/*========================================================================= Program: KWSys - Kitware System Library Module: $RCSfile: ProcessUNIX.c,v $ Copyright (c) Kitware, Inc., Insight Consortium. All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "kwsysPrivate.h" #include KWSYS_HEADER(Process.h) /* Work-around CMake dependency scanning limitation. This must duplicate the above list of headers. */ #if 0 # include "Process.h.in" #endif /* Implementation for UNIX On UNIX, a child process is forked to exec the program. Three output pipes are read by the parent process using a select call to block until data are ready. Two of the pipes are stdout and stderr for the child. The third is a special pipe populated by a signal handler to indicate that a child has terminated. This is used in conjunction with the timeout on the select call to implement a timeout for program even when it closes stdout and stderr and at the same time avoiding races. */ /* TODO: We cannot create the pipeline of processes in suspended states. How do we cleanup processes already started when one fails to load? Right now we are just killing them, which is probably not the right thing to do. */ #include /* ptrdiff_t */ #include /* snprintf */ #include /* malloc, free */ #include /* strdup, strerror, memset */ #include /* struct timeval */ #include /* pid_t, fd_set */ #include /* waitpid */ #include /* open mode */ #include /* pipe, close, fork, execvp, select, _exit */ #include /* fcntl */ #include /* errno */ #include /* gettimeofday */ #include /* sigaction */ #include /* DIR, dirent */ #include /* isspace */ #if defined(KWSYS_C_HAS_PTRDIFF_T) && KWSYS_C_HAS_PTRDIFF_T typedef ptrdiff_t kwsysProcess_ptrdiff_t; #else typedef int kwsysProcess_ptrdiff_t; #endif #if defined(KWSYS_C_HAS_SSIZE_T) && KWSYS_C_HAS_SSIZE_T typedef ssize_t kwsysProcess_ssize_t; #else typedef int kwsysProcess_ssize_t; #endif #if defined(__BEOS__) && !defined(__ZETA__) /* BeOS 5 doesn't have usleep(), but it has snooze(), which is identical. */ # include static inline void kwsysProcess_usleep(unsigned int msec) { snooze(msec); } #else # define kwsysProcess_usleep usleep #endif /* * BeOS's select() works like WinSock: it's for networking only, and * doesn't work with Unix file handles...socket and file handles are * different namespaces (the same descriptor means different things in * each context!) * * So on Unix-like systems where select() is flakey, we'll set the * pipes' file handles to be non-blocking and just poll them directly * without select(). */ #if !defined(__BEOS__) # define KWSYSPE_USE_SELECT 1 #endif /* Some platforms do not have siginfo on their signal handlers. */ #if defined(SA_SIGINFO) && !defined(__BEOS__) # define KWSYSPE_USE_SIGINFO 1 #endif /* The number of pipes for the child's output. The standard stdout and stderr pipes are the first two. One more pipe is used to detect when the child process has terminated. The third pipe is not given to the child process, so it cannot close it until it terminates. */ #define KWSYSPE_PIPE_COUNT 3 #define KWSYSPE_PIPE_STDOUT 0 #define KWSYSPE_PIPE_STDERR 1 #define KWSYSPE_PIPE_SIGNAL 2 /* The maximum amount to read from a pipe at a time. */ #define KWSYSPE_PIPE_BUFFER_SIZE 1024 /* Keep track of times using a signed representation. Switch to the native (possibly unsigned) representation only when calling native functions. */ typedef struct timeval kwsysProcessTimeNative; typedef struct kwsysProcessTime_s