have the same uncompressed_base.
|
|
|
|
// We must pick the rightmost one.
|
|
|
|
while (node != NULL) {
|
|
|
|
if (node->uncompressed_base > target) {
|
|
|
|
node = node->left;
|
|
|
|
} else {
|
|
|
|
result = node;
|
|
|
|
node = node->right;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (void *)(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Allocate and initialize a new Stream using the given base offsets.
|
|
|
|
static index_stream *
|
|
|
|
index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
|
|
|
|
uint32_t stream_number, lzma_vli block_number_base,
|
|
|
|
const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
|
|
|
|
if (s == NULL)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
s->node.uncompressed_base = uncompressed_base;
|
|
|
|
s->node.compressed_base = compressed_base;
|
|
|
|
s->node.parent = NULL;
|
|
|
|
s->node.left = NULL;
|
|
|
|
s->node.right = NULL;
|
|
|
|
|
|
|
|
s->number = stream_number;
|
|
|
|
s->block_number_base = block_number_base;
|
|
|
|
|
|
|
|
index_tree_init(&s->groups);
|
|
|
|
|
|
|
|
s->record_count = 0;
|
|
|
|
s->index_list_size = 0;
|
|
|
|
s->stream_flags.version = UINT32_MAX;
|
|
|
|
s->stream_padding = 0;
|
|
|
|
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Free the memory allocated for a Stream and its Record groups.
|
|
|
|
static void
|
|
|
|
index_stream_end(void *node, const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
index_stream *s = node;
|
|
|
|
index_tree_end(&s->groups, allocator, &lzma_free);
|
|
|
|
lzma_free(s, allocator);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static lzma_index *
|
|
|
|
index_init_plain(const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
|
|
|
|
if (i != NULL) {
|
|
|
|
index_tree_init(&i->streams);
|
|
|
|
i->uncompressed_size = 0;
|
|
|
|
i->total_size = 0;
|
|
|
|
i->record_count = 0;
|
|
|
|
i->index_list_size = 0;
|
|
|
|
i->prealloc = INDEX_GROUP_SIZE;
|
|
|
|
i->checks = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_index *)
|
|
|
|
lzma_index_init(const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
lzma_index *i = index_init_plain(allocator);
|
|
|
|
if (i == NULL)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
|
|
|
|
if (s == NULL) {
|
|
|
|
lzma_free(i, allocator);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
index_tree_append(&i->streams, &s->node);
|
|
|
|
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(void)
|
|
|
|
lzma_index_end(lzma_index *i, const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
// NOTE: If you modify this function, check also the bottom
|
|
|
|
// of lzma_index_cat().
|
|
|
|
if (i != NULL) {
|
|
|
|
index_tree_end(&i->streams, allocator, &index_stream_end);
|
|
|
|
lzma_free(i, allocator);
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern void
|
|
|
|
lzma_index_prealloc(lzma_index *i, lzma_vli records)
|
|
|
|
{
|
|
|
|
if (records > PREALLOC_MAX)
|
|
|
|
records = PREALLOC_MAX;
|
|
|
|
|
|
|
|
i->prealloc = (size_t)(records);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(uint64_t)
|
|
|
|
lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
|
|
|
|
{
|
|
|
|
// This calculates an upper bound that is only a little bit
|
|
|
|
// bigger than the exact maximum memory usage with the given
|
|
|
|
// parameters.
|
|
|
|
|
|
|
|
// Typical malloc() overhead is 2 * sizeof(void *) but we take
|
|
|
|
// a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
|
|
|
|
// instead would give too inaccurate estimate.
|
|
|
|
const size_t alloc_overhead = 4 * sizeof(void *);
|
|
|
|
|
|
|
|
// Amount of memory needed for each Stream base structures.
|
|
|
|
// We assume that every Stream has at least one Block and
|
|
|
|
// thus at least one group.
|
|
|
|
const size_t stream_base = sizeof(index_stream)
|
|
|
|
+ sizeof(index_group) + 2 * alloc_overhead;
|
|
|
|
|
|
|
|
// Amount of memory needed per group.
|
|
|
|
const size_t group_base = sizeof(index_group)
|
|
|
|
+ INDEX_GROUP_SIZE * sizeof(index_record)
|
|
|
|
+ alloc_overhead;
|
|
|
|
|
|
|
|
// Number of groups. There may actually be more, but that overhead
|
|
|
|
// has been taken into account in stream_base already.
|
|
|
|
const lzma_vli groups
|
|
|
|
= (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;
|
|
|
|
|
|
|
|
// Memory used by index_stream and index_group structures.
