/*- * Copyright (c) 2003-2009 Tim Kientzle * Copyright (c) 2010-2012 Michihiro NAKAJIMA * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* This is the tree-walking code for POSIX systems. */ #if !defined(_WIN32) || defined(__CYGWIN__) #include "archive_platform.h" #ifdef HAVE_SYS_PARAM_H #include #endif #ifdef HAVE_SYS_STAT_H #include #endif #ifdef HAVE_SYS_STATFS_H #include #endif #ifdef HAVE_SYS_STATVFS_H #include #endif #ifdef HAVE_SYS_TIME_H #include #endif #ifdef HAVE_LINUX_MAGIC_H #include #endif #ifdef HAVE_LINUX_FS_H #include #elif HAVE_SYS_MOUNT_H #include #endif /* * Some Linux distributions have both linux/ext2_fs.h and ext2fs/ext2_fs.h. * As the include guards don't agree, the order of include is important. */ #ifdef HAVE_LINUX_EXT2_FS_H #include /* for Linux file flags */ #endif #if defined(HAVE_EXT2FS_EXT2_FS_H) && !defined(__CYGWIN__) #include /* Linux file flags, broken on Cygwin */ #endif #ifdef HAVE_DIRECT_H #include #endif #ifdef HAVE_DIRENT_H #include #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_FCNTL_H #include #endif #ifdef HAVE_LIMITS_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #ifdef HAVE_STRING_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_SYS_IOCTL_H #include #endif #ifdef __clang_analyzer__ #include #endif #include "archive.h" #include "archive_string.h" #include "archive_entry.h" #include "archive_private.h" #include "archive_read_disk_private.h" #ifndef HAVE_FCHDIR #error fchdir function required. #endif #ifndef O_BINARY #define O_BINARY 0 #endif #ifndef O_CLOEXEC #define O_CLOEXEC 0 #endif #if defined(__hpux) && !defined(HAVE_DIRFD) #define dirfd(x) ((x)->__dd_fd) #define HAVE_DIRFD #endif /*- * This is a new directory-walking system that addresses a number * of problems I've had with fts(3). In particular, it has no * pathname-length limits (other than the size of 'int'), handles * deep logical traversals, uses considerably less memory, and has * an opaque interface (easier to modify in the future). * * Internally, it keeps a single list of "tree_entry" items that * represent filesystem objects that require further attention. * Non-directories are not kept in memory: they are pulled from * readdir(), returned to the client, then freed as soon as possible. * Any directory entry to be traversed gets pushed onto the stack. * * There is surprisingly little information that needs to be kept for * each item on the stack. Just the name, depth (represented here as the * string length of the parent directory's pathname), and some markers * indicating how to get back to the parent (via chdir("..") for a * regular dir or via fchdir(2) for a symlink). */ /* * TODO: * 1) Loop checking. * 3) Arbitrary logical traversals by closing/reopening intermediate fds. */ struct restore_time { const char *name; time_t mtime; long mtime_nsec; time_t atime; long atime_nsec; mode_t filetype; int noatime; }; struct tree_entry { int depth; struct tree_entry *next; struct tree_entry *parent; struct archive_string name; size_t dirname_length; int64_t dev; int64_t ino; int flags; int filesystem_id; /* How to return back to the parent of a symlink. */ int symlink_parent_fd; /* How to restore time of a directory. */ struct restore_time restore_time; }; struct filesystem { int64_t dev; int synthetic; int remote; int noatime; #if defined(USE_READDIR_R) size_t name_max; #endif long incr_xfer_size; long max_xfer_size; long min_xfer_size; long xfer_align; /* * Buffer used for reading file contents. */ /* Exactly allocated memory pointer. */ unsigned char *allocation_ptr; /* Pointer adjusted to the filesystem alignment . */ unsigned char *buff; size_t buff_size; }; /* Definitions for tree_entry.flags bitmap. */ #define isDir 1 /* This entry is a regular directory. */ #define isDirLink 2 /* This entry is a symbolic link to a directory. */ #define needsFirstVisit 4 /* This is an initial entry. */ #define needsDescent 8 /* This entry needs to be previsited. */ #define needsOpen 16 /* This is a directory that needs to be opened. */ #define needsAscent 32 /* This entry needs to be postvisited. */ /* * Local data for this package. */ struct tree { struct tree_entry *stack; struct tree_entry *current; DIR *d; #define INVALID_DIR_HANDLE NULL struct dirent *de; #if defined(USE_READDIR_R) struct dirent *dirent; size_t dirent_allocated; #endif int flags; int visit_type; /* Error code from last failed operation. */ int tree_errno; /* Dynamically-sized buffer for holding path */ struct archive_string path; /* Last path element */ const char *basename; /* Leading dir length */ size_t dirname_length; int depth; int openCount; int maxOpenCount; int initial_dir_fd; int working_dir_fd; struct stat lst; struct stat st; int descend; int nlink; /* How to restore time of a file. */ struct restore_time restore_time; struct entry_sparse { int64_t length; int64_t offset; } *sparse_list, *current_sparse; int sparse_count; int sparse_list_size; char initial_symlink_mode; char symlink_mode; struct filesystem *current_filesystem; struct filesystem *filesystem_table; int initial_filesystem_id; int current_filesystem_id; int max_filesystem_id; int allocated_filesystem; int entry_fd; int entry_eof; int64_t entry_remaining_bytes; int64_t entry_total; unsigned char *entry_buff; size_t entry_buff_size; }; /* Definitions for tree.flags bitmap. */ #define hasStat 16 /* The st entry is valid. */ #define hasLstat 32 /* The lst entry is valid. */ #define onWorkingDir 64 /* We are on the working dir where we are * reading directory entry at this time. */ #define needsRestoreTimes 128 #define onInitialDir 256 /* We are on the initial dir. */ static int tree_dir_next_posix(struct tree *t); #ifdef HAVE_DIRENT_D_NAMLEN /* BSD extension; avoids need for a strlen() call. */ #define D_NAMELEN(dp) (dp)->d_namlen #else #define D_NAMELEN(dp) (strlen((dp)->d_name)) #endif /* Initiate/terminate a tree traversal. */ static struct tree *tree_open(const char *, int, int); static struct tree *tree_reopen(struct tree *, const char *, int); static void tree_close(struct tree *); static void tree_free(struct tree *); static void tree_push(struct tree *, const char *, int, int64_t, int64_t, struct restore_time *); static int tree_enter_initial_dir(struct tree *); static int tree_enter_working_dir(struct tree *); static int tree_current_dir_fd(struct tree *); /* * tree_next() returns Zero if there is no next entry, non-zero if * there is. Note that directories are visited three times. * Directories are always visited first as part of enumerating their * parent; that is a "regular" visit. If tree_descend() is invoked at * that time, the directory is added to a work list and will * subsequently be visited two more times: once just after descending * into the directory ("postdescent") and again just after ascending * back to the parent ("postascent"). * * TREE_ERROR_DIR is returned if the descent failed (because the * directory couldn't be opened, for instance). This is returned * instead of TREE_POSTDESCENT/TREE_POSTASCENT. TREE_ERROR_DIR is not a * fatal error, but it does imply that the relevant subtree won't be * visited. TREE_ERROR_FATAL is returned for an error that left the * traversal completely hosed. Right now, this is only returned for * chdir() failures during ascent. */ #define TREE_REGULAR 1 #define TREE_POSTDESCENT 2 #define TREE_POSTASCENT 3 #define TREE_ERROR_DIR -1 #define TREE_ERROR_FATAL -2 static int tree_next(struct tree *); /* * Return information about the current entry. */ /* * The current full pathname, length of the full pathname, and a name * that can be used to access the file. Because tree does use chdir * extensively, the access path is almost never the same as the full * current path. * * TODO: On platforms that support it, use openat()-style operations * to eliminate the chdir() operations entirely while still supporting * arbitrarily deep traversals. This makes access_path troublesome to * support, of course, which means we'll need a rich enough interface * that clients can function without it. (In particular, we'll need * tree_current_open() that returns an open file descriptor.) * */ static const char *tree_current_path(struct tree *); static const char *tree_current_access_path(struct tree *); /* * Request the lstat() or stat() data for the current path. Since the * tree package needs to do some of this anyway, and caches the * results, you should take advantage of it here if you need it rather * than make a redundant stat() or lstat() call of your own. */ static const struct stat *tree_current_stat(struct tree *); static const struct stat *tree_current_lstat(struct