kwsysProcessTime; struct kwsysProcessTime_s { long tv_sec; long tv_usec; }; typedef struct kwsysProcessCreateInformation_s { int StdIn; int StdOut; int StdErr; int ErrorPipe[2]; } kwsysProcessCreateInformation; /*--------------------------------------------------------------------------*/ static int kwsysProcessInitialize(kwsysProcess* cp); static void kwsysProcessCleanup(kwsysProcess* cp, int error); static void kwsysProcessCleanupDescriptor(int* pfd); static void kwsysProcessClosePipes(kwsysProcess* cp); static int kwsysProcessSetNonBlocking(int fd); static int kwsysProcessCreate(kwsysProcess* cp, int prIndex, kwsysProcessCreateInformation* si, int* readEnd); static void kwsysProcessDestroy(kwsysProcess* cp); static int kwsysProcessSetupOutputPipeFile(int* p, const char* name); static int kwsysProcessSetupOutputPipeNative(int* p, int des[2]); static int kwsysProcessGetTimeoutTime(kwsysProcess* cp, double* userTimeout, kwsysProcessTime* timeoutTime); static int kwsysProcessGetTimeoutLeft(kwsysProcessTime* timeoutTime, double* userTimeout, kwsysProcessTimeNative* timeoutLength); static kwsysProcessTime kwsysProcessTimeGetCurrent(void); static double kwsysProcessTimeToDouble(kwsysProcessTime t); static kwsysProcessTime kwsysProcessTimeFromDouble(double d); static int kwsysProcessTimeLess(kwsysProcessTime in1, kwsysProcessTime in2); static kwsysProcessTime kwsysProcessTimeAdd(kwsysProcessTime in1, kwsysProcessTime in2); static kwsysProcessTime kwsysProcessTimeSubtract(kwsysProcessTime in1, kwsysProcessTime in2); static void kwsysProcessSetExitException(kwsysProcess* cp, int sig); static void kwsysProcessChildErrorExit(int errorPipe); static void kwsysProcessRestoreDefaultSignalHandlers(void); static pid_t kwsysProcessFork(kwsysProcess* cp, kwsysProcessCreateInformation* si); static void kwsysProcessKill(pid_t process_id); static int kwsysProcessesAdd(kwsysProcess* cp); static void kwsysProcessesRemove(kwsysProcess* cp); #if KWSYSPE_USE_SIGINFO static void kwsysProcessesSignalHandler(int signum, siginfo_t* info, void* ucontext); #else static void kwsysProcessesSignalHandler(int signum); #endif static char** kwsysProcessParseVerbatimCommand(const char* command); /*--------------------------------------------------------------------------*/ /* Structure containing data used to implement the child's execution. */ struct kwsysProcess_s { /* The command lines to execute. */ char*** Commands; int NumberOfCommands; /* Descriptors for the read ends of the child's output pipes and the signal pipe. */ int PipeReadEnds[KWSYSPE_PIPE_COUNT]; /* Write descriptor for child termination signal pipe. */ int SignalPipe; /* Buffer for pipe data. */ char PipeBuffer[KWSYSPE_PIPE_BUFFER_SIZE]; /* Process IDs returned by the calls to fork. */ pid_t* ForkPIDs; /* Flag for whether the children were terminated by a faild select. */ int SelectError; /* The timeout length. */ double Timeout; /* The working directory for the process. */ char* WorkingDirectory; /* Whether to create the child as a detached process. */ int OptionDetach; /* Whether the child was created as a detached process. */ int Detached; /* Whether to treat command lines as verbatim. */ int Verbatim; /* Time at which the child started. Negative for no timeout. */ kwsysProcessTime StartTime; /* Time at which the child will timeout. Negative for no timeout. */ kwsysProcessTime TimeoutTime; /* Flag for whether the timeout expired. */ int TimeoutExpired; /* The