|
|
|
|
const uint64_t streams_mem = streams * stream_base;
|
|
|
|
const uint64_t groups_mem = groups * group_base;
|
|
|
|
|
|
|
|
// Memory used by the base structure.
|
|
|
|
const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
|
|
|
|
|
|
|
|
// Validate the arguments and catch integer overflows.
|
|
|
|
// Maximum number of Streams is "only" UINT32_MAX, because
|
|
|
|
// that limit is used by the tree containing the Streams.
|
|
|
|
const uint64_t limit = UINT64_MAX - index_base;
|
|
|
|
if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
|
|
|
|
|| streams > limit / stream_base
|
|
|
|
|| groups > limit / group_base
|
|
|
|
|| limit - streams_mem < groups_mem)
|
|
|
|
return UINT64_MAX;
|
|
|
|
|
|
|
|
return index_base + streams_mem + groups_mem;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(uint64_t)
|
|
|
|
lzma_index_memused(const lzma_index *i)
|
|
|
|
{
|
|
|
|
return lzma_index_memusage(i->streams.count, i->record_count);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_vli)
|
|
|
|
lzma_index_block_count(const lzma_index *i)
|
|
|
|
{
|
|
|
|
return i->record_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_vli)
|
|
|
|
lzma_index_stream_count(const lzma_index *i)
|
|
|
|
{
|
|
|
|
return i->streams.count;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_vli)
|
|
|
|
lzma_index_size(const lzma_index *i)
|
|
|
|
{
|
|
|
|
return index_size(i->record_count, i->index_list_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_vli)
|
|
|
|
lzma_index_total_size(const lzma_index *i)
|
|
|
|
{
|
|
|
|
return i->total_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_vli)
|
|
|
|
lzma_index_stream_size(const lzma_index *i)
|
|
|
|
{
|
|
|
|
// Stream Header + Blocks + Index + Stream Footer
|
|
|
|
return LZMA_STREAM_HEADER_SIZE + i->total_size
|
|
|
|
+ index_size(i->record_count, i->index_list_size)
|
|
|
|
+ LZMA_STREAM_HEADER_SIZE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static lzma_vli
|
|
|
|
index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
|
|
|
|
lzma_vli record_count, lzma_vli index_list_size,
|
|
|
|
lzma_vli stream_padding)
|
|
|
|
{
|
|
|
|
// Earlier Streams and Stream Paddings + Stream Header
|
|
|
|
// + Blocks + Index + Stream Footer + Stream Padding
|
|
|
|
//
|
|
|
|
// This might go over LZMA_VLI_MAX due to too big unpadded_sum
|
|
|
|
// when this function is used in lzma_index_append().
|
|
|
|
lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
|
|
|
|
+ stream_padding + vli_ceil4(unpadded_sum);
|
|
|
|
if (file_size > LZMA_VLI_MAX)
|
|
|
|
return LZMA_VLI_UNKNOWN;
|
|
|
|
|
|
|
|
// The same applies here.
|
|
|
|
file_size += index_size(record_count, index_list_size);
|
|
|
|
if (file_size > LZMA_VLI_MAX)
|
|
|
|
return LZMA_VLI_UNKNOWN;
|
|
|
|
|
|
|
|
return file_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_vli)
|
|
|
|
lzma_index_file_size(const lzma_index *i)
|
|
|
|
{
|
|
|
|
const index_stream *s = (const index_stream *)(i->streams.rightmost);
|
|
|
|
const index_group *g = (const index_group *)(s->groups.rightmost);
|
|
|
|
return index_file_size(s->node.compressed_base,
|
|
|
|
g == NULL ? 0 : g->records[g->last].unpadded_sum,
|
|
|
|
s->record_count, s->index_list_size,
|
|
|
|
s->stream_padding);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_vli)
|
|
|
|
lzma_index_uncompressed_size(const lzma_index *i)
|
|
|
|
{
|
|
|
|
return i->uncompressed_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(uint32_t)
|
|
|
|
lzma_index_checks(const lzma_index *i)
|
|
|
|
{
|
|
|
|
uint32_t checks = i->checks;
|
|
|
|
|
|
|
|
// Get the type of the Check of the last Stream too.
|
|
|
|
const index_stream *s = (const index_stream *)(i->streams.rightmost);
|
|
|
|
if (s->stream_flags.version != UINT32_MAX)
|
|
|
|
checks |= UINT32_C(1) << s->stream_flags.check;
|
|
|
|
|
|
|
|
return checks;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern uint32_t
|
|
|
|
lzma_index_padding_size(const lzma_index *i)
|
|
|
|
{
|
|
|
|
return (LZMA_VLI_C(4) - index_size_unpadded(
|
|
|
|
i->record_count, i->index_list_size)) & 3;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_ret)
|
|
|
|
lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
|
|
|
|
{
|
|
|
|
if (i == NULL || stream_flags == NULL)
|
|
|
|
return LZMA_PROG_ERROR;
|
|
|
|
|
|
|
|
// Validate the Stream Flags.
