|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
/// \file lz_decoder.c
|
|
|
|
/// \brief LZ out window
|
|
|
|
///
|
|
|
|
// Authors: Igor Pavlov
|
|
|
|
// Lasse Collin
|
|
|
|
//
|
|
|
|
// This file has been put into the public domain.
|
|
|
|
// You can do whatever you want with this file.
|
|
|
|
//
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// liblzma supports multiple LZ77-based filters. The LZ part is shared
|
|
|
|
// between these filters. The LZ code takes care of dictionary handling
|
|
|
|
// and passing the data between filters in the chain. The filter-specific
|
|
|
|
// part decodes from the input buffer to the dictionary.
|
|
|
|
|
|
|
|
|
|
|
|
#include "lz_decoder.h"
|
|
|
|
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
/// Dictionary (history buffer)
|
|
|
|
lzma_dict dict;
|
|
|
|
|
|
|
|
/// The actual LZ-based decoder e.g. LZMA
|
|
|
|
lzma_lz_decoder lz;
|
|
|
|
|
|
|
|
/// Next filter in the chain, if any. Note that LZMA and LZMA2 are
|
|
|
|
/// only allowed as the last filter, but the long-range filter in
|
|
|
|
/// future can be in the middle of the chain.
|
|
|
|
lzma_next_coder next;
|
|
|
|
|
|
|
|
/// True if the next filter in the chain has returned LZMA_STREAM_END.
|
|
|
|
bool next_finished;
|
|
|
|
|
|
|
|
/// True if the LZ decoder (e.g. LZMA) has detected end of payload
|
|
|
|
/// marker. This may become true before next_finished becomes true.
|
|
|
|
bool this_finished;
|
|
|
|
|
|
|
|
/// Temporary buffer needed when the LZ-based filter is not the last
|
|
|
|
/// filter in the chain. The output of the next filter is first
|
|
|
|
/// decoded into buffer[], which is then used as input for the actual
|
|
|
|
/// LZ-based decoder.
|
|
|
|
struct {
|
|
|
|
size_t pos;
|
|
|
|
size_t size;
|
|
|
|
uint8_t buffer[LZMA_BUFFER_SIZE];
|
|
|
|
} temp;
|
|
|
|
} lzma_coder;
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
lz_decoder_reset(lzma_coder *coder)
|
|
|
|
{
|
|
|
|
coder->dict.pos = 0;
|
|
|
|
coder->dict.full = 0;
|
|
|
|
coder->dict.buf[coder->dict.size - 1] = '\0';
|
|
|
|
coder->dict.need_reset = false;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static lzma_ret
|
|
|
|
decode_buffer(lzma_coder *coder,
|
|
|
|
const uint8_t *restrict in, size_t *restrict in_pos,
|
|
|
|
size_t in_size, uint8_t *restrict out,
|
|
|
|
size_t *restrict out_pos, size_t out_size)
|
|
|
|
{
|
|
|
|
while (true) {
|
|
|
|
// Wrap the dictionary if needed.
|
|
|
|
if (coder->dict.pos == coder->dict.size)
|
|
|
|
coder->dict.pos = 0;
|
|
|
|
|
|
|
|
// Store the current dictionary position. It is needed to know
|
|
|
|
// where to start copying to the out[] buffer.
|
|
|
|
const size_t dict_start = coder->dict.pos;
|
|
|
|
|
|
|
|
// Calculate how much we allow coder->lz.code() to decode.
|
|
|
|
// It must not decode past the end of the dictionary
|
|
|
|
// buffer, and we don't want it to decode more than is
|
|
|
|
// actually needed to fill the out[] buffer.
|
|
|
|
coder->dict.limit = coder->dict.pos
|
|
|
|
+ my_min(out_size - *out_pos,
|
|
|
|
coder->dict.size - coder->dict.pos);
|
|
|
|
|
|
|
|
// Call the coder->lz.code() to do the actual decoding.
|
|
|
|
const lzma_ret ret = coder->lz.code(
|
|
|
|
coder->lz.coder, &coder->dict,
|
|
|
|
in, in_pos, in_size);
|
|
|
|
|
|
|
|
// Copy the decoded data from the dictionary to the out[]
|
|
|
|
// buffer. Do it conditionally because out can be NULL
|
|
|
|
// (in which case copy_size is always 0). Calling memcpy()
|
|
|
|
// with a null-pointer is undefined even if the third
|
|
|
|
// argument is 0.
|
|
|
|
const size_t copy_size = coder->dict.pos - dict_start;
|
|
|
|
assert(copy_size <= out_size - *out_pos);
|
|
|
|
|
|
|
|
if (copy_size > 0)
|
|
|
|
memcpy(out + *out_pos, coder->dict.buf + dict_start,
|
|
|
|
copy_size);
|
|
|
|
|
|
|
|
*out_pos += copy_size;
|
|
|
|
|
|
|
|
// Reset the dictionary if so requested by coder->lz.code().