tree *); static int tree_current_is_symblic_link_target(struct tree *); /* The following functions use tricks to avoid a certain number of * stat()/lstat() calls. */ /* "is_physical_dir" is equivalent to S_ISDIR(tree_current_lstat()->st_mode) */ static int tree_current_is_physical_dir(struct tree *); /* "is_dir" is equivalent to S_ISDIR(tree_current_stat()->st_mode) */ static int tree_current_is_dir(struct tree *); static int update_current_filesystem(struct archive_read_disk *a, int64_t dev); static int setup_current_filesystem(struct archive_read_disk *); static int tree_target_is_same_as_parent(struct tree *, const struct stat *); static int _archive_read_disk_open(struct archive *, const char *); static int _archive_read_free(struct archive *); static int _archive_read_close(struct archive *); static int _archive_read_data_block(struct archive *, const void **, size_t *, int64_t *); static int _archive_read_next_header(struct archive *, struct archive_entry **); static int _archive_read_next_header2(struct archive *, struct archive_entry *); static const char *trivial_lookup_gname(void *, int64_t gid); static const char *trivial_lookup_uname(void *, int64_t uid); static int setup_sparse(struct archive_read_disk *, struct archive_entry *); static int close_and_restore_time(int fd, struct tree *, struct restore_time *); static int open_on_current_dir(struct tree *, const char *, int); static int tree_dup(int); static const struct archive_vtable archive_read_disk_vtable = { .archive_free = _archive_read_free, .archive_close = _archive_read_close, .archive_read_data_block = _archive_read_data_block, .archive_read_next_header = _archive_read_next_header, .archive_read_next_header2 = _archive_read_next_header2, }; const char * archive_read_disk_gname(struct archive *_a, la_int64_t gid) { struct archive_read_disk *a = (struct archive_read_disk *)_a; if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_read_disk_gname")) return (NULL); if (a->lookup_gname == NULL) return (NULL); return ((*a->lookup_gname)(a->lookup_gname_data, gid)); } const char * archive_read_disk_uname(struct archive *_a, la_int64_t uid) { struct archive_read_disk *a = (struct archive_read_disk *)_a; if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_read_disk_uname")) return (NULL); if (a->lookup_uname == NULL) return (NULL); return ((*a->lookup_uname)(a->lookup_uname_data, uid)); } int archive_read_disk_set_gname_lookup(struct archive *_a, void *private_data, const char * (*lookup_gname)(void *private, la_int64_t gid), void (*cleanup_gname)(void *private)) { struct archive_read_disk *a = (struct archive_read_disk *)_a; archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_read_disk_set_gname_lookup"); if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL) (a->cleanup_gname)(a->lookup_gname_data); a->lookup_gname = lookup_gname; a->cleanup_gname = cleanup_gname; a->lookup_gname_data = private_data; return (ARCHIVE_OK); } int archive_read_disk_set_uname_lookup(struct archive *_a, void *private_data, const char * (*lookup_uname)(void *private, la_int64_t uid), void (*cleanup_uname)(void *private)) { struct archive_read_disk *a = (struct archive_read_disk *)_a; archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_read_disk_set_uname_lookup"); if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL) (a->cleanup_uname)(a->lookup_uname_data); a->lookup_uname = lookup_uname; a->cleanup_uname = cleanup_uname; a->lookup_uname_data = private_data; return (ARCHIVE_OK); } /* * Create a new archive_read_disk object and initialize it with global state. */ struct archive * archive_read_disk_new(void) { struct archive_read_disk *a; a = calloc(1, sizeof(*a)); if (a == NULL) return (NULL); a->archive.magic = ARCHIVE_READ_DISK_MAGIC; a->archive.state = ARCHIVE_STATE_NEW; a->archive.vtable = &archive_read_disk_vtable; a->entry = archive_entry_new2(&a->archive); a->lookup_uname = trivial_lookup_uname; a->lookup_gname = trivial_lookup_gname; a->flags = ARCHIVE_READDISK_MAC_COPYFILE; a->open_on_current_dir = open_on_current_dir; a->tree_current_dir_fd = tree_current_dir_fd; a->tree_enter_working_dir = tree_enter_working_dir; return (&a->archive); } static int _archive_read_free(struct archive *_a) { struct archive_read_disk *a = (struct archive_read_disk *)_a; int r; if (_a == NULL) return (ARCHIVE_OK); archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_free"); if (a->archive.state != ARCHIVE_STATE_CLOSED) r = _archive_read_close(&a->archive); else r = ARCHIVE_OK; tree_free(a->tree); if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL) (a->cleanup_gname)(a->lookup_gname_data); if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL) (a->cleanup_uname)(a->lookup_uname_data); archive_string_free(&a->archive.error_string); archive_entry_free(a->entry); a->archive.magic = 0; __archive_clean(&a->archive); free(a); return (r); } static int _archive_read_close(struct archive *_a) { struct archive_read_disk *a = (struct archive_read_disk *)_a; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_close"); if (a->archive.state != ARCHIVE_STATE_FATAL) a->archive.state = ARCHIVE_STATE_CLOSED; tree_close(a->tree); return (ARCHIVE_OK); } static void setup_symlink_mode(struct archive_read_disk *a, char symlink_mode, int follow_symlinks) { a->symlink_mode = symlink_mode; a->follow_symlinks = follow_symlinks; if (a->tree != NULL) { a->tree->initial_symlink_mode = a->symlink_mode; a->tree->symlink_mode = a->symlink_mode; } } int archive_read_disk_set_symlink_logical(struct archive *_a) { struct archive_read_disk *a = (struct archive_read_disk *)_a; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_logical"); setup_symlink_mode(a, 'L', 1); return (ARCHIVE_OK); } int archive_read_disk_set_symlink_physical(struct archive *_a) { struct archive_read_disk *a = (struct archive_read_disk *)_a; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_physical"); setup_symlink_mode(a, 'P', 0); return (ARCHIVE_OK); } int archive_read_disk_set_symlink_hybrid(struct archive *_a) { struct archive_read_disk *a = (struct archive_read_disk *)_a; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_hybrid"); setup_symlink_mode(a, 'H', 1);/* Follow symlinks initially. */ return (ARCHIVE_OK); } int archive_read_disk_set_atime_restored(struct archive *_a) { struct archive_read_disk *a = (struct archive_read_disk *)_a; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_read_disk_restore_atime"); #ifdef HAVE_UTIMES a->flags |= ARCHIVE_READDISK_RESTORE_ATIME; if (a->tree != NULL) a->tree->flags |= needsRestoreTimes; return (ARCHIVE_OK); #else /* Display warning and unset flag */ archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC, "Cannot restore access time on this system"); a->flags &= ~ARCHIVE_READDISK_RESTORE_ATIME; return (ARCHIVE_WARN); #endif } int archive_read_disk_set_behavior(struct archive *_a, int flags) { struct archive_read_disk *a = (struct archive_read_disk *)_a; int r = ARCHIVE_OK; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_read_disk_honor_nodump"); a->flags = flags; if (flags & ARCHIVE_READDISK_RESTORE_ATIME) r = archive_read_disk_set_atime_restored(_a); else { if (a->tree != NULL) a->tree->flags &= ~needsRestoreTimes; } return (r); } /* * Trivial implementations of gname/uname lookup functions. * These are normally overridden by the client, but these stub * versions ensure that we always have something that works. */ static const char * trivial_lookup_gname(void *private_data, int64_t gid) { (void)private_data; /* UNUSED */ (void)gid; /* UNUSED */ return (NULL); } static const char * trivial_lookup_uname(void *private_data, int64_t uid) { (void)private_data; /* UNUSED */ (void)uid; /* UNUSED */ return (NULL); } /* * Allocate memory for the reading buffer adjusted to the filesystem * alignment. */ static int setup_suitable_read_buffer(struct archive_read_disk *a) { struct tree *t = a->tree; struct filesystem *cf = t->current_filesystem; size_t asize; size_t s; if (cf->allocation_ptr == NULL) { /* If we couldn't get a filesystem alignment, * we use 4096 as default value but we won't use * O_DIRECT to open() and openat() operations. */ long xfer_align = (cf->xfer_align == -1)?4096:cf->xfer_align; if (cf->max_xfer_size != -1) asize = cf->max_xfer_size + xfer_align; else { long incr = cf->incr_xfer_size; /* Some platform does not set a proper value to * incr_xfer_size.