|
|
|
|
return_if_error(lzma_stream_flags_compare(
|
|
|
|
stream_flags, stream_flags));
|
|
|
|
|
|
|
|
index_stream *s = (index_stream *)(i->streams.rightmost);
|
|
|
|
s->stream_flags = *stream_flags;
|
|
|
|
|
|
|
|
return LZMA_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_ret)
|
|
|
|
lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
|
|
|
|
{
|
|
|
|
if (i == NULL || stream_padding > LZMA_VLI_MAX
|
|
|
|
|| (stream_padding & 3) != 0)
|
|
|
|
return LZMA_PROG_ERROR;
|
|
|
|
|
|
|
|
index_stream *s = (index_stream *)(i->streams.rightmost);
|
|
|
|
|
|
|
|
// Check that the new value won't make the file grow too big.
|
|
|
|
const lzma_vli old_stream_padding = s->stream_padding;
|
|
|
|
s->stream_padding = 0;
|
|
|
|
if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
|
|
|
|
s->stream_padding = old_stream_padding;
|
|
|
|
return LZMA_DATA_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
s->stream_padding = stream_padding;
|
|
|
|
return LZMA_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_ret)
|
|
|
|
lzma_index_append(lzma_index *i, const lzma_allocator *allocator,
|
|
|
|
lzma_vli unpadded_size, lzma_vli uncompressed_size)
|
|
|
|
{
|
|
|
|
// Validate.
|
|
|
|
if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
|
|
|
|
|| unpadded_size > UNPADDED_SIZE_MAX
|
|
|
|
|| uncompressed_size > LZMA_VLI_MAX)
|
|
|
|
return LZMA_PROG_ERROR;
|
|
|
|
|
|
|
|
index_stream *s = (index_stream *)(i->streams.rightmost);
|
|
|
|
index_group *g = (index_group *)(s->groups.rightmost);
|
|
|
|
|
|
|
|
const lzma_vli compressed_base = g == NULL ? 0
|
|
|
|
: vli_ceil4(g->records[g->last].unpadded_sum);
|
|
|
|
const lzma_vli uncompressed_base = g == NULL ? 0
|
|
|
|
: g->records[g->last].uncompressed_sum;
|
|
|
|
const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
|
|
|
|
+ lzma_vli_size(uncompressed_size);
|
|
|
|
|
|
|
|
// Check that the file size will stay within limits.
|
|
|
|
if (index_file_size(s->node.compressed_base,
|
|
|
|
compressed_base + unpadded_size, s->record_count + 1,
|
|
|
|
s->index_list_size + index_list_size_add,
|
|
|
|
s->stream_padding) == LZMA_VLI_UNKNOWN)
|
|
|
|
return LZMA_DATA_ERROR;
|
|
|
|
|
|
|
|
// The size of the Index field must not exceed the maximum value
|
|
|
|
// that can be stored in the Backward Size field.
|
|
|
|
if (index_size(i->record_count + 1,
|
|
|
|
i->index_list_size + index_list_size_add)
|
|
|
|
> LZMA_BACKWARD_SIZE_MAX)
|
|
|
|
return LZMA_DATA_ERROR;
|
|
|
|
|
|
|
|
if (g != NULL && g->last + 1 < g->allocated) {
|
|
|
|
// There is space in the last group at least for one Record.
|
|
|
|
++g->last;
|
|
|
|
} else {
|
|
|
|
// We need to allocate a new group.
|
|
|
|
g = lzma_alloc(sizeof(index_group)
|
|
|
|
+ i->prealloc * sizeof(index_record),
|
|
|
|
allocator);
|
|
|
|
if (g == NULL)
|
|
|
|
return LZMA_MEM_ERROR;
|
|
|
|
|
|
|
|
g->last = 0;
|
|
|
|
g->allocated = i->prealloc;
|
|
|
|
|
|
|
|
// Reset prealloc so that if the application happens to
|
|
|
|
// add new Records, the allocation size will be sane.
|
|
|
|
i->prealloc = INDEX_GROUP_SIZE;
|
|
|
|
|
|
|
|
// Set the start offsets of this group.
|
|
|
|
g->node.uncompressed_base = uncompressed_base;
|
|
|
|
g->node.compressed_base = compressed_base;
|
|
|
|
g->number_base = s->record_count + 1;
|
|
|
|
|
|
|
|
// Add the new group to the Stream.