number of pipes left open during execution. */ int PipesLeft; #if KWSYSPE_USE_SELECT /* File descriptor set for call to select. */ fd_set PipeSet; #endif /* The number of children still executing. */ int CommandsLeft; /* The current status of the child process. */ int State; /* The exceptional behavior that terminated the child process, if * any. */ int ExitException; /* The exit code of the child process. */ int ExitCode; /* The exit value of the child process, if any. */ int ExitValue; /* Whether the process was killed. */ int Killed; /* Buffer for error message in case of failure. */ char ErrorMessage[KWSYSPE_PIPE_BUFFER_SIZE+1]; /* Description for the ExitException. */ char ExitExceptionString[KWSYSPE_PIPE_BUFFER_SIZE+1]; /* The exit codes of each child process in the pipeline. */ int* CommandExitCodes; /* Name of files to which stdin and stdout pipes are attached. */ char* PipeFileSTDIN; char* PipeFileSTDOUT; char* PipeFileSTDERR; /* Whether each pipe is shared with the parent process. */ int PipeSharedSTDIN; int PipeSharedSTDOUT; int PipeSharedSTDERR; /* Native pipes provided by the user. */ int PipeNativeSTDIN[2]; int PipeNativeSTDOUT[2]; int PipeNativeSTDERR[2]; /* The real working directory of this process. */ int RealWorkingDirectoryLength; char* RealWorkingDirectory; }; /*--------------------------------------------------------------------------*/ kwsysProcess* kwsysProcess_New(void) { /* Allocate a process control structure. */ kwsysProcess* cp = (kwsysProcess*)malloc(sizeof(kwsysProcess)); if(!cp) { return 0; } memset(cp, 0, sizeof(kwsysProcess)); /* Share stdin with the parent process by default. */ cp->PipeSharedSTDIN = 1; /* No native pipes by default. */ cp->PipeNativeSTDIN[0] = -1; cp->PipeNativeSTDIN[1] = -1; cp->PipeNativeSTDOUT[0] = -1; cp->PipeNativeSTDOUT[1] = -1; cp->PipeNativeSTDERR[0] = -1; cp->PipeNativeSTDERR[1] = -1; /* Set initial status. */ cp->State = kwsysProcess_State_Starting; return cp; } /*--------------------------------------------------------------------------*/ void kwsysProcess_Delete(kwsysProcess* cp) { /* Make sure we have an instance. */ if(!cp) { return; } /* If the process is executing, wait for it to finish. */ if(cp->State == kwsysProcess_State_Executing) { if(cp->Detached) { kwsysProcess_Disown(cp); } else { kwsysProcess_WaitForExit(cp, 0); } } /* Free memory. */ kwsysProcess_SetCommand(cp, 0); kwsysProcess_SetWorkingDirectory(cp, 0); kwsysProcess_SetPipeFile(cp, kwsysProcess_Pipe_STDIN, 0); kwsysProcess_SetPipeFile(cp, kwsysProcess_Pipe_STDOUT, 0); kwsysProcess_SetPipeFile(cp, kwsysProcess_Pipe_STDERR, 0); if(cp->CommandExitCodes) { free(cp->CommandExitCodes); } free(cp); } /*--------------------------------------------------------------------------*/ int kwsysProcess_SetCommand(kwsysProcess* cp, char const* const* command) { int i; if(!cp) { return 0; } for(i=0; i < cp->NumberOfCommands; ++i) { char** c = cp->Commands[i]; while(*c) { free(*c++); } free(cp->Commands[i]); } cp->NumberOfCommands = 0; if(cp->Commands) { free(cp->Commands); cp->Commands = 0; } if(command) { return kwsysProcess_AddCommand(cp, command); } return 1; } /*--------------------------------------------------------------------------*/ int kwsysProcess_AddCommand(kwsysProcess* cp, char const* const* command) { int newNumberOfCommands; char*** newCommands; /* Make sure we have a command to add. */ if(!cp || !command || !*command) { return 0; } /* Allocate a new array for command pointers. */ newNumberOfCommands = cp->NumberOfCommands + 1; if(!