*/ if (incr < 0) incr = cf->min_xfer_size; if (cf->min_xfer_size < 0) { incr = xfer_align; asize = xfer_align; } else asize = cf->min_xfer_size; /* Increase a buffer size up to 64K bytes in * a proper increment size. */ while (asize < 1024*64) asize += incr; /* Take a margin to adjust to the filesystem * alignment. */ asize += xfer_align; } cf->allocation_ptr = malloc(asize); if (cf->allocation_ptr == NULL) { archive_set_error(&a->archive, ENOMEM, "Couldn't allocate memory"); a->archive.state = ARCHIVE_STATE_FATAL; return (ARCHIVE_FATAL); } /* * Calculate proper address for the filesystem. */ s = (uintptr_t)cf->allocation_ptr; s %= xfer_align; if (s > 0) s = xfer_align - s; /* * Set a read buffer pointer in the proper alignment of * the current filesystem. */ cf->buff = cf->allocation_ptr + s; cf->buff_size = asize - xfer_align; } return (ARCHIVE_OK); } static int _archive_read_data_block(struct archive *_a, const void **buff, size_t *size, int64_t *offset) { struct archive_read_disk *a = (struct archive_read_disk *)_a; struct tree *t = a->tree; int r; ssize_t bytes; int64_t sparse_bytes; size_t buffbytes; int empty_sparse_region = 0; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA, "archive_read_data_block"); if (t->entry_eof || t->entry_remaining_bytes <= 0) { r = ARCHIVE_EOF; goto abort_read_data; } /* * Open the current file. */ if (t->entry_fd < 0) { int flags = O_RDONLY | O_BINARY | O_CLOEXEC; /* * Eliminate or reduce cache effects if we can. * * Carefully consider this to be enabled. */ #if defined(O_DIRECT) && 0/* Disabled for now */ if (t->current_filesystem->xfer_align != -1 && t->nlink == 1) flags |= O_DIRECT; #endif #if defined(O_NOATIME) /* * Linux has O_NOATIME flag; use it if we need. */ if ((t->flags & needsRestoreTimes) != 0 && t->restore_time.noatime == 0) flags |= O_NOATIME; #endif t->entry_fd = open_on_current_dir(t, tree_current_access_path(t), flags); __archive_ensure_cloexec_flag(t->entry_fd); #if defined(O_NOATIME) /* * When we did open the file with O_NOATIME flag, * if successful, set 1 to t->restore_time.noatime * not to restore an atime of the file later. * if failed by EPERM, retry it without O_NOATIME flag. */ if (flags & O_NOATIME) { if (t->entry_fd >= 0) t->restore_time.noatime = 1; else if (errno == EPERM) flags &= ~O_NOATIME; } #ifdef __clang_analyzer__ /* Tolerate deadcode.DeadStores to avoid modifying upstream. */ (void)flags; #endif #endif if (t->entry_fd < 0) { archive_set_error(&a->archive, errno, "Couldn't open %s", tree_current_path(t)); r = ARCHIVE_FAILED; tree_enter_initial_dir(t); goto abort_read_data; } tree_enter_initial_dir(t); } /* * Allocate read buffer if not allocated. */ if (t->current_filesystem->allocation_ptr == NULL) { r = setup_suitable_read_buffer(a); if (r != ARCHIVE_OK) { a->archive.state = ARCHIVE_STATE_FATAL; goto abort_read_data; } } t->entry_buff = t->current_filesystem->buff; t->entry_buff_size = t->current_filesystem->buff_size; buffbytes = t->entry_buff_size; if ((int64_t)buffbytes > t->current_sparse->length) buffbytes = t->current_sparse->length; if (t->current_sparse->length == 0) empty_sparse_region = 1; /* * Skip hole. * TODO: Should we consider t->current_filesystem->xfer_align? */ if (t->current_sparse->offset > t->entry_total) { if (lseek(t->entry_fd, (off_t)t->current_sparse->offset, SEEK_SET) < 0) { archive_set_error(&a->archive, errno, "Seek error"); r = ARCHIVE_FATAL; a->archive.state = ARCHIVE_STATE_FATAL; goto abort_read_data; } sparse_bytes = t->current_sparse->offset - t->entry_total; t->entry_remaining_bytes -= sparse_bytes; t->entry_total += sparse_bytes; } /* * Read file contents. */ if (buffbytes > 0) { bytes = read(t->entry_fd, t->entry_buff, buffbytes); if (bytes < 0) { archive_set_error(&a->archive, errno, "Read error"); r = ARCHIVE_FATAL; a->archive.state = ARCHIVE_STATE_FATAL; goto abort_read_data; } } else bytes = 0; /* * Return an EOF unless we've read a leading empty sparse region, which * is used to represent fully-sparse files. */ if (bytes == 0 && !empty_sparse_region) { /* Get EOF */ t->entry_eof = 1; r = ARCHIVE_EOF; goto abort_read_data; } *buff = t->entry_buff; *size = bytes; *offset = t->entry_total; t->entry_total += bytes; t->entry_remaining_bytes -= bytes; if (t->entry_remaining_bytes == 0) { /* Close the current file descriptor */ close_and_restore_time(t->entry_fd, t, &t->restore_time); t->entry_fd = -1; t->entry_eof = 1; } t->current_sparse->offset += bytes; t->current_sparse->length -= bytes; if (t->current_sparse->length == 0 && !t->entry_eof) t->current_sparse++; return (ARCHIVE_OK); abort_read_data: *buff = NULL; *size = 0; *offset = t->entry_total; if (t->entry_fd >= 0) { /* Close the current file descriptor */ close_and_restore_time(t->entry_fd, t, &t->restore_time); t->entry_fd = -1; } return (r); } static int next_entry(struct archive_read_disk *a, struct tree *t, struct archive_entry *entry) { const struct stat *st; /* info to use for this entry */ const struct stat *lst;/* lstat() information */ const char *name; int delayed, delayed_errno, descend, r; struct archive_string delayed_str; delayed = ARCHIVE_OK; delayed_errno = 0; archive_string_init(&delayed_str); st = NULL; lst = NULL; t->descend = 0; do { switch (tree_next(t)) { case TREE_ERROR_FATAL: archive_set_error(&a->archive, t->tree_errno, "%s: Unable to continue traversing directory tree", tree_current_path(t)); a->archive.state = ARCHIVE_STATE_FATAL; tree_enter_initial_dir(t); return (ARCHIVE_FATAL); case TREE_ERROR_DIR: archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC, "%s: Couldn't visit directory", tree_current_path(t)); tree_enter_initial_dir(t); return (ARCHIVE_FAILED); case 0: tree_enter_initial_dir(t); return (ARCHIVE_EOF); case TREE_POSTDESCENT: case TREE_POSTASCENT: break; case TREE_REGULAR: lst = tree_current_lstat(t); if (lst == NULL) { if (errno == ENOENT && t->depth > 0) { delayed = ARCHIVE_WARN; delayed_errno = errno; if (delayed_str.length == 0) { archive_string_sprintf(&delayed_str, "%s", tree_current_path(t)); } else { archive_string_sprintf(&delayed_str, " %s", tree_current_path(t)); } } else { archive_set_error(&a->archive, errno, "%s: Cannot stat", tree_current_path(t)); tree_enter_initial_dir(t); return (ARCHIVE_FAILED); } } break; } } while (lst == NULL); #ifdef __APPLE__ if (a->flags & ARCHIVE_READDISK_MAC_COPYFILE) { /* If we're using copyfile(), ignore "._XXX" files. */ const char *bname = strrchr(tree_current_path(t), '/'); if (bname == NULL) bname = tree_current_path(t); else ++bname; if (bname[0] == '.' && bname[1] == '_') return (ARCHIVE_RETRY); } #endif archive_entry_copy_pathname(entry, tree_current_path(t)); /* * Perform path matching. */ if (a->matching) { r = archive_match_path_excluded(a->matching, entry); if (r < 0) { archive_set_error(&(a->archive), errno, "Failed : %s", archive_error_string(a->matching)); return (r); } if (r) { if (a->excluded_cb_func) a->excluded_cb_func(&(a->archive), a->excluded_cb_data, entry); return (ARCHIVE_RETRY); } } /* * Distinguish 'L'/'P'/'H' symlink following. */ switch(t->symlink_mode) { case 'H': /* 'H': After the first item, rest like 'P'. */ t->symlink_mode = 'P'; /* 'H': First item (from command line) like 'L'. */ /* FALLTHROUGH */ case 'L': /* 'L': Do descend through a symlink to dir. */ descend = tree_current_is_dir(t); /* 'L': Follow symlinks to files. */ a->symlink_mode = 'L'; a->follow_symlinks = 1; /* 'L': Archive symlinks as targets, if we can. */ st = tree_current_stat(t); if (st != NULL && !tree_target_is_same_as_parent(t, st)) break; /* If stat fails, we have a broken symlink; * in that case, don't follow the link. */ /* FALLTHROUGH */ default: /* 'P': Don't descend through a symlink to dir. */ descend = tree_current_is_physical_dir(t); /* 'P': Don't follow symlinks to files. */ a->symlink_mode = 'P'; a->follow_symlinks = 0; /* 'P': Archive symlinks as symlinks. */ st = lst; break; } if (update_current_filesystem(a, st->st_dev) != ARCHIVE_OK) { a->archive.state = ARCHIVE_STATE_FATAL; tree_enter_initial_dir(t); return (ARCHIVE_FATAL); } if (t->initial_filesystem_id == -1) t->initial_filesystem_id = t->current_filesystem_id; if (a->flags & ARCHIVE_READDISK_NO_TRAVERSE_MOUNTS) { if (t->initial_filesystem_id != t->current_filesystem_id) descend = 0; } t->descend = descend; /* * Honor nodump flag. * If the file is marked with nodump flag, do not return this entry. */ if (a->flags & ARCHIVE_READDISK_HONOR_NODUMP) { #if defined(HAVE_STRUCT_STAT_ST_FLAGS) && defined(UF_NODUMP) if (st->st_flags & UF_NODUMP) return (ARCHIVE_RETRY); #elif (defined(FS_IOC_GETFLAGS) && defined(FS_NODUMP_FL) && \ defined(HAVE_WORKING_FS_IOC_GETFLAGS)) || \ (defined(EXT2_IOC_GETFLAGS) && defined(EXT2_NODUMP_FL) && \ defined(HAVE_WORKING_EXT2_IOC_GETFLAGS)) if (S_ISREG(st->st_mode) || S_ISDIR(st->st_mode)) { int stflags; t->entry_fd = open_on_current_dir(t, tree_current_access_path(t), O_RDONLY | O_NONBLOCK | O_CLOEXEC); __archive_ensure_cloexec_flag(t->entry_fd); if (t->entry_fd >= 0) { r = ioctl(t->entry_fd, #ifdef FS_IOC_GETFLAGS FS_IOC_GETFLAGS, #else EXT2_IOC_GETFLAGS, #endif &stflags); #ifdef FS_NODUMP_FL if (r == 0 && (stflags & FS_NODUMP_FL) != 0) #else if (r == 0 && (stflags & EXT2_NODUMP_FL) != 0) #endif return (ARCHIVE_RETRY); } } #endif } archive_entry_copy_stat(entry, st); /* Save the times to be restored. This must be in before * calling archive_read_disk_descend() or any chance of it, * especially, invoking a callback. */ t->restore_time.mtime = archive_entry_mtime(entry); t->restore_time.mtime_nsec = archive_entry_mtime_nsec(entry); t->restore_time.atime = archive_entry_atime(entry); t->restore_time.atime_nsec = archive_entry_atime_nsec(entry); t->restore_time.filetype = archive_entry_filetype(entry); t->restore_time.noatime = t->current_filesystem->noatime; /* * Perform time matching. */ if (a->matching) { r = archive_match_time_excluded(a->matching, entry); if (r < 0) { archive_set_error(&(a->archive), errno, "Failed : %s", archive_error_string(a->matching)); return (r); } if (r) { if (a->excluded_cb_func) a->excluded_cb_func(&(a->archive), a->excluded_cb_data, entry); return (ARCHIVE_RETRY); } } /* Lookup uname/gname */ name = archive_read_disk_uname(&(a->archive), archive_entry_uid(entry)); if (name != NULL) archive_entry_copy_uname(entry, name); name = archive_read_disk_gname(&(a->archive), archive_entry_gid(entry)); if (name != NULL) archive_entry_copy_gname(entry, name); /* * Perform owner matching. */ if (a->matching) { r = archive_match_owner_excluded(a->matching, entry); if (r < 0) { archive_set_error(&(a->archive), errno, "Failed : %s", archive_error_string(a->matching)); return (r); } if (r) { if (a->excluded_cb_func) a->excluded_cb_func(&(a->archive), a->excluded_cb_data, entry); return (ARCHIVE_RETRY); } } /* * Invoke a meta data filter callback. */ if (a->metadata_filter_func) { if (!a->metadata_filter_func(&(a->archive), a->metadata_filter_data, entry)) return (ARCHIVE_RETRY); } /* * Populate the archive_entry with metadata from the disk. */ archive_entry_copy_sourcepath(entry, tree_current_access_path(t)); r = archive_read_disk_entry_from_file(&(a->archive), entry, t->entry_fd, st); if (r == ARCHIVE_OK) { r = delayed; if (r != ARCHIVE_OK) { archive_string_sprintf(&delayed_str, ": %s", "File removed before we read it"); archive_set_error(&(a->archive), delayed_errno, "%s", delayed_str.s); } } archive_string_free(&delayed_str); return (r); } static int _archive_read_next_header(struct archive *_a, struct archive_entry **entryp) { int ret; struct archive_read_disk *a = (struct archive_read_disk *)_a; *entryp = NULL; ret = _archive_read_next_header2(_a, a->entry); *entryp = a->entry; return ret; } static int _archive_read_next_header2(struct archive *_a, struct archive_entry *entry) { struct archive_read_disk *a = (struct archive_read_disk *)_a; struct tree *t; int r; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA, "archive_read_next_header2"); t = a->tree; if (t->entry_fd >= 0) { close_and_restore_time(t->entry_fd, t, &t->restore_time); t->entry_fd = -1; } archive_entry_clear(entry); for (;;) { r = next_entry(a, t, entry); if (t->entry_fd >= 0) { close(t->entry_fd); t->entry_fd = -1; } if (r == ARCHIVE_RETRY) { archive_entry_clear(entry); continue; } break; } /* Return to the initial directory. */ tree_enter_initial_dir(t); /* * EOF and FATAL are persistent at this layer. By * modifying the state, we guarantee that future calls to * read a header or read data will fail. */ switch (r) { case ARCHIVE_EOF: a->archive.state = ARCHIVE_STATE_EOF; break; case ARCHIVE_OK: case ARCHIVE_WARN: /* Overwrite the sourcepath based on the initial directory. */ archive_entry_copy_sourcepath(entry, tree_current_path(t)); t->entry_total = 0; if (archive_entry_filetype(entry) == AE_IFREG) { t->nlink = archive_entry_nlink(entry); t->entry_remaining_bytes = archive_entry_size(entry); t->entry_eof = (t->entry_remaining_bytes == 0)? 1: 0; if (!t->entry_eof && setup_sparse(a, entry) != ARCHIVE_OK) return (ARCHIVE_FATAL); } else { t->entry_remaining_bytes = 0; t->entry_eof = 1; } a->archive.state = ARCHIVE_STATE_DATA; break; case ARCHIVE_RETRY: break; case ARCHIVE_FATAL: a->archive.state = ARCHIVE_STATE_FATAL; break; } __archive_reset_read_data(&a->archive); return (r); } static int setup_sparse(struct archive_read_disk *a, struct archive_entry *entry) { struct tree *t = a->tree; int64_t length, offset; int i; t->sparse_count = archive_entry_sparse_reset(entry); if (t->sparse_count+1 > t->sparse_list_size) { free(t->sparse_list); t->sparse_list_size = t->sparse_count + 1; t->sparse_list = malloc(sizeof(t->sparse_list[0]) * t->sparse_list_size); if (t->sparse_list == NULL) { t->sparse_list_size = 0; archive_set_error(&a->archive, ENOMEM, "Can't allocate data"); a->archive.state = ARCHIVE_STATE_FATAL; return (ARCHIVE_FATAL); } } for (i = 0; i < t->sparse_count; i++) { archive_entry_sparse_next(entry, &offset, &length); t->sparse_list[i].offset = offset; t->sparse_list[i].length = length; } if (i == 0) { t->sparse_list[i].offset = 0; t->sparse_list[i].length = archive_entry_size(entry); } else { t->sparse_list[i].offset = archive_entry_size(entry); t->sparse_list[i].length = 0; } t->current_sparse = t->sparse_list; return (ARCHIVE_OK); } int archive_read_disk_set_matching(struct archive *_a, struct archive *_ma, void (*_excluded_func)(struct archive *, void *, struct archive_entry *), void *_client_data) { struct archive_read_disk *a = (struct archive_read_disk *)_a; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_read_disk_set_matching"); a->matching = _ma; a->excluded_cb_func = _excluded_func; a->excluded_cb_data = _client_data; return (ARCHIVE_OK); } int archive_read_disk_set_metadata_filter_callback(struct archive *_a, int (*_metadata_filter_func)(struct archive *, void *, struct archive_entry *), void *_client_data) { struct archive_read_disk *a = (struct archive_read_disk *)_a; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY, "archive_read_disk_set_metadata_filter_callback"); a->metadata_filter_func = _metadata_filter_func; a->metadata_filter_data = _client_data; return (ARCHIVE_OK); } int archive_read_disk_can_descend(struct archive *_a) { struct archive_read_disk *a = (struct archive_read_disk *)_a; struct tree *t = a->tree; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA, "archive_read_disk_can_descend"); return (t->visit_type == TREE_REGULAR && t->descend); } /* * Called by the client to mark the directory just returned from * tree_next() as needing to be visited. */ int archive_read_disk_descend(struct archive *_a) { struct archive_read_disk *a = (struct archive_read_disk *)_a; struct tree *t = a->tree; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA, "archive_read_disk_descend"); if (!archive_read_disk_can_descend(_a)) return (ARCHIVE_OK); /* * We must not treat the initial specified path as a physical dir, * because if we do then we will try and ascend out of it by opening * ".." which is (a) wrong and (b) causes spurious permissions errors * if ".." is not readable by us. Instead, treat it as if it were a * symlink. (This uses an extra fd, but it can only happen once at the * top level of a traverse.) But we can't necessarily assume t->st is * valid here (though t->lst is), which complicates the logic a * little. */ if (tree_current_is_physical_dir(t)) { tree_push(t, t->basename, t->current_filesystem_id, t->lst.st_dev, t->lst.st_ino, &t->restore_time); if (t->stack->parent->parent != NULL) t->stack->flags |= isDir; else t->stack->flags |= isDirLink; } else if (tree_current_is_dir(t)) { tree_push(t, t->basename, t->current_filesystem_id, t->st.st_dev, t->st.st_ino, &t->restore_time); t->stack->flags |= isDirLink; } t->descend = 0; return (ARCHIVE_OK); } int archive_read_disk_open(struct archive *_a, const char *pathname) { struct archive_read_disk *a = (struct archive_read_disk *)_a; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED, "archive_read_disk_open"); archive_clear_error(&a->archive); return (_archive_read_disk_open(_a, pathname)); } int archive_read_disk_open_w(struct archive *_a, const wchar_t *pathname) { struct archive_read_disk *a = (struct archive_read_disk *)_a; struct archive_string path; int ret; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED, "archive_read_disk_open_w"); archive_clear_error(&a->archive); /* Make a char string from a wchar_t string. */ archive_string_init(&path); if (archive_string_append_from_wcs(&path, pathname, wcslen(pathname)) != 0) { if (errno == ENOMEM) archive_set_error(&a->archive, ENOMEM, "Can't allocate memory"); else archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC, "Can't convert a path to a char string"); a->archive.state = ARCHIVE_STATE_FATAL; ret = ARCHIVE_FATAL; } else ret = _archive_read_disk_open(_a, path.s); archive_string_free(&path); return (ret); } static int _archive_read_disk_open(struct archive *_a, const char *pathname) { struct archive_read_disk *a = (struct archive_read_disk *)_a; if (a->tree != NULL) a->tree = tree_reopen(a->tree, pathname, a->flags & ARCHIVE_READDISK_RESTORE_ATIME); else a->tree = tree_open(pathname, a->symlink_mode, a->flags & ARCHIVE_READDISK_RESTORE_ATIME); if (a->tree == NULL) { archive_set_error(&a->archive, ENOMEM, "Can't allocate tar data"); a->archive.state = ARCHIVE_STATE_FATAL; return (ARCHIVE_FATAL); } a->archive.state = ARCHIVE_STATE_HEADER; return (ARCHIVE_OK); } /* * Return a current filesystem ID which is index of the filesystem entry * you've visited through archive_read_disk. */ int archive_read_disk_current_filesystem(struct archive *_a) { struct archive_read_disk *a = (struct archive_read_disk *)_a; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA, "archive_read_disk_current_filesystem"); return (a->tree->current_filesystem_id); } static int update_current_filesystem(struct archive_read_disk *a, int64_t dev) { struct tree *t = a->tree; int i, fid; if (t->current_filesystem != NULL && t->current_filesystem->dev == dev) return (ARCHIVE_OK); for (i = 0; i < t->max_filesystem_id; i++) { if (t->filesystem_table[i].dev == dev) { /* There is the filesystem ID we've already generated. */ t->current_filesystem_id = i; t->current_filesystem = &(t->filesystem_table[i]); return (ARCHIVE_OK); } } /* * This is the new filesystem which we have to generate a new ID for. */ fid = t->max_filesystem_id++; if (t->max_filesystem_id > t->allocated_filesystem) { size_t s; void *p; s = t->max_filesystem_id * 2; p = realloc(t->filesystem_table, s * sizeof(*t->filesystem_table)); if (p == NULL) { archive_set_error(&a->archive, ENOMEM, "Can't allocate tar data"); return (ARCHIVE_FATAL); } t->filesystem_table = (struct filesystem *)p; t->allocated_filesystem = s; } t->current_filesystem_id = fid; t->current_filesystem = &(t->filesystem_table[fid]); t->current_filesystem->dev = dev; t->current_filesystem->allocation_ptr = NULL; t->current_filesystem->buff = NULL; /* Setup the current filesystem properties which depend on * platform specific. */ return (setup_current_filesystem(a)); } /* * Returns 1 if current filesystem is generated filesystem, 0 if it is not * or -1 if it is unknown. */ int archive_read_disk_current_filesystem_is_synthetic(struct archive *_a) { struct archive_read_disk *a = (struct archive_read_disk *)_a; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA, "archive_read_disk_current_filesystem"); return (a->tree->current_filesystem->synthetic); } /* * Returns 1 if current filesystem is remote filesystem, 0 if it is not * or -1 if it is unknown. */ int archive_read_disk_current_filesystem_is_remote(struct archive *_a) { struct archive_read_disk *a = (struct archive_read_disk *)_a; archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA, "archive_read_disk_current_filesystem"); return (a->tree->current_filesystem->remote); } #if defined(_PC_REC_INCR_XFER_SIZE) && defined(_PC_REC_MAX_XFER_SIZE) &&\ defined(_PC_REC_MIN_XFER_SIZE) && defined(_PC_REC_XFER_ALIGN) static int get_xfer_size(struct tree *t, int fd, const char *path) { t->current_filesystem->xfer_align = -1; errno = 0; if (fd >= 0) { t->current_filesystem->incr_xfer_size = fpathconf(fd, _PC_REC_INCR_XFER_SIZE); t->current_filesystem->max_xfer_size = fpathconf(fd, _PC_REC_MAX_XFER_SIZE); t->current_filesystem->min_xfer_size = fpathconf(fd, _PC_REC_MIN_XFER_SIZE); t->current_filesystem->xfer_align = fpathconf(fd, _PC_REC_XFER_ALIGN); } else if (path != NULL) { t->current_filesystem->incr_xfer_size = pathconf(path, _PC_REC_INCR_XFER_SIZE); t->current_filesystem->max_xfer_size = pathconf(path, _PC_REC_MAX_XFER_SIZE); t->current_filesystem->min_xfer_size = pathconf(path, _PC_REC_MIN_XFER_SIZE); t->current_filesystem->xfer_align = pathconf(path, _PC_REC_XFER_ALIGN); } /* At least we need an alignment size. */ if (t->current_filesystem->xfer_align == -1) return ((errno == EINVAL)?1:-1); else return (0); } #else static int get_xfer_size(struct tree *t, int fd, const char *path) { (void)t; /* UNUSED */ (void)fd; /* UNUSED */ (void)path; /* UNUSED */ return (1);/* Not supported */ } #endif #if defined(HAVE_STATVFS) static inline __LA_UNUSED void set_statvfs_transfer_size(struct filesystem *fs, const struct statvfs *sfs) { fs->xfer_align = sfs->f_frsize > 0 ? (long)sfs->f_frsize : -1; fs->max_xfer_size = -1; #if defined(HAVE_STRUCT_STATVFS_F_IOSIZE) fs->min_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1; fs->incr_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1; #else fs->min_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1; fs->incr_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1; #endif } #endif #if defined(HAVE_STRUCT_STATFS) static inline __LA_UNUSED void set_statfs_transfer_size(struct filesystem *fs, const struct statfs *sfs) { fs->xfer_align = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1; fs->max_xfer_size = -1; #if defined(HAVE_STRUCT_STATFS_F_IOSIZE) fs->min_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1; fs->incr_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1; #else fs->min_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1; fs->incr_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1; #endif } #endif #if defined(HAVE_STRUCT_STATFS) && defined(HAVE_STATFS) && \ defined(HAVE_FSTATFS) && defined(MNT_LOCAL) && !defined(ST_LOCAL) /* * Gather current filesystem properties on FreeBSD, OpenBSD and Mac OS X. */ static int setup_current_filesystem(struct archive_read_disk *a) { struct tree *t = a->tree; struct statfs sfs; #if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC) /* TODO: configure should set GETVFSBYNAME_ARG_TYPE to make * this accurate; some platforms have both and we need the one that's * used by getvfsbyname() * * Then the following would become: * #if defined(GETVFSBYNAME_ARG_TYPE) * GETVFSBYNAME_ARG_TYPE vfc; * #endif */ # if defined(HAVE_STRUCT_XVFSCONF) struct xvfsconf vfc; # else struct vfsconf vfc; # endif #endif int r, xr = 0; #if !defined(HAVE_STRUCT_STATFS_F_NAMEMAX) long nm; #endif t->current_filesystem->synthetic = -1; t->current_filesystem->remote = -1; if (tree_current_is_symblic_link_target(t)) { #if defined(HAVE_OPENAT) /* * Get file system statistics on any directory * where current is. */ int fd = openat(tree_current_dir_fd(t), tree_current_access_path(t), O_RDONLY | O_CLOEXEC); __archive_ensure_cloexec_flag(fd); if (fd < 0) { archive_set_error(&a->archive, errno, "openat failed"); return (ARCHIVE_FAILED); } r = fstatfs(fd, &sfs); if (r == 0) xr = get_xfer_size(t, fd, NULL); close(fd); #else if (tree_enter_working_dir(t) != 0) { archive_set_error(&a->archive, errno, "fchdir failed"); return (ARCHIVE_FAILED); } r = statfs(tree_current_access_path(t), &sfs); if (r == 0) xr = get_xfer_size(t, -1, tree_current_access_path(t)); #endif } else { r = fstatfs(tree_current_dir_fd(t), &sfs); if (r == 0) xr = get_xfer_size(t, tree_current_dir_fd(t), NULL); } if (r == -1 || xr == -1) { archive_set_error(&a->archive, errno, "statfs failed"); return (ARCHIVE_FAILED); } else if (xr == 1) { /* pathconf(_PC_REX_*) operations are not supported. */ set_statfs_transfer_size(t->current_filesystem, &sfs); } if (sfs.f_flags & MNT_LOCAL) t->current_filesystem->remote = 0; else t->current_filesystem->remote = 1; #if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC) r = getvfsbyname(sfs.f_fstypename, &vfc); if (r == -1) { archive_set_error(&a->archive, errno, "getvfsbyname failed"); return (ARCHIVE_FAILED); } if (vfc.vfc_flags & VFCF_SYNTHETIC) t->current_filesystem->synthetic = 1; else t->current_filesystem->synthetic = 0; #endif #if defined(MNT_NOATIME) if (sfs.f_flags & MNT_NOATIME) t->current_filesystem->noatime = 1; else #endif t->current_filesystem->noatime = 0; #if defined(USE_READDIR_R) /* Set maximum filename length. */ #if defined(HAVE_STRUCT_STATFS_F_NAMEMAX) t->current_filesystem->name_max = sfs.f_namemax; #else # if defined(_PC_NAME_MAX) /* Mac OS X does not have f_namemax in struct statfs. */ if (tree_current_is_symblic_link_target(t)) { if (tree_enter_working_dir(t) != 0) { archive_set_error(&a->archive, errno, "fchdir