/////////////////////////////////////////////////////////////////////////////// // /// \file x86.c /// \brief Filter for x86 binaries (BCJ filter) /// // Authors: Igor Pavlov // Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "simple_private.h" #define Test86MSByte(b) ((b) == 0 || (b) == 0xFF) typedef struct { uint32_t prev_mask; uint32_t prev_pos; } lzma_simple_x86; static size_t x86_code(void *simple_ptr, uint32_t now_pos, bool is_encoder, uint8_t *buffer, size_t size) { static const bool MASK_TO_ALLOWED_STATUS[8] = { true, true, true, false, true, false, false, false }; static const uint32_t MASK_TO_BIT_NUMBER[8] = { 0, 1, 2, 2, 3, 3, 3, 3 }; lzma_simple_x86 *simple = simple_ptr; uint32_t prev_mask = simple->prev_mask; uint32_t prev_pos = simple->prev_pos; if (size < 5) return 0; if (now_pos - prev_pos > 5) prev_pos = now_pos - 5; const size_t limit = size - 5; size_t buffer_pos = 0; while (buffer_pos <= limit) { uint8_t b = buffer[buffer_pos]; if (b != 0xE8 && b != 0xE9) { ++buffer_pos; continue; } const uint32_t offset = now_pos + (uint32_t)(buffer_pos) - prev_pos; prev_pos = now_pos + (uint32_t)(buffer_pos); if (offset > 5) { prev_mask = 0; } else { for (uint32_t i = 0; i < offset; ++i) { prev_mask &= 0x77; prev_mask <<= 1; } } b = buffer[buffer_pos + 4]; if (Test86MSByte(b) && MASK_TO_ALLOWED_STATUS[(prev_mask >> 1) & 0x7] && (prev_mask >> 1) < 0x10) { uint32_t src = ((uint32_t)(b) << 24) | ((uint32_t)(buffer[buffer_pos + 3]) << 16) | ((uint32_t)(buffer[buffer_pos + 2]) << 8) | (buffer[buffer_pos + 1]); uint32_t dest; while (true) { if (is_encoder) dest = src + (now_pos + (uint32_t)( buffer_pos) + 5); else dest = src - (now_pos + (uint32_t)( buffer_pos) + 5); if (prev_mask == 0) break; const uint32_t i = MASK_TO_BIT_NUMBER[ prev_mask >> 1]; b = (uint8_t)(dest >> (24 - i * 8)); if (!Test86MSByte(b)) break; src = dest ^ ((1u << (32 - i * 8)) - 1); } buffer[buffer_pos + 4] = (uint8_t)(~(((dest >> 24) & 1) - 1)); buffer[buffer_pos + 3] = (uint8_t)(dest >> 16); buffer[buffer_pos + 2] = (uint8_t)(dest >> 8); buffer[buffer_pos + 1] = (uint8_t)(dest); buffer_pos += 5; prev_mask = 0; } else { ++buffer_pos; prev_mask |= 1; if (Test86MSByte(b)) prev_mask |= 0x10; } } simple->prev_mask = prev_mask; simple->prev_pos = prev_pos; return buffer_pos; } static lzma_ret x86_coder_init(lzma_next_coder *next, const lzma_allocator *allocator, const lzma_filter_info *filters, bool is_encoder) { const lzma_ret ret = lzma_simple_coder_init(next, allocator, filters, &x86_code, sizeof(lzma_simple_x86), 5, 1, is_encoder); if (ret == LZMA_OK) { lzma_simple_coder *coder = next->coder; lzma_simple_x86 *simple = coder->simple; simple->prev_mask = 0; simple->prev_pos = (uint32_t)(-5); } return ret; } extern lzma_ret lzma_simple_x86_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator, const lzma_filter_info *filters) { return x86_coder_init(next, allocator, filters, true); } extern lzma_ret lzma_simple_x86_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator, const lzma_filter_info *filters) { return x86_coder_init(next, allocator, filters, false); }