|
|
|
|
index_tree_append(&s->groups, &g->node);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add the new Record to the group.
|
|
|
|
g->records[g->last].uncompressed_sum
|
|
|
|
= uncompressed_base + uncompressed_size;
|
|
|
|
g->records[g->last].unpadded_sum
|
|
|
|
= compressed_base + unpadded_size;
|
|
|
|
|
|
|
|
// Update the totals.
|
|
|
|
++s->record_count;
|
|
|
|
s->index_list_size += index_list_size_add;
|
|
|
|
|
|
|
|
i->total_size += vli_ceil4(unpadded_size);
|
|
|
|
i->uncompressed_size += uncompressed_size;
|
|
|
|
++i->record_count;
|
|
|
|
i->index_list_size += index_list_size_add;
|
|
|
|
|
|
|
|
return LZMA_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Structure to pass info to index_cat_helper()
|
|
|
|
typedef struct {
|
|
|
|
/// Uncompressed size of the destination
|
|
|
|
lzma_vli uncompressed_size;
|
|
|
|
|
|
|
|
/// Compressed file size of the destination
|
|
|
|
lzma_vli file_size;
|
|
|
|
|
|
|
|
/// Same as above but for Block numbers
|
|
|
|
lzma_vli block_number_add;
|
|
|
|
|
|
|
|
/// Number of Streams that were in the destination index before we
|
|
|
|
/// started appending new Streams from the source index. This is
|
|
|
|
/// used to fix the Stream numbering.
|
|
|
|
uint32_t stream_number_add;
|
|
|
|
|
|
|
|
/// Destination index' Stream tree
|
|
|
|
index_tree *streams;
|
|
|
|
|
|
|
|
} index_cat_info;
|
|
|
|
|
|
|
|
|
|
|
|
/// Add the Stream nodes from the source index to dest using recursion.
|
|
|
|
/// Simplest iterative traversal of the source tree wouldn't work, because
|
|
|
|
/// we update the pointers in nodes when moving them to the destination tree.
|
|
|
|
static void
|
|
|
|
index_cat_helper(const index_cat_info *info, index_stream *this)
|
|
|
|
{
|
|
|
|
index_stream *left = (index_stream *)(this->node.left);
|
|
|
|
index_stream *right = (index_stream *)(this->node.right);
|
|
|
|
|
|
|
|
if (left != NULL)
|
|
|
|
index_cat_helper(info, left);
|
|
|
|
|
|
|
|
this->node.uncompressed_base += info->uncompressed_size;
|
|
|
|
this->node.compressed_base += info->file_size;
|
|
|
|
this->number += info->stream_number_add;
|
|
|
|
this->block_number_base += info->block_number_add;
|
|
|
|
index_tree_append(info->streams, &this->node);
|
|
|
|
|
|
|
|
if (right != NULL)
|
|
|
|
index_cat_helper(info, right);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_ret)
|
|
|
|
lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
|
|
|
|
const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
const lzma_vli dest_file_size = lzma_index_file_size(dest);
|
|
|
|
|
|
|
|
// Check that we don't exceed the file size limits.
|
|
|
|
if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
|
|
|
|
|| dest->uncompressed_size + src->uncompressed_size
|
|
|
|
> LZMA_VLI_MAX)
|
|
|
|
return LZMA_DATA_ERROR;
|
|
|
|
|
|
|
|
// Check that the encoded size of the combined lzma_indexes stays
|
|
|
|
// within limits. In theory, this should be done only if we know
|
|
|
|
// that the user plans to actually combine the Streams and thus
|
|
|
|
// construct a single Index (probably rare). However, exceeding
|
|
|
|
// this limit is quite theoretical, so we do this check always
|
|
|
|
// to simplify things elsewhere.
|
|
|
|
{
|
|
|
|
const lzma_vli dest_size = index_size_unpadded(
|
|
|
|
dest->record_count, dest->index_list_size);
|
|
|
|
const lzma_vli src_size = index_size_unpadded(
|
|
|
|
src->record_count, src->index_list_size);
|
|
|
|
if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
|
|
|
|
return LZMA_DATA_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Optimize the last group to minimize memory usage. Allocation has
|
|
|
|
// to be done before modifying dest or src.