(newCommands = (char***)malloc(sizeof(char**) * newNumberOfCommands))) { /* Out of memory. */ return 0; } /* Copy any existing commands into the new array. */ { int i; for(i=0; i < cp->NumberOfCommands; ++i) { newCommands[i] = cp->Commands[i]; } } /* Add the new command. */ if(cp->Verbatim) { /* In order to run the given command line verbatim we need to parse it. */ newCommands[cp->NumberOfCommands] = kwsysProcessParseVerbatimCommand(*command); if(!newCommands[cp->NumberOfCommands]) { /* Out of memory. */ free(newCommands); return 0; } } else { /* Copy each argument string individually. */ char const* const* c = command; kwsysProcess_ptrdiff_t n = 0; kwsysProcess_ptrdiff_t i = 0; while(*c++); n = c - command - 1; newCommands[cp->NumberOfCommands] = (char**)malloc((n+1)*sizeof(char*)); if(!newCommands[cp->NumberOfCommands]) { /* Out of memory. */ free(newCommands); return 0; } for(i=0; i < n; ++i) { newCommands[cp->NumberOfCommands][i] = strdup(command[i]); if(!newCommands[cp->NumberOfCommands][i]) { break; } } if(i < n) { /* Out of memory. */ for(;i > 0; --i) { free(newCommands[cp->NumberOfCommands][i-1]); } free(newCommands); return 0; } newCommands[cp->NumberOfCommands][n] = 0; } /* Successfully allocated new command array. Free the old array. */ free(cp->Commands); cp->Commands = newCommands; cp->NumberOfCommands = newNumberOfCommands; return 1; } /*--------------------------------------------------------------------------*/ void kwsysProcess_SetTimeout(kwsysProcess* cp, double timeout) { if(!cp) { return; } cp->Timeout = timeout; if(cp->Timeout < 0) { cp->Timeout = 0; } } /*--------------------------------------------------------------------------*/ int kwsysProcess_SetWorkingDirectory(kwsysProcess* cp, const char* dir) { if(!cp) { return 0; } if(cp->WorkingDirectory == dir) { return 1; } if(cp->WorkingDirectory && dir && strcmp(cp->WorkingDirectory, dir) == 0) { return 1; } if(cp->WorkingDirectory) { free(cp->WorkingDirectory); cp->WorkingDirectory = 0; } if(dir) { cp->WorkingDirectory = (char*)malloc(strlen(dir) + 1); if(!cp->WorkingDirectory) { return 0; } strcpy(cp->WorkingDirectory, dir); } return 1; } /*--------------------------------------------------------------------------*/ int kwsysProcess_SetPipeFile(kwsysProcess* cp, int prPipe, const char* file) { char** pfile; if(!cp) { return 0; } switch(prPipe) { case kwsysProcess_Pipe_STDIN: pfile = &cp->PipeFileSTDIN; break; case kwsysProcess_Pipe_STDOUT: pfile = &cp->PipeFileSTDOUT; break; case kwsysProcess_Pipe_STDERR: pfile = &cp->PipeFileSTDERR; break; default: return 0; } if(*pfile) { free(*pfile); *pfile = 0; } if(file) { *pfile = malloc(strlen(file)+1); if(!*pfile) { return 0; } strcpy(*pfile, file); } /* If we are redirecting the pipe, do not share it or use a native pipe. */ if(*pfile) { kwsysProcess_SetPipeNative(cp, prPipe, 0); kwsysProcess_SetPipeShared(cp, prPipe, 0); } return 1; } /*--------------------------------------------------------------------------*/ void kwsysProcess_SetPipeShared(kwsysProcess* cp, int prPipe, int shared) { if(!cp) { return; } switch(prPipe) { case kwsysProcess_Pipe_STDIN: cp->PipeSharedSTDIN = shared?1:0; break; case kwsysProcess_Pipe_STDOUT: cp->PipeSharedSTDOUT = shared?1:0; break; case kwsysProcess_Pipe_STDERR: cp->PipeSharedSTDERR = shared?1:0; break; default: return; } /* If we are sharing the pipe, do not redirect it to a file or use a native