failed"); return (ARCHIVE_FAILED); } nm = pathconf(tree_current_access_path(t), _PC_NAME_MAX); } else nm = fpathconf(tree_current_dir_fd(t), _PC_NAME_MAX); # else nm = -1; # endif if (nm == -1) t->current_filesystem->name_max = NAME_MAX; else t->current_filesystem->name_max = nm; #endif if (t->current_filesystem->name_max == 0) { archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC, "Cannot determine name_max"); return (ARCHIVE_FAILED); } #endif /* USE_READDIR_R */ return (ARCHIVE_OK); } #elif (defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS)) && defined(ST_LOCAL) /* * Gather current filesystem properties on NetBSD */ static int setup_current_filesystem(struct archive_read_disk *a) { struct tree *t = a->tree; struct statvfs svfs; int r, xr = 0; t->current_filesystem->synthetic = -1; if (tree_enter_working_dir(t) != 0) { archive_set_error(&a->archive, errno, "fchdir failed"); return (ARCHIVE_FAILED); } if (tree_current_is_symblic_link_target(t)) { r = statvfs(tree_current_access_path(t), &svfs); if (r == 0) xr = get_xfer_size(t, -1, tree_current_access_path(t)); } else { #ifdef HAVE_FSTATVFS r = fstatvfs(tree_current_dir_fd(t), &svfs); if (r == 0) xr = get_xfer_size(t, tree_current_dir_fd(t), NULL); #else r = statvfs(".", &svfs); if (r == 0) xr = get_xfer_size(t, -1, "."); #endif } if (r == -1 || xr == -1) { t->current_filesystem->remote = -1; archive_set_error(&a->archive, errno, "statvfs failed"); return (ARCHIVE_FAILED); } else if (xr == 1) { /* Usually come here unless NetBSD supports _PC_REC_XFER_ALIGN * for pathconf() function. */ set_statvfs_transfer_size(t->current_filesystem, &svfs); } if (svfs.f_flag & ST_LOCAL) t->current_filesystem->remote = 0; else t->current_filesystem->remote = 1; #if defined(ST_NOATIME) if (svfs.f_flag & ST_NOATIME) t->current_filesystem->noatime = 1; else #endif t->current_filesystem->noatime = 0; /* Set maximum filename length. */ t->current_filesystem->name_max = svfs.f_namemax; return (ARCHIVE_OK); } #elif defined(HAVE_SYS_STATFS_H) && defined(HAVE_LINUX_MAGIC_H) &&\ defined(HAVE_STATFS) && defined(HAVE_FSTATFS) /* * Note: statfs is deprecated since LSB 3.2 */ #ifndef CIFS_SUPER_MAGIC #define CIFS_SUPER_MAGIC 0xFF534D42 #endif #ifndef DEVFS_SUPER_MAGIC #define DEVFS_SUPER_MAGIC 0x1373 #endif /* * Gather current filesystem properties on Linux */ static int setup_current_filesystem(struct archive_read_disk *a) { struct tree *t = a->tree; struct statfs sfs; #if defined(HAVE_STATVFS) struct statvfs svfs; #endif int r, vr = 0, xr = 0; if (tree_current_is_symblic_link_target(t)) { #if defined(HAVE_OPENAT) /* * Get file system statistics on any directory * where current is. */ int fd = openat(tree_current_dir_fd(t), tree_current_access_path(t), O_RDONLY | O_CLOEXEC); __archive_ensure_cloexec_flag(fd); if (fd < 0) { archive_set_error(&a->archive, errno, "openat failed"); return (ARCHIVE_FAILED); } #if defined(HAVE_FSTATVFS) vr = fstatvfs(fd, &svfs);/* for f_flag, mount flags */ #endif r = fstatfs(fd, &sfs); if (r == 0) xr = get_xfer_size(t, fd, NULL); close(fd); #else if (tree_enter_working_dir(t) != 0) { archive_set_error(&a->archive, errno, "fchdir failed"); return (ARCHIVE_FAILED); } #if defined(HAVE_STATVFS) vr = statvfs(tree_current_access_path(t), &svfs); #endif r = statfs(tree_current_access_path(t), &sfs); if (r == 0) xr = get_xfer_size(t, -1, tree_current_access_path(t)); #endif } else { #ifdef HAVE_FSTATFS #if defined(HAVE_FSTATVFS) vr = fstatvfs(tree_current_dir_fd(t), &svfs); #endif r = fstatfs(tree_current_dir_fd(t), &sfs); if (r == 0) xr = get_xfer_size(t, tree_current_dir_fd(t), NULL); #else if (tree_enter_working_dir(t) != 0) { archive_set_error(&a->archive, errno, "fchdir failed"); return (ARCHIVE_FAILED); } #if defined(HAVE_STATVFS) vr = statvfs(".", &svfs); #endif r = statfs(".", &sfs); if (r == 0) xr = get_xfer_size(t, -1, "."); #endif } if (r == -1 || xr == -1 || vr == -1) { t->current_filesystem->synthetic = -1; t->current_filesystem->remote = -1; archive_set_error(&a->archive, errno, "statfs failed"); return (ARCHIVE_FAILED); } else if (xr == 1) { /* pathconf(_PC_REX_*) operations are not supported. */ #if defined(HAVE_STATVFS) set_statvfs_transfer_size(t->current_filesystem, &svfs); #else set_statfs_transfer_size(t->current_filesystem, &sfs); #endif } switch (sfs.f_type) { case AFS_SUPER_MAGIC: case CIFS_SUPER_MAGIC: case CODA_SUPER_MAGIC: case NCP_SUPER_MAGIC:/* NetWare */ case NFS_SUPER_MAGIC: case SMB_SUPER_MAGIC: t->current_filesystem->remote = 1; t->current_filesystem->synthetic = 0; break; case DEVFS_SUPER_MAGIC: case PROC_SUPER_MAGIC: case USBDEVICE_SUPER_MAGIC: t->current_filesystem->remote = 0; t->current_filesystem->synthetic = 1; break; default: t->current_filesystem->remote = 0; t->current_filesystem->synthetic = 0; break; } #if defined(ST_NOATIME) #if defined(HAVE_STATVFS) if (svfs.f_flag & ST_NOATIME) #else if (sfs.f_flags & ST_NOATIME) #endif t->current_filesystem->noatime = 1; else #endif t->current_filesystem->noatime = 0; #if defined(USE_READDIR_R) /* Set maximum filename length. */ #if defined(HAVE_STATVFS) t->current_filesystem->name_max = svfs.f_namemax; #else t->current_filesystem->name_max = sfs.f_namelen; #endif if (t->current_filesystem->name_max == 0) { archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC, "Cannot determine name_max"); return (ARCHIVE_FAILED); } #endif return (ARCHIVE_OK); } #elif defined(HAVE_SYS_STATVFS_H) &&\ (defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS)) /* * Gather current filesystem properties on other posix platform. */ static int setup_current_filesystem(struct archive_read_disk *a) { struct tree *t = a->tree; struct statvfs svfs; int r, xr = 0; t->current_filesystem->synthetic = -1;/* Not supported */ t->current_filesystem->remote = -1;/* Not supported */ if (tree_current_is_symblic_link_target(t)) { #if defined(HAVE_OPENAT) /* * Get file system statistics on any directory * where current is. */ int fd = openat(tree_current_dir_fd(t), tree_current_access_path(t), O_RDONLY | O_CLOEXEC); __archive_ensure_cloexec_flag(fd); if (fd < 0) { archive_set_error(&a->archive, errno, "openat failed"); return (ARCHIVE_FAILED); } r = fstatvfs(fd, &svfs); if (r == 0) xr = get_xfer_size(t, fd, NULL); close(fd); #else if (tree_enter_working_dir(t) != 0) { archive_set_error(&a->archive, errno, "fchdir failed"); return (ARCHIVE_FAILED); } r = statvfs(tree_current_access_path(t), &svfs); if (r == 0) xr = get_xfer_size(t, -1, tree_current_access_path(t)); #endif } else { #ifdef HAVE_FSTATVFS r = fstatvfs(tree_current_dir_fd(t), &svfs); if (r == 0) xr = get_xfer_size(t, tree_current_dir_fd(t), NULL); #else if (tree_enter_working_dir(t) != 0) { archive_set_error(&a->archive, errno, "fchdir failed"); return (ARCHIVE_FAILED); } r = statvfs(".", &svfs); if (r == 0) xr = get_xfer_size(t, -1, "."); #endif } if (r == -1 || xr == -1) { t->current_filesystem->synthetic = -1; t->current_filesystem->remote = -1; archive_set_error(&a->archive, errno, "statvfs failed"); return (ARCHIVE_FAILED); } else if (xr == 1) { /* pathconf(_PC_REX_*) operations are not supported. */ set_statvfs_transfer_size(t->current_filesystem, &svfs); } #if defined(ST_NOATIME) if (svfs.f_flag & ST_NOATIME) t->current_filesystem->noatime = 1; else #endif t->current_filesystem->noatime = 0; #if defined(USE_READDIR_R) /* Set maximum filename length. */ t->current_filesystem->name_max = svfs.f_namemax; if (t->current_filesystem->name_max == 0) { archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC, "Cannot determine name_max"); return (ARCHIVE_FAILED); } #endif return (ARCHIVE_OK); } #else /* * Generic: Gather current filesystem properties. * TODO: Is this generic function really needed? */ static int setup_current_filesystem(struct archive_read_disk *a) { struct tree *t = a->tree; #if defined(_PC_NAME_MAX) && defined(USE_READDIR_R) long nm; #endif t->current_filesystem->synthetic = -1;/* Not supported */ t->current_filesystem->remote = -1;/* Not supported */ t->current_filesystem->noatime = 0; (void)get_xfer_size(t, -1, ".");/* Dummy call to avoid build error. */ t->current_filesystem->xfer_align = -1;/* Unknown */ t->current_filesystem->max_xfer_size = -1; t->current_filesystem->min_xfer_size = -1; t->current_filesystem->incr_xfer_size = -1; #if defined(USE_READDIR_R) /* Set maximum filename length. */ # if defined(_PC_NAME_MAX) if (tree_current_is_symblic_link_target(t)) { if (tree_enter_working_dir(t) != 0) { archive_set_error(&a->archive, errno, "fchdir failed"); return (ARCHIVE_FAILED); } nm = pathconf(tree_current_access_path(t), _PC_NAME_MAX); } else nm = fpathconf(tree_current_dir_fd(t), _PC_NAME_MAX); if (nm == -1) # endif /* _PC_NAME_MAX */ /* * Some systems (HP-UX or others?) incorrectly defined * NAME_MAX macro to be a smaller value. */ # if defined(NAME_MAX) && NAME_MAX >= 255 t->current_filesystem->name_max = NAME_MAX; # else /* No way to get a trusted value of maximum filename * length. */ t->current_filesystem->name_max = PATH_MAX; # endif /* NAME_MAX */ # if defined(_PC_NAME_MAX) else t->current_filesystem->name_max = nm; # endif /* _PC_NAME_MAX */ if (t->current_filesystem->name_max == 0) { archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC, "Cannot determine name_max"); return (ARCHIVE_FAILED); } #endif /* USE_READDIR_R */ return (ARCHIVE_OK); } #endif static int close_and_restore_time(int fd, struct tree *t, struct restore_time *rt) { #ifndef HAVE_UTIMES (void)t; /* UNUSED */ (void)rt; /* UNUSED */ return (close(fd)); #else #if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__) struct timespec timespecs[2]; #endif struct timeval times[2]; if ((t->flags & needsRestoreTimes) == 0 || rt->noatime) { if (fd >= 0) return (close(fd)); else return (0); } #if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__) timespecs[1].tv_sec = rt->mtime; timespecs[1].tv_nsec = rt->mtime_nsec; timespecs[0].tv_sec = rt->atime; timespecs[0].tv_nsec = rt->atime_nsec; /* futimens() is defined in POSIX.1-2008. */ if (futimens(fd, timespecs) == 0) return (close(fd)); #endif times[1].tv_sec = rt->mtime; times[1].tv_usec = rt->mtime_nsec / 1000; times[0].tv_sec = rt->atime; times[0].tv_usec = rt->atime_nsec / 1000; #if !defined(HAVE_FUTIMENS) && defined(HAVE_FUTIMES) && !defined(__CYGWIN__) if (futimes(fd, times) == 0) return (close(fd)); #endif close(fd); #if defined(HAVE_FUTIMESAT) if (futimesat(tree_current_dir_fd(t), rt->name, times) == 0) return (0); #endif #ifdef HAVE_LUTIMES if (lutimes(rt->name, times) != 0) #else if (AE_IFLNK != rt->filetype && utimes(rt->name, times) != 0) #endif return (-1); #endif return (0); } static int open_on_current_dir(struct tree *t, const char *path, int flags) { #ifdef HAVE_OPENAT return (openat(tree_current_dir_fd(t), path, flags)); #else if (tree_enter_working_dir(t) != 0) return (-1); return (open(path, flags)); #endif } static int tree_dup(int fd) { int new_fd; #ifdef F_DUPFD_CLOEXEC static volatile int can_dupfd_cloexec = 1; if (can_dupfd_cloexec) { new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 0); if (new_fd != -1) return (new_fd); /* Linux 2.6.18 - 2.6.23 declare F_DUPFD_CLOEXEC, * but it cannot be used. So we have to try dup(). */ /* We won't try F_DUPFD_CLOEXEC. */ can_dupfd_cloexec = 0; } #endif /* F_DUPFD_CLOEXEC */ new_fd = dup(fd); __archive_ensure_cloexec_flag(new_fd); return (new_fd); } /* * Add a directory path to the current stack. */ static void tree_push(struct tree *t, const char *path, int filesystem_id, int64_t dev, int64_t ino, struct restore_time *rt) { struct tree_entry *te; te = calloc(1, sizeof(*te)); if (te == NULL) __archive_errx(1, "Out of memory"); te->next = t->stack; te->parent = t->current; if (te->parent) te->depth = te->parent->depth + 1; t->stack = te; archive_string_init(&te->name); te->symlink_parent_fd = -1; archive_strcpy(&te->name, path); te->flags = needsDescent | needsOpen | needsAscent; te->filesystem_id = filesystem_id; te->dev = dev; te->ino = ino; te->dirname_length = t->dirname_length; te->restore_time.name = te->name.s; if (rt != NULL) { te->restore_time.mtime = rt->mtime; te->restore_time.mtime_nsec = rt->mtime_nsec; te->restore_time.atime = rt->atime; te->restore_time.atime_nsec = rt->atime_nsec; te->restore_time.filetype = rt->filetype; te->restore_time.noatime = rt->noatime; } } /* * Append a name to the current dir path. */ static void tree_append(struct tree *t, const char *name, size_t name_length) { size_t size_needed; t->path.s[t->dirname_length] = '\0'; t->path.length = t->dirname_length; /* Strip trailing '/' from name, unless entire name is "/". */ while (name_length > 1 && name[name_length - 1] == '/') name_length--; /* Resize pathname buffer as needed. */ size_needed = name_length + t->dirname_length + 2; archive_string_ensure(&t->path, size_needed); /* Add a separating '/' if it's needed. */ if (t->dirname_length > 0 && t->path.s[archive_strlen(&t->path)-1] != '/') archive_strappend_char(&t->path, '/'); t->basename = t->path.s + archive_strlen(&t->path); archive_strncat(&t->path, name, name_length); t->restore_time.name = t->basename; } /* * Open a directory tree for traversal. */ static struct tree * tree_open(const char *path, int symlink_mode, int restore_time) { struct tree *t; if ((t = calloc(1, sizeof(*t))) == NULL) return (NULL); archive_string_init(&t->path); archive_string_ensure(&t->path, 31); t->initial_symlink_mode = symlink_mode; return (tree_reopen(t, path, restore_time)); } static struct tree * tree_reopen(struct tree *t, const char *path, int restore_time) { #if defined(O_PATH) /* Linux */ const int o_flag = O_PATH; #elif defined(O_SEARCH) /* SunOS */ const int o_flag = O_SEARCH; #elif defined(__FreeBSD__) && defined(O_EXEC) /* FreeBSD */ const int o_flag = O_EXEC; #endif t->flags = (restore_time != 0)?needsRestoreTimes:0; t->flags |= onInitialDir; t->visit_type = 0; t->tree_errno = 0; t->dirname_length = 0; t->depth = 0; t->descend = 0; t->current = NULL; t->d = INVALID_DIR_HANDLE; t->symlink_mode = t->initial_symlink_mode; archive_string_empty(&t->path); t->entry_fd = -1; t->entry_eof = 0; t->entry_remaining_bytes = 0; t->initial_filesystem_id = -1; /* First item is set up a lot like a symlink traversal. */ tree_push(t, path, 0, 0, 0, NULL); t->stack->flags = needsFirstVisit; t->maxOpenCount = t->openCount = 1; t->initial_dir_fd = open(".", O_RDONLY | O_CLOEXEC); #if defined(O_PATH) || defined(O_SEARCH) || \ (defined(__FreeBSD__) && defined(O_EXEC)) /* * Most likely reason to fail opening "." is that it's not readable, * so try again for execute. The consequences of not opening this are * unhelpful and unnecessary errors later. */ if (t->initial_dir_fd < 0) t->initial_dir_fd = open(".", o_flag | O_CLOEXEC); #endif __archive_ensure_cloexec_flag(t->initial_dir_fd); t->working_dir_fd = tree_dup(t->initial_dir_fd); return (t); } static int tree_descent(struct tree *t) { int flag, new_fd, r = 0; t->dirname_length = archive_strlen(&t->path); flag = O_RDONLY | O_CLOEXEC; #if defined(O_DIRECTORY) flag |= O_DIRECTORY; #endif new_fd = open_on_current_dir(t, t->stack->name.s, flag); __archive_ensure_cloexec_flag(new_fd); if (new_fd < 0) { t->tree_errno = errno; r = TREE_ERROR_DIR; } else { t->depth++; /* If it is a link, set up fd for the ascent. */ if (t->stack->flags & isDirLink) { t->stack->symlink_parent_fd = t->working_dir_fd; t->openCount++; if (t->openCount > t->maxOpenCount) t->maxOpenCount = t->openCount; } else close(t->working_dir_fd); /* Renew the current working directory. */ t->working_dir_fd = new_fd; t->flags &= ~onWorkingDir; } return (r); } /* * We've finished a directory; ascend back to the parent. */ static int tree_ascend(struct tree *t) { struct tree_entry *te; int new_fd, r = 0, prev_dir_fd; te = t->stack; prev_dir_fd = t->working_dir_fd; if (te->flags & isDirLink) new_fd = te->symlink_parent_fd; else { new_fd = open_on_current_dir(t, "..", O_RDONLY | O_CLOEXEC); __archive_ensure_cloexec_flag(new_fd); } if (new_fd < 0) { t->tree_errno = errno; r = TREE_ERROR_FATAL; } else { /* Renew the current working directory. */ t->working_dir_fd = new_fd; t->flags &= ~onWorkingDir; /* Current directory has been changed, we should * close an fd of previous working directory. */ close_and_restore_time(prev_dir_fd, t, &te->restore_time); if (te->flags & isDirLink) { t->openCount--; te->symlink_parent_fd = -1; } t->depth--; } return (r); } /* * Return to the initial directory where tree_open() was performed. */ static int tree_enter_initial_dir(struct tree *t) { int r = 0; if ((t->flags & onInitialDir) == 0) { r = fchdir(t->initial_dir_fd); if (r == 0) { t->flags &= ~onWorkingDir; t->flags |= onInitialDir; } } return (r); } /* * Restore working directory of directory traversals. */ static int tree_enter_working_dir(struct tree *t) { int r = 0; /* * Change the current directory if really needed. * Sometimes this is unneeded when we did not do * descent. */ if (t->depth > 0 && (t->flags & onWorkingDir) == 0) { r = fchdir(t->working_dir_fd); if (r == 0) { t->flags &= ~onInitialDir; t->flags |= onWorkingDir; } } return (r); } static int tree_current_dir_fd(struct tree *t) { return (t->working_dir_fd); } /* * Pop the working stack. */ static void tree_pop(struct tree *t) { struct tree_entry *te; t->path.s[t->dirname_length] = '\0'; t->path.length = t->dirname_length; if (t->stack == t->current && t->current != NULL) t->current = t->current->parent; te = t->stack; #ifdef __clang_analyzer__ assert(te); #endif t->stack = te->next; t->dirname_length = te->dirname_length; t->basename = t->path.s + t->dirname_length; while (t->basename[0] == '/') t->basename++; archive_string_free(&te->name); free(te); } /* * Get the next item in the tree traversal. */ static int tree_next(struct tree *t) { int r; while (t->stack != NULL) { /* If there's an open dir, get the next entry from there. */ if (t->d != INVALID_DIR_HANDLE) { r = tree_dir_next_posix(t); if (r == 0) continue; return (r); } if (t->stack->flags & needsFirstVisit) { /* Top stack item needs a regular visit. */ t->current = t->stack; tree_append(t, t->stack->name.s, archive_strlen(&(t->stack->name))); /* t->dirname_length = t->path_length; */ /* tree_pop(t); */ t->stack->flags &= ~needsFirstVisit; return (t->visit_type = TREE_REGULAR); } else if (t->stack->flags & needsDescent) { /* Top stack item is dir to descend into. */ t->current = t->stack; tree_append(t, t->stack->name.s, archive_strlen(&(t->stack->name))); t->stack->flags &= ~needsDescent; r = tree_descent(t); if (r != 0) { tree_pop(t); t->visit_type = r; } else t->visit_type = TREE_POSTDESCENT; return (t->visit_type); } else if (t->stack->flags & needsOpen) { t->stack->flags &= ~needsOpen; r = tree_dir_next_posix(t); if (r == 0) continue; return (r); } else if (t->stack->flags & needsAscent) { /* Top stack item is dir and we're done with it. */ r = tree_ascend(t); tree_pop(t); t->visit_type = r != 0 ? r : TREE_POSTASCENT; return (t->visit_type); } else { /* Top item on stack is dead. */ tree_pop(t); t->flags &= ~hasLstat; t->flags &= ~hasStat; } } return (t->visit_type = 0); } static int tree_dir_next_posix(struct tree *t) { int r; const char *name; size_t namelen; if (t->d == NULL) { #if defined(USE_READDIR_R) size_t dirent_size; #endif #if defined(HAVE_FDOPENDIR) t->d = fdopendir(tree_dup(t->working_dir_fd)); #else /* HAVE_FDOPENDIR */ if (tree_enter_working_dir(t) == 0) { t->d = opendir("."); #ifdef HAVE_DIRFD __archive_ensure_cloexec_flag(dirfd(t->d)); #endif } #endif /* HAVE_FDOPENDIR */ if (t->d == NULL) { r = tree_ascend(t); /* Undo "chdir" */ tree_pop(t); t->tree_errno = errno; t->visit_type = r != 0 ? r : TREE_ERROR_DIR; return (t->visit_type); } #if defined(USE_READDIR_R) dirent_size = offsetof(struct dirent, d_name) + t->filesystem_table[t->current->filesystem_id].name_max + 1; if (t->dirent == NULL || t->dirent_allocated < dirent_size) { free(t->dirent); t->dirent = malloc(dirent_size); if (t->dirent == NULL) { closedir(t->d); t->d = INVALID_DIR_HANDLE; (void)tree_ascend(t); tree_pop(t); t->tree_errno = ENOMEM; t->visit_type = TREE_ERROR_DIR; return (t->visit_type); } t->dirent_allocated = dirent_size; } #endif /* USE_READDIR_R */ } for (;;) { errno = 0; #if defined(USE_READDIR_R) r = readdir_r(t->d, t->dirent, &t->de); #ifdef _AIX /* Note: According to the man page, return value 9 indicates * that the readdir_r was not successful and the error code * is set to the global errno variable. And then if the end * of directory entries was reached, the return value is 9 * and the third parameter is set to NULL and errno is * unchanged. */ if (r == 9) r = errno; #endif /* _AIX */ if (r != 0 || t->de == NULL) { #else t->de = readdir(t->d); if (t->de == NULL) { r = errno; #endif closedir(t->d); t->d = INVALID_DIR_HANDLE; if (r != 0) { t->tree_errno = r; t->visit_type = TREE_ERROR_DIR; return (t->visit_type); } else return (0); } name = t->de->d_name; namelen = D_NAMELEN(t->de); t->flags &= ~hasLstat; t->flags &= ~hasStat; if (name[0] == '.' && name[1] == '\0') continue; if (name[0] == '.' && name[1] == '.' && name[2] == '\0') continue; tree_append(t, name, namelen); return (t->visit_type = TREE_REGULAR); } } /* * Get the stat() data for the entry just returned from tree_next(). */ static const struct stat * tree_current_stat(struct tree *t) { if (!(t->flags & hasStat)) { #ifdef HAVE_FSTATAT if (fstatat(tree_current_dir_fd(t), tree_current_access_path(t), &t->st, 0) != 0) #else if (tree_enter_working_dir(t) != 0) return NULL; if (la_stat(tree_current_access_path(t), &t->st) != 0) #endif return NULL; t->flags |= hasStat; } return (&t->st); } /* * Get the lstat() data for the entry just returned from tree_next(). */ static const struct stat * tree_current_lstat(struct tree *t) { if (!(t->flags & hasLstat)) { #ifdef HAVE_FSTATAT if (fstatat(tree_current_dir_fd(t), tree_current_access_path(t), &t->lst, AT_SYMLINK_NOFOLLOW) != 0) #else if (tree_enter_working_dir(t) != 0) return NULL; #ifdef HAVE_LSTAT if (lstat(tree_current_access_path(t), &t->lst) != 0) #else if (la_stat(tree_current_access_path(t), &t->lst) != 0) #endif #endif return NULL; t->flags |= hasLstat; } return (&t->lst); } /* * Test whether current entry is a dir or link to a dir. */ static int tree_current_is_dir(struct tree *t) { const struct stat *st; /* * If we already have lstat() info, then try some * cheap tests to determine if this is a dir. */ if (t->flags & hasLstat) { /* If lstat() says it's a dir, it must be a dir. */ st = tree_current_lstat(t); if (st == NULL) return 0; if (S_ISDIR(st->st_mode)) return 1; /* Not a dir; might be a link to a dir. */ /* If it's not a link, then it's not a link to a dir. */ if (!S_ISLNK(st->st_mode)) return 0; /* * It's a link, but we don't know what it's a link to, * so we'll have to use stat(). */ } st = tree_current_stat(t); /* If we can't stat it, it's not a dir. */ if (st == NULL) return 0; /* Use the definitive test. Hopefully this is cached. */ return (S_ISDIR(st->st_mode)); } /* * Test whether current entry is a physical directory. Usually, we * already have at least one of stat() or lstat() in memory, so we * use tricks to try to avoid an extra trip to the disk. */ static int tree_current_is_physical_dir(struct tree *t) { const struct stat *st; /* * If stat() says it isn't a dir, then it's not a dir. * If stat() data is cached, this check is free, so do it first. */ if (t->flags & hasStat) { st = tree_current_stat(t); if (st == NULL) return (0); if (!S_ISDIR(st->st_mode)) return (0); } /* * Either stat() said it was a dir (in which case, we have * to determine whether it's really a link to a dir) or * stat() info wasn't available. So we use lstat(), which * hopefully is already cached. */ st = tree_current_lstat(t); /* If we can't stat it, it's not a dir. */ if (st == NULL) return 0; /* Use the definitive test. Hopefully this is cached. */ return (S_ISDIR(st->st_mode)); } /* * Test whether the same file has been in the tree as its parent. */ static int tree_target_is_same_as_parent(struct tree *t, const struct stat *st) { struct tree_entry *te; for (te = t->current->parent; te != NULL; te = te->parent) { if (te->dev == (int64_t)st->st_dev && te->ino == (int64_t)st->st_ino) return (1); } return (0); } /* * Test whether the current file is symbolic link target and * on the other filesystem. */ static int tree_current_is_symblic_link_target(struct tree *t) { static const struct stat *lst, *st; lst = tree_current_lstat(t); st = tree_current_stat(t); return (st != NULL && lst != NULL && (int64_t)st->st_dev == t->current_filesystem->dev && st->st_dev != lst->st_dev); } /* * Return the access path for the entry just returned from tree_next(). */ static const char * tree_current_access_path(struct tree *t) { return (t->basename); } /* * Return the full path for the entry just returned from tree_next(). */ static const char * tree_current_path(struct tree *t) { return (t->path.s); } /* * Terminate the traversal. */ static void tree_close(struct tree *t) { if (t == NULL) return; if (t->entry_fd >= 0) { close_and_restore_time(t->entry_fd, t, &t->restore_time); t->entry_fd = -1; } /* Close the handle of readdir(). */ if (t->d != INVALID_DIR_HANDLE) { closedir(t->d); t->d = INVALID_DIR_HANDLE; } /* Release anything remaining in the stack. */ while (t->stack != NULL) { if (t->stack->flags & isDirLink) close(t->stack->symlink_parent_fd); tree_pop(t); } if (t->working_dir_fd >= 0) { close(t->working_dir_fd); t->working_dir_fd = -1; } if (t->initial_dir_fd >= 0) { close(t->initial_dir_fd); t->initial_dir_fd = -1; } } /* * Release any resources. */ static void tree_free(struct tree *t) { int i; if (t == NULL) return; archive_string_free(&t->path); #if defined(USE_READDIR_R) free(t->dirent); #endif free(t->sparse_list); for (i = 0; i < t->max_filesystem_id; i++) free(t->filesystem_table[i].allocation_ptr); free(t->filesystem_table); free(t); } #endif