|
|
|
|
{
|
|
|
|
index_stream *s = (index_stream *)(dest->streams.rightmost);
|
|
|
|
index_group *g = (index_group *)(s->groups.rightmost);
|
|
|
|
if (g != NULL && g->last + 1 < g->allocated) {
|
|
|
|
assert(g->node.left == NULL);
|
|
|
|
assert(g->node.right == NULL);
|
|
|
|
|
|
|
|
index_group *newg = lzma_alloc(sizeof(index_group)
|
|
|
|
+ (g->last + 1)
|
|
|
|
* sizeof(index_record),
|
|
|
|
allocator);
|
|
|
|
if (newg == NULL)
|
|
|
|
return LZMA_MEM_ERROR;
|
|
|
|
|
|
|
|
newg->node = g->node;
|
|
|
|
newg->allocated = g->last + 1;
|
|
|
|
newg->last = g->last;
|
|
|
|
newg->number_base = g->number_base;
|
|
|
|
|
|
|
|
memcpy(newg->records, g->records, newg->allocated
|
|
|
|
* sizeof(index_record));
|
|
|
|
|
|
|
|
if (g->node.parent != NULL) {
|
|
|
|
assert(g->node.parent->right == &g->node);
|
|
|
|
g->node.parent->right = &newg->node;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (s->groups.leftmost == &g->node) {
|
|
|
|
assert(s->groups.root == &g->node);
|
|
|
|
s->groups.leftmost = &newg->node;
|
|
|
|
s->groups.root = &newg->node;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(s->groups.rightmost == &g->node);
|
|
|
|
s->groups.rightmost = &newg->node;
|
|
|
|
|
|
|
|
lzma_free(g, allocator);
|
|
|
|
|
|
|
|
// NOTE: newg isn't leaked here because
|
|
|
|
// newg == (void *)&newg->node.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add all the Streams from src to dest. Update the base offsets
|
|
|
|
// of each Stream from src.
|
|
|
|
const index_cat_info info = {
|
|
|
|
.uncompressed_size = dest->uncompressed_size,
|
|
|
|
.file_size = dest_file_size,
|
|
|
|
.stream_number_add = dest->streams.count,
|
|
|
|
.block_number_add = dest->record_count,
|
|
|
|
.streams = &dest->streams,
|
|
|
|
};
|
|
|
|
index_cat_helper(&info, (index_stream *)(src->streams.root));
|
|
|
|
|
|
|
|
// Update info about all the combined Streams.
|
|
|
|
dest->uncompressed_size += src->uncompressed_size;
|
|
|
|
dest->total_size += src->total_size;
|
|
|
|
dest->record_count += src->record_count;
|
|
|
|
dest->index_list_size += src->index_list_size;
|
|
|
|
dest->checks = lzma_index_checks(dest) | src->checks;
|
|
|
|
|
|
|
|
// There's nothing else left in src than the base structure.
|
|
|
|
lzma_free(src, allocator);
|
|
|
|
|
|
|
|
return LZMA_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Duplicate an index_stream.
|
|
|
|
static index_stream *
|
|
|
|
index_dup_stream(const index_stream *src, const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
// Catch a somewhat theoretical integer overflow.
|
|
|
|
if (src->record_count > PREALLOC_MAX)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
// Allocate and initialize a new Stream.
|
|
|
|
index_stream *dest = index_stream_init(src->node.compressed_base,
|
|
|
|
src->node.uncompressed_base, src->number,
|
|
|
|
src->block_number_base, allocator);
|
|
|
|
if (dest == NULL)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
// Copy the overall information.
|
|
|
|
dest->record_count = src->record_count;
|
|
|
|
dest->index_list_size = src->index_list_size;
|
|
|
|
dest->stream_flags = src->stream_flags;
|
|
|
|
dest->stream_padding = src->stream_padding;
|
|
|
|
|
|
|
|
// Return if there are no groups to duplicate.
|
|
|
|
if (src->groups.leftmost == NULL)
|
|
|
|
return dest;
|
|
|
|
|
|
|
|
// Allocate memory for the Records. We put all the Records into
|
|
|
|
// a single group. It's simplest and also tends to make
|
|
|
|
// lzma_index_locate() a little bit faster with very big Indexes.
|
|
|
|
index_group *destg = lzma_alloc(sizeof(index_group)
|
|
|
|
+ src->record_count * sizeof(index_record),
|
|
|
|
allocator);
|
|
|
|
if (destg == NULL) {
|
|
|
|
index_stream_end(dest, allocator);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Initialize destg.
|
|
|
|
destg->node.uncompressed_base = 0;
|
|
|
|
destg->node.compressed_base = 0;
|
|
|
|
destg->number_base = 1;
|
|
|
|
destg->allocated = src->record_count;
|
|
|
|
destg->last = src->record_count - 1;
|
|
|
|
|
|
|
|
// Go through all the groups in src and copy the Records into destg.