pipe. */ if(shared) { kwsysProcess_SetPipeFile(cp, prPipe, 0); kwsysProcess_SetPipeNative(cp, prPipe, 0); } } /*--------------------------------------------------------------------------*/ void kwsysProcess_SetPipeNative(kwsysProcess* cp, int prPipe, int p[2]) { int* pPipeNative = 0; if(!cp) { return; } switch(prPipe) { case kwsysProcess_Pipe_STDIN: pPipeNative = cp->PipeNativeSTDIN; break; case kwsysProcess_Pipe_STDOUT: pPipeNative = cp->PipeNativeSTDOUT; break; case kwsysProcess_Pipe_STDERR: pPipeNative = cp->PipeNativeSTDERR; break; default: return; } /* Copy the native pipe descriptors provided. */ if(p) { pPipeNative[0] = p[0]; pPipeNative[1] = p[1]; } else { pPipeNative[0] = -1; pPipeNative[1] = -1; } /* If we are using a native pipe, do not share it or redirect it to a file. */ if(p) { kwsysProcess_SetPipeFile(cp, prPipe, 0); kwsysProcess_SetPipeShared(cp, prPipe, 0); } } /*--------------------------------------------------------------------------*/ int kwsysProcess_GetOption(kwsysProcess* cp, int optionId) { if(!cp) { return 0; } switch(optionId) { case kwsysProcess_Option_Detach: return cp->OptionDetach; case kwsysProcess_Option_Verbatim: return cp->Verbatim; default: return 0; } } /*--------------------------------------------------------------------------*/ void kwsysProcess_SetOption(kwsysProcess* cp, int optionId, int value) { if(!cp) { return; } switch(optionId) { case kwsysProcess_Option_Detach: cp->OptionDetach = value; break; case kwsysProcess_Option_Verbatim: cp->Verbatim = value; break; default: break; } } /*--------------------------------------------------------------------------*/ int kwsysProcess_GetState(kwsysProcess* cp) { return cp? cp->State : kwsysProcess_State_Error; } /*--------------------------------------------------------------------------*/ int kwsysProcess_GetExitException(kwsysProcess* cp) { return cp? cp->ExitException : kwsysProcess_Exception_Other; } /*--------------------------------------------------------------------------*/ int kwsysProcess_GetExitCode(kwsysProcess* cp) { return cp? cp->ExitCode : 0; } /*--------------------------------------------------------------------------*/ int kwsysProcess_GetExitValue(kwsysProcess* cp) { return cp? cp->ExitValue : -1; } /*--------------------------------------------------------------------------*/ const char* kwsysProcess_GetErrorString(kwsysProcess* cp) { if(!cp) { return "Process management structure could not be allocated"; } else if(cp->State == kwsysProcess_State_Error) { return cp->ErrorMessage; } return "Success"; } /*--------------------------------------------------------------------------*/ const char* kwsysProcess_GetExceptionString(kwsysProcess* cp) { if(!cp) { return "GetExceptionString called with NULL process management structure"; } else if(cp->State == kwsysProcess_State_Exception) { return cp->ExitExceptionString; } return "No exception"; } /*--------------------------------------------------------------------------*/ void kwsysProcess_Execute(kwsysProcess* cp) { int i; kwsysProcessCreateInformation si = {-1, -1, -1, {-1, -1}}; /* Do not execute a second copy simultaneously. */ if(!cp || cp->State == kwsysProcess_State_Executing) { return; } /* Initialize the control structure for a new process. */ if(!kwsysProcessInitialize(cp)) { strcpy(cp->ErrorMessage, "Out of memory"); cp->State = kwsysProcess_State_Error; return; } /* Save the real working directory of this process and change to the working