|
|
|
|
if (coder->dict.need_reset) {
|
|
|
|
lz_decoder_reset(coder);
|
|
|
|
|
|
|
|
// Since we reset dictionary, we don't check if
|
|
|
|
// dictionary became full.
|
|
|
|
if (ret != LZMA_OK || *out_pos == out_size)
|
|
|
|
return ret;
|
|
|
|
} else {
|
|
|
|
// Return if everything got decoded or an error
|
|
|
|
// occurred, or if there's no more data to decode.
|
|
|
|
//
|
|
|
|
// Note that detecting if there's something to decode
|
|
|
|
// is done by looking if dictionary become full
|
|
|
|
// instead of looking if *in_pos == in_size. This
|
|
|
|
// is because it is possible that all the input was
|
|
|
|
// consumed already but some data is pending to be
|
|
|
|
// written to the dictionary.
|
|
|
|
if (ret != LZMA_OK || *out_pos == out_size
|
|
|
|
|| coder->dict.pos < coder->dict.size)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static lzma_ret
|
|
|
|
lz_decode(void *coder_ptr, const lzma_allocator *allocator,
|
|
|
|
const uint8_t *restrict in, size_t *restrict in_pos,
|
|
|
|
size_t in_size, uint8_t *restrict out,
|
|
|
|
size_t *restrict out_pos, size_t out_size,
|
|
|
|
lzma_action action)
|
|
|
|
{
|
|
|
|
lzma_coder *coder = coder_ptr;
|
|
|
|
|
|
|
|
if (coder->next.code == NULL)
|
|
|
|
return decode_buffer(coder, in, in_pos, in_size,
|
|
|
|
out, out_pos, out_size);
|
|
|
|
|
|
|
|
// We aren't the last coder in the chain, we need to decode
|
|
|
|
// our input to a temporary buffer.
|
|
|
|
while (*out_pos < out_size) {
|
|
|
|
// Fill the temporary buffer if it is empty.
|
|
|
|
if (!coder->next_finished
|
|
|
|
&& coder->temp.pos == coder->temp.size) {
|
|
|
|
coder->temp.pos = 0;
|
|
|
|
coder->temp.size = 0;
|
|
|
|
|
|
|
|
const lzma_ret ret = coder->next.code(
|
|
|
|
coder->next.coder,
|
|
|
|
allocator, in, in_pos, in_size,
|
|
|
|
coder->temp.buffer, &coder->temp.size,
|
|
|
|
LZMA_BUFFER_SIZE, action);
|
|
|
|
|
|
|
|
if (ret == LZMA_STREAM_END)
|
|
|
|
coder->next_finished = true;
|
|
|
|
else if (ret != LZMA_OK || coder->temp.size == 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (coder->this_finished) {
|
|
|
|
if (coder->temp.size != 0)
|
|
|
|
return LZMA_DATA_ERROR;
|
|
|
|
|
|
|
|
if (coder->next_finished)
|
|
|
|
return LZMA_STREAM_END;
|
|
|
|
|
|
|
|
return LZMA_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
const lzma_ret ret = decode_buffer(coder, coder->temp.buffer,
|
|
|
|
&coder->temp.pos, coder->temp.size,
|
|
|
|
out, out_pos, out_size);
|
|
|
|
|
|
|
|
if (ret == LZMA_STREAM_END)
|
|
|
|
coder->this_finished = true;
|
|
|
|
else if (ret != LZMA_OK)
|
|
|
|
return ret;
|
|
|
|
else if (coder->next_finished && *out_pos < out_size)
|
|
|
|
return LZMA_DATA_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
return LZMA_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
lz_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
|
|
|
|
{
|
|
|
|
lzma_coder *coder = coder_ptr;
|
|
|
|
|
|
|
|
lzma_next_end(&coder->next, allocator);
|
|
|
|
lzma_free(coder->dict.buf, allocator);
|
|
|
|
|
|
|
|
if (coder->lz.end != NULL)
|
|
|
|
coder->lz.end(coder->lz.coder, allocator);
|
|
|
|
else
|
|
|
|
lzma_free(coder->lz.coder, allocator);
|
|
|
|
|
|
|
|
lzma_free(coder, allocator);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern lzma_ret
|
|
|
|
lzma_lz_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
|
|
|
|
const lzma_filter_info *filters,
|
|
|
|
lzma_ret (*lz_init)(lzma_lz_decoder *lz,
|
|
|
|
const lzma_allocator *allocator, const void *options,
|
|
|
|
lzma_lz_options *lz_options))
|
|
|
|
{
|
|
|
|
// Allocate the base structure if it isn't already allocated.