|
|
|
|
const index_group *srcg = (const index_group *)(src->groups.leftmost);
|
|
|
|
size_t i = 0;
|
|
|
|
do {
|
|
|
|
memcpy(destg->records + i, srcg->records,
|
|
|
|
(srcg->last + 1) * sizeof(index_record));
|
|
|
|
i += srcg->last + 1;
|
|
|
|
srcg = index_tree_next(&srcg->node);
|
|
|
|
} while (srcg != NULL);
|
|
|
|
|
|
|
|
assert(i == destg->allocated);
|
|
|
|
|
|
|
|
// Add the group to the new Stream.
|
|
|
|
index_tree_append(&dest->groups, &destg->node);
|
|
|
|
|
|
|
|
return dest;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_index *)
|
|
|
|
lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
// Allocate the base structure (no initial Stream).
|
|
|
|
lzma_index *dest = index_init_plain(allocator);
|
|
|
|
if (dest == NULL)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
// Copy the totals.
|
|
|
|
dest->uncompressed_size = src->uncompressed_size;
|
|
|
|
dest->total_size = src->total_size;
|
|
|
|
dest->record_count = src->record_count;
|
|
|
|
dest->index_list_size = src->index_list_size;
|
|
|
|
|
|
|
|
// Copy the Streams and the groups in them.
|
|
|
|
const index_stream *srcstream
|
|
|
|
= (const index_stream *)(src->streams.leftmost);
|
|
|
|
do {
|
|
|
|
index_stream *deststream = index_dup_stream(
|
|
|
|
srcstream, allocator);
|
|
|
|
if (deststream == NULL) {
|
|
|
|
lzma_index_end(dest, allocator);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
index_tree_append(&dest->streams, &deststream->node);
|
|
|
|
|
|
|
|
srcstream = index_tree_next(&srcstream->node);
|
|
|
|
} while (srcstream != NULL);
|
|
|
|
|
|
|
|
return dest;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Indexing for lzma_index_iter.internal[]
|
|
|
|
enum {
|
|
|
|
ITER_INDEX,
|
|
|
|
ITER_STREAM,
|
|
|
|
ITER_GROUP,
|
|
|
|
ITER_RECORD,
|
|
|
|
ITER_METHOD,
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/// Values for lzma_index_iter.internal[ITER_METHOD].s
|
|
|
|
enum {
|
|
|
|
ITER_METHOD_NORMAL,
|
|
|
|
ITER_METHOD_NEXT,
|
|
|
|
ITER_METHOD_LEFTMOST,
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
iter_set_info(lzma_index_iter *iter)
|
|
|
|
{
|
|
|
|
const lzma_index *i = iter->internal[ITER_INDEX].p;
|
|
|
|
const index_stream *stream = iter->internal[ITER_STREAM].p;
|
|
|
|
const index_group *group = iter->internal[ITER_GROUP].p;
|
|
|
|
const size_t record = iter->internal[ITER_RECORD].s;
|
|
|
|
|
|
|
|
// lzma_index_iter.internal must not contain a pointer to the last
|
|
|
|
// group in the index, because that may be reallocated by
|
|
|
|
// lzma_index_cat().
|
|
|
|
if (group == NULL) {
|
|
|
|
// There are no groups.
|
|
|
|
assert(stream->groups.root == NULL);
|
|
|
|
iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
|
|
|
|
|
|
|
|
} else if (i->streams.rightmost != &stream->node
|
|
|
|
|| stream->groups.rightmost != &group->node) {
|
|
|
|
// The group is not not the last group in the index.
|
|
|
|
iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
|
|
|
|
|
|
|
|
} else if (stream->groups.leftmost != &group->node) {
|
|
|
|
// The group isn't the only group in the Stream, thus we
|
|
|
|
// know that it must have a parent group i.e. it's not
|
|
|
|
// the root node.
|
|
|
|
assert(stream->groups.root != &group->node);
|
|
|
|
assert(group->node.parent->right == &group->node);
|
|
|
|
iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
|
|
|
|
iter->internal[ITER_GROUP].p = group->node.parent;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// The Stream has only one group.
|
|
|
|
assert(stream->groups.root == &group->node);
|
|
|
|
assert(group->node.parent == NULL);
|
|
|
|
iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
|
|
|
|
iter->internal[ITER_GROUP].p = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t
|
|
|
|
// internally.
|
|
|
|
iter->stream.number = stream->number;
|
|
|
|
iter->stream.block_count = stream->record_count;
|
|
|
|
iter->stream.compressed_offset = stream->node.compressed_base;
|
|
|
|
iter->stream.uncompressed_offset = stream->node.uncompressed_base;
|
|
|
|
|
|
|
|
// iter->stream.flags will be NULL if the Stream Flags haven't been
|
|
|
|
// set with lzma_index_stream_flags().