directory for the child processes. This is needed to make pipe file paths evaluate correctly. */ if(cp->WorkingDirectory) { int r; if(!getcwd(cp->RealWorkingDirectory, cp->RealWorkingDirectoryLength)) { kwsysProcessCleanup(cp, 1); return; } /* Some platforms specify that the chdir call may be interrupted. Repeat the call until it finishes. */ while(((r = chdir(cp->WorkingDirectory)) < 0) && (errno == EINTR)); if(r < 0) { kwsysProcessCleanup(cp, 1); return; } } /* If not running a detached child, add this object to the global set of process objects that wish to be notified when a child exits. */ if(!cp->OptionDetach) { if(!kwsysProcessesAdd(cp)) { kwsysProcessCleanup(cp, 1); return; } } /* Setup the stderr pipe to be shared by all processes. */ { /* Create the pipe. */ int p[2]; if(pipe(p) < 0) { kwsysProcessCleanup(cp, 1); return; } /* Store the pipe. */ cp->PipeReadEnds[KWSYSPE_PIPE_STDERR] = p[0]; si.StdErr = p[1]; /* Set close-on-exec flag on the pipe's ends. */ if((fcntl(p[0], F_SETFD, FD_CLOEXEC) < 0) || (fcntl(p[1], F_SETFD, FD_CLOEXEC) < 0)) { kwsysProcessCleanup(cp, 1); kwsysProcessCleanupDescriptor(&si.StdErr); return; } #if !KWSYSPE_USE_SELECT if(!kwsysProcessSetNonBlocking(p[0])) { kwsysProcessCleanup(cp, 1); kwsysProcessCleanupDescriptor(&si.StdErr); return; } #endif } /* Replace the stderr pipe with a file if requested. In this case the select call will report that stderr is closed immediately. */ if(cp->PipeFileSTDERR) { if(!kwsysProcessSetupOutputPipeFile(&si.StdErr, cp->PipeFileSTDERR)) { kwsysProcessCleanup(cp, 1); kwsysProcessCleanupDescriptor(&si.StdErr); return; } } /* Replace the stderr pipe with the parent's if requested. In this case the select call will report that stderr is closed immediately. */ if(cp->PipeSharedSTDERR) { kwsysProcessCleanupDescriptor(&si.StdErr); si.StdErr = 2; } /* Replace the stderr pipe with the native pipe provided if any. In this case the select call will report that stderr is closed immediately. */ if(cp->PipeNativeSTDERR[1] >= 0) { if(!kwsysProcessSetupOutputPipeNative(&si.StdErr, cp->PipeNativeSTDERR)) { kwsysProcessCleanup(cp, 1); kwsysProcessCleanupDescriptor(&si.StdErr); return; } } /* The timeout period starts now. */ cp->StartTime = kwsysProcessTimeGetCurrent(); cp->TimeoutTime.tv_sec = -1; cp->TimeoutTime.tv_usec = -1; /* Create the pipeline of processes. */ { int readEnd = -1; int failed = 0; for(i=0; i < cp->NumberOfCommands; ++i) { if(!kwsysProcessCreate(cp, i, &si, &readEnd)) { failed = 1; } #if !KWSYSPE_USE_SELECT /* Set the output pipe of the last process to be non-blocking so we can poll it. */ if(i == cp->NumberOfCommands-1 && !kwsysProcessSetNonBlocking(readEnd)) { failed = 1; } #endif if(failed) { kwsysProcessCleanup(cp, 1); /* Release resources that may have been allocated for this process before an error occurred. */ kwsysProcessCleanupDescriptor(&readEnd); if(si.StdIn != 0) { kwsysProcessCleanupDescriptor(&si.StdIn); } if(si.StdOut != 1) { kwsysProcessCleanupDescriptor(&si.StdOut); } if(si.StdErr != 2) { kwsysProcessCleanupDescriptor(&si.StdErr); } kwsysProcessCleanupDescriptor(&si.ErrorPipe[0]); kwsysProcessCleanupDescriptor(&si.ErrorPipe[1]); return; } } /* Save a handle to the output pipe for the last process. */ cp->PipeReadEnds[KWSYSPE_PIPE_STDOUT] = readEnd; } /* The parent process does not need the output pipe write ends. */ if(si.StdErr != 2) { kwsysProcessCleanupDescriptor(&si.StdErr); } /* Restore the working directory. */ if(cp->RealWorkingDirectory) { /* Some platforms specify that the chdir call may be interrupted. Repeat the call until it finishes. */ while((chdir(cp->RealWorkingDirectory) < 0) && (errno == EINTR)); free(cp->RealWorkingDirectory); cp->RealWorkingDirectory = 0; } /* All the pipes are now open. */ cp->PipesLeft = KWSYSPE_PIPE_COUNT; /* The process has now started. */ cp->State = kwsysProcess_State_Executing; cp->Detached = cp->OptionDetach; } /*--------------------------------------------------------------------------*/ kwsysEXPORT void kwsysProcess_Disown(kwsysProcess* cp) { /* Make sure a detached child process is running. */ if(!cp || !cp->Detached || cp->State != kwsysProcess_State_Executing || cp->TimeoutExpired || cp->Killed) { return; } /* Close all the pipes safely. */ kwsysProcessClosePipes(cp); /* We will not wait for exit, so cleanup now. */ kwsysProcessCleanup(cp, 0); /* The process has been disowned. */ cp->State = kwsysProcess_State_Disowned; } /*--------------------------------------------------------------------------*/ typedef struct kwsysProcessWaitData_s { int Expired; int PipeId; int User; double* UserTimeout; kwsysProcessTime TimeoutTime; } kwsysProcessWaitData; static int kwsysProcessWaitForPipe(kwsysProcess* cp, char** data, int* length, kwsysProcessWaitData* wd); /*--------------------------------------------------------------------------*/ int kwsysProcess_WaitForData(kwsysProcess* cp, char** data, int* length, double* userTimeout) { kwsysProcessTime userStartTime = {0, 0}; kwsysProcessWaitData wd = { 0, kwsysProcess_Pipe_None, 0, 0, {0, 0} }; wd.UserTimeout = userTimeout; /* Make sure we are executing a process. */ if(!cp || cp->State != kwsysProcess_State_Executing || cp->Killed || cp->TimeoutExpired) { return kwsysProcess_Pipe_None; } /* Record the time at which user timeout period starts. */ if(userTimeout) { userStartTime = kwsysProcessTimeGetCurrent(); } /* Calculate the time at which a timeout will expire, and whether it is the user or process timeout. */ wd.User = kwsysProcessGetTimeoutTime(cp, userTimeout, &wd.TimeoutTime); /* Data can only be available when pipes are open. If the process is not running, cp->PipesLeft will be 0. */ while(cp->PipesLeft > 0 && !kwsysProcessWaitForPipe(cp, data, length, &wd)) {} /* Update the user timeout. */ if(userTimeout) { kwsysProcessTime userEndTime = kwsysProcessTimeGetCurrent(); kwsysProcessTime difference = kwsysProcessTimeSubtract(userEndTime, userStartTime); double d = kwsysProcessTimeToDouble(difference); *userTimeout -= d; if(*userTimeout < 0) { *userTimeout = 0; } } /* Check what happened. */ if(wd.PipeId) { /* Data are ready on a pipe. */ return wd.PipeId; } else if(wd.Expired) { /* A timeout has expired. */ if(wd.User) { /* The user timeout has expired. It has no time left. */ return kwsysProcess_Pipe_Timeout; } else { /* The process timeout has expired. Kill the children now. */ kwsysProcess_Kill(cp); cp->Killed = 0; cp->TimeoutExpired = 1; return kwsysProcess_Pipe_None; } } else { /* No pipes are left open. */ return kwsysProcess_Pipe_None; } } /*--------------------------------------------------------------------------*/ static int kwsysProcessWaitForPipe(kwsysProcess* cp, char** data, int* length, kwsysProcessWaitData* wd) { int i; kwsysProcessTimeNative timeoutLength; #if KWSYSPE_USE_SELECT int numReady = 0; int max = -1; kwsysProcessTimeNative* timeout = 0; /* Check for any open pipes with data reported ready by