|
|
|
|
lzma_coder *coder = next->coder;
|
|
|
|
if (coder == NULL) {
|
|
|
|
coder = lzma_alloc(sizeof(lzma_coder), allocator);
|
|
|
|
if (coder == NULL)
|
|
|
|
return LZMA_MEM_ERROR;
|
|
|
|
|
|
|
|
next->coder = coder;
|
|
|
|
next->code = &lz_decode;
|
|
|
|
next->end = &lz_decoder_end;
|
|
|
|
|
|
|
|
coder->dict.buf = NULL;
|
|
|
|
coder->dict.size = 0;
|
|
|
|
coder->lz = LZMA_LZ_DECODER_INIT;
|
|
|
|
coder->next = LZMA_NEXT_CODER_INIT;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Allocate and initialize the LZ-based decoder. It will also give
|
|
|
|
// us the dictionary size.
|
|
|
|
lzma_lz_options lz_options;
|
|
|
|
return_if_error(lz_init(&coder->lz, allocator,
|
|
|
|
filters[0].options, &lz_options));
|
|
|
|
|
|
|
|
// If the dictionary size is very small, increase it to 4096 bytes.
|
|
|
|
// This is to prevent constant wrapping of the dictionary, which
|
|
|
|
// would slow things down. The downside is that since we don't check
|
|
|
|
// separately for the real dictionary size, we may happily accept
|
|
|
|
// corrupt files.
|
|
|
|
if (lz_options.dict_size < 4096)
|
|
|
|
lz_options.dict_size = 4096;
|
|
|
|
|
|
|
|
// Make dictionary size a multiple of 16. Some LZ-based decoders like
|
|
|
|
// LZMA use the lowest bits lzma_dict.pos to know the alignment of the
|
|
|
|
// data. Aligned buffer is also good when memcpying from the
|
|
|
|
// dictionary to the output buffer, since applications are
|
|
|
|
// recommended to give aligned buffers to liblzma.
|
|
|
|
//
|
|
|
|
// Avoid integer overflow.
|
|
|
|
if (lz_options.dict_size > SIZE_MAX - 15)
|
|
|
|
return LZMA_MEM_ERROR;
|
|
|
|
|
|
|
|
lz_options.dict_size = (lz_options.dict_size + 15) & ~((size_t)(15));
|
|
|
|
|
|
|
|
// Allocate and initialize the dictionary.
|
|
|
|
if (coder->dict.size != lz_options.dict_size) {
|
|
|
|
lzma_free(coder->dict.buf, allocator);
|
|
|
|
coder->dict.buf
|
|
|
|
= lzma_alloc(lz_options.dict_size, allocator);
|
|
|
|
if (coder->dict.buf == NULL)
|
|
|
|
return LZMA_MEM_ERROR;
|
|
|
|
|
|
|
|
coder->dict.size = lz_options.dict_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
lz_decoder_reset(next->coder);
|
|
|
|
|
|
|
|
// Use the preset dictionary if it was given to us.
|
|
|
|
if (lz_options.preset_dict != NULL
|
|
|
|
&& lz_options.preset_dict_size > 0) {
|
|
|
|
// If the preset dictionary is bigger than the actual
|
|
|
|
// dictionary, copy only the tail.
|
|
|
|
const size_t copy_size = my_min(lz_options.preset_dict_size,
|
|
|
|
lz_options.dict_size);
|
|
|
|
const size_t offset = lz_options.preset_dict_size - copy_size;
|
|
|
|
memcpy(coder->dict.buf, lz_options.preset_dict + offset,
|
|
|
|
copy_size);
|
|
|
|
coder->dict.pos = copy_size;
|
|
|
|
coder->dict.full = copy_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Miscellaneous initializations
|
|
|
|
coder->next_finished = false;
|
|
|
|
coder->this_finished = false;
|
|
|
|
coder->temp.pos = 0;
|
|
|
|
coder->temp.size = 0;
|
|
|
|
|
|
|
|
// Initialize the next filter in the chain, if any.
|
|
|
|
return lzma_next_filter_init(&coder->next, allocator, filters + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern uint64_t
|
|
|
|
lzma_lz_decoder_memusage(size_t dictionary_size)
|
|
|
|
{
|
|
|
|
return sizeof(lzma_coder) + (uint64_t)(dictionary_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern void
|
|
|
|
lzma_lz_decoder_uncompressed(void *coder_ptr, lzma_vli uncompressed_size)
|
|
|
|
{
|
|
|
|
lzma_coder *coder = coder_ptr;
|
|
|
|
coder->lz.set_uncompressed(coder->lz.coder, uncompressed_size);
|
|
|
|
}
|