|
|
|
|
iter->stream.flags = stream->stream_flags.version == UINT32_MAX
|
|
|
|
? NULL : &stream->stream_flags;
|
|
|
|
iter->stream.padding = stream->stream_padding;
|
|
|
|
|
|
|
|
if (stream->groups.rightmost == NULL) {
|
|
|
|
// Stream has no Blocks.
|
|
|
|
iter->stream.compressed_size = index_size(0, 0)
|
|
|
|
+ 2 * LZMA_STREAM_HEADER_SIZE;
|
|
|
|
iter->stream.uncompressed_size = 0;
|
|
|
|
} else {
|
|
|
|
const index_group *g = (const index_group *)(
|
|
|
|
stream->groups.rightmost);
|
|
|
|
|
|
|
|
// Stream Header + Stream Footer + Index + Blocks
|
|
|
|
iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
|
|
|
|
+ index_size(stream->record_count,
|
|
|
|
stream->index_list_size)
|
|
|
|
+ vli_ceil4(g->records[g->last].unpadded_sum);
|
|
|
|
iter->stream.uncompressed_size
|
|
|
|
= g->records[g->last].uncompressed_sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (group != NULL) {
|
|
|
|
iter->block.number_in_stream = group->number_base + record;
|
|
|
|
iter->block.number_in_file = iter->block.number_in_stream
|
|
|
|
+ stream->block_number_base;
|
|
|
|
|
|
|
|
iter->block.compressed_stream_offset
|
|
|
|
= record == 0 ? group->node.compressed_base
|
|
|
|
: vli_ceil4(group->records[
|
|
|
|
record - 1].unpadded_sum);
|
|
|
|
iter->block.uncompressed_stream_offset
|
|
|
|
= record == 0 ? group->node.uncompressed_base
|
|
|
|
: group->records[record - 1].uncompressed_sum;
|
|
|
|
|
|
|
|
iter->block.uncompressed_size
|
|
|
|
= group->records[record].uncompressed_sum
|
|
|
|
- iter->block.uncompressed_stream_offset;
|
|
|
|
iter->block.unpadded_size
|
|
|
|
= group->records[record].unpadded_sum
|
|
|
|
- iter->block.compressed_stream_offset;
|
|
|
|
iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
|
|
|
|
|
|
|
|
iter->block.compressed_stream_offset
|
|
|
|
+= LZMA_STREAM_HEADER_SIZE;
|
|
|
|
|
|
|
|
iter->block.compressed_file_offset
|
|
|
|
= iter->block.compressed_stream_offset
|
|
|
|
+ iter->stream.compressed_offset;
|
|
|
|
iter->block.uncompressed_file_offset
|
|
|
|
= iter->block.uncompressed_stream_offset
|
|
|
|
+ iter->stream.uncompressed_offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(void)
|
|
|
|
lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
|
|
|
|
{
|
|
|
|
iter->internal[ITER_INDEX].p = i;
|
|
|
|
lzma_index_iter_rewind(iter);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(void)
|
|
|
|
lzma_index_iter_rewind(lzma_index_iter *iter)
|
|
|
|
{
|
|
|
|
iter->internal[ITER_STREAM].p = NULL;
|
|
|
|
iter->internal[ITER_GROUP].p = NULL;
|
|
|
|
iter->internal[ITER_RECORD].s = 0;
|
|
|
|
iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_bool)
|
|
|
|
lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
|
|
|
|
{
|
|
|
|
// Catch unsupported mode values.
|
|
|
|
if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
const lzma_index *i = iter->internal[ITER_INDEX].p;
|
|
|
|
const index_stream *stream = iter->internal[ITER_STREAM].p;
|
|
|
|
const index_group *group = NULL;
|
|
|
|
size_t record = iter->internal[ITER_RECORD].s;
|
|
|
|
|
|
|
|
// If we are being asked for the next Stream, leave group to NULL
|
|
|
|
// so that the rest of the this function thinks that this Stream
|
|
|
|
// has no groups and will thus go to the next Stream.
|
|
|
|
if (mode != LZMA_INDEX_ITER_STREAM) {
|
|
|
|
// Get the pointer to the current group. See iter_set_inf()
|
|
|
|
// for explanation.
|
|
|
|
switch (iter->internal[ITER_METHOD].s) {
|
|
|
|
case ITER_METHOD_NORMAL:
|
|
|
|
group = iter->internal[ITER_GROUP].p;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ITER_METHOD_NEXT:
|
|
|
|
group = index_tree_next(iter->internal[ITER_GROUP].p);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ITER_METHOD_LEFTMOST:
|
|
|
|
group = (const index_group *)(
|
|
|
|
stream->groups.leftmost);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
again:
|
|
|
|
if (stream == NULL) {
|
|
|
|
// We at the beginning of the lzma_index.
|
|
|
|
// Locate the first Stream.
|
|
|
|
stream = (const index_stream *)(i->streams.leftmost);
|
|
|
|
if (mode >= LZMA_INDEX_ITER_BLOCK) {
|
|
|
|
// Since we are being asked to return information
|
|
|
|
// about the first a Block, skip Streams that have
|
|
|
|
// no Blocks.
|
|
|
|
while (stream->groups.leftmost == NULL) {
|
|
|
|
stream = index_tree_next(&stream->node);
|
|
|
|
if (stream == NULL)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Start from the first Record in the Stream.
|
|
|
|
group = (const index_group *)(stream->groups.leftmost);
|
|
|
|
record = 0;
|
|
|
|
|
|
|
|
} else if (group != NULL && record < group->last) {
|
|
|
|
// The next Record is in the same group.
|
|
|
|
++record;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// This group has no more Records or this Stream has
|
|
|
|
// no Blocks at all.
|
|
|
|
record = 0;
|
|
|
|
|
|
|
|
// If group is not NULL, this Stream has at least one Block
|
|
|
|
// and thus at least one group. Find the next group.
|
|
|
|
if (group != NULL)
|
|
|
|
group = index_tree_next(&group->node);
|
|
|
|
|
|
|
|
if (group == NULL) {
|
|
|
|
// This Stream has no more Records. Find the next
|
|
|
|
// Stream. If we are being asked to return information
|
|
|
|
// about a Block, we skip empty Streams.
|
|
|
|
do {
|
|
|
|
stream = index_tree_next(&stream->node);
|
|
|
|
if (stream == NULL)
|
|
|
|
return true;
|
|
|
|
} while (mode >= LZMA_INDEX_ITER_BLOCK
|
|
|
|
&& stream->groups.leftmost == NULL);
|
|
|
|
|
|
|
|
group = (const index_group *)(
|
|
|
|
stream->groups.leftmost);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
|
|
|
|
// We need to look for the next Block again if this Block
|
|
|
|
// is empty.
|
|
|
|
if (record == 0) {
|
|
|
|
if (group->node.uncompressed_base
|
|
|
|
== group->records[0].uncompressed_sum)
|
|
|
|
goto again;
|
|
|
|
} else if (group->records[record - 1].uncompressed_sum
|
|
|
|
== group->records[record].uncompressed_sum) {
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
iter->internal[ITER_STREAM].p = stream;
|
|
|
|
iter->internal[ITER_GROUP].p = group;
|
|
|
|
iter->internal[ITER_RECORD].s = record;
|
|
|
|
|
|
|
|
iter_set_info(iter);
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(lzma_bool)
|
|
|
|
lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
|
|
|
|
{
|
|
|
|
const lzma_index *i = iter->internal[ITER_INDEX].p;
|
|
|
|
|
|
|
|
// If the target is past the end of the file, return immediately.
|
|
|
|
if (i->uncompressed_size <= target)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// Locate the Stream containing the target offset.
|
|
|
|
const index_stream *stream = index_tree_locate(&i->streams, target);
|
|
|
|
assert(stream != NULL);
|
|
|
|
target -= stream->node.uncompressed_base;
|
|
|
|
|
|
|
|
// Locate the group containing the target offset.
|
|
|
|
const index_group *group = index_tree_locate(&stream->groups, target);
|
|
|
|
assert(group != NULL);
|
|
|
|
|
|
|
|
// Use binary search to locate the exact Record. It is the first
|
|
|
|
// Record whose uncompressed_sum is greater than target.
|
|
|
|
// This is because we want the rightmost Record that fullfills the
|
|
|
|
// search criterion. It is possible that there are empty Blocks;
|
|
|
|
// we don't want to return them.
|
|
|
|
size_t left = 0;
|
|
|
|
size_t right = group->last;
|
|
|
|
|
|
|
|
while (left < right) {
|
|
|
|
const size_t pos = left + (right - left) / 2;
|
|
|
|
if (group->records[pos].uncompressed_sum <= target)
|
|
|
|
left = pos + 1;
|
|
|
|
else
|
|
|
|
right = pos;
|
|
|
|
}
|
|
|
|
|
|
|
|
iter->internal[ITER_STREAM].p = stream;
|
|
|
|
iter->internal[ITER_GROUP].p = group;
|
|
|
|
iter->internal[ITER_RECORD].s = left;
|
|
|
|
|
|
|
|
iter_set_info(iter);
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|