the last call to select. According to "man select_tut" we must deal with all descriptors reported by a call to select before passing them to another select call. */ for(i=0; i < KWSYSPE_PIPE_COUNT; ++i) { if(cp->PipeReadEnds[i] >= 0 && FD_ISSET(cp->PipeReadEnds[i], &cp->PipeSet)) { kwsysProcess_ssize_t n; /* We are handling this pipe now. Remove it from the set. */ FD_CLR(cp->PipeReadEnds[i], &cp->PipeSet); /* The pipe is ready to read without blocking. Keep trying to read until the operation is not interrupted. */ while(((n = read(cp->PipeReadEnds[i], cp->PipeBuffer, KWSYSPE_PIPE_BUFFER_SIZE)) < 0) && (errno == EINTR)); if(n > 0) { /* We have data on this pipe. */ if(i == KWSYSPE_PIPE_SIGNAL) { /* A child process has terminated. */ kwsysProcessDestroy(cp); } else if(data && length) { /* Report this data. */ *data = cp->PipeBuffer; *length = n; switch(i) { case KWSYSPE_PIPE_STDOUT: wd->PipeId = kwsysProcess_Pipe_STDOUT; break; case KWSYSPE_PIPE_STDERR: wd->PipeId = kwsysProcess_Pipe_STDERR; break; }; return 1; } } else { /* We are done reading from this pipe. */ kwsysProcessCleanupDescriptor(&cp->PipeReadEnds[i]); --cp->PipesLeft; } } } /* If we have data, break early. */ if(wd->PipeId) { return 1; } /* Make sure the set is empty (it should always be empty here anyway). */ FD_ZERO(&cp->PipeSet); /* Setup a timeout if required. */ if(wd->TimeoutTime.tv_sec < 0) { timeout = 0; } else { timeout = &timeoutLength; } if(kwsysProcessGetTimeoutLeft(&wd->TimeoutTime, wd->User?wd->UserTimeout:0, &timeoutLength)) { /* Timeout has already expired. */ wd->Expired = 1; return 1; } /* Add the pipe reading ends that are still open. */ max = -1; for(i=0; i < KWSYSPE_PIPE_COUNT; ++i) { if(cp->PipeReadEnds[i] >= 0) { FD_SET(cp->PipeReadEnds[i], &cp->PipeSet); if(cp->PipeReadEnds[i] > max) { max = cp->PipeReadEnds[i]; } } } /* Make sure we have a non-empty set. */ if(max < 0) { /* All pipes have closed. Child has terminated. */ return 1; } /* Run select to block until data are available. Repeat call until it is not interrupted. */ while(((numReady = select(max+1, &cp->PipeSet, 0, 0, timeout)) < 0) && (errno == EINTR)); /* Check result of select. */ if(numReady == 0) { /* Select's timeout expired. */ wd->Expired = 1; return 1; } else if(numReady < 0) { /* Select returned an error. Leave the error description in the pipe buffer. */ strncpy(cp->ErrorMessage, strerror(errno), KWSYSPE_PIPE_BUFFER_SIZE); /* Kill the children now. */ kwsysProcess_Kill(cp); cp->Killed = 0; cp->SelectError = 1; } return 0; #else /* Poll pipes for data since we do not have select. */ for(i=0; i < KWSYSPE_PIPE_COUNT; ++i) { if(cp->PipeReadEnds[i] >= 0) { const int fd = cp->PipeReadEnds[i]; int n = read(fd, cp->PipeBuffer, KWSYSPE_PIPE_BUFFER_SIZE); if(n > 0) { /* We have data on this pipe. */ if(i == KWSYSPE_PIPE_SIGNAL) { /* A child process has terminated. */ kwsysProcessDestroy(cp); } else if(data && length) { /* Report this data. */ *data = cp->PipeBuffer; *length = n; switch(i) { case KWSYSPE_PIPE_STDOUT: wd->PipeId = kwsysProcess_Pipe_STDOUT; break; case KWSYSPE_PIPE_STDERR: wd->PipeId = kwsysProcess_Pipe_STDERR; break; }; } return 1; } else if (n == 0) /* EOF */ { /* We are done reading from this pipe. */ kwsysProcessCleanupDescriptor(&cp->PipeReadEnds[i]); --cp->PipesLeft; } else if (n < 0) /* error */ { if((errno != EINTR) && (errno != EAGAIN)) { strncpy(cp->ErrorMessage,strerror(errno), KWSYSPE_PIPE_BUFFER_SIZE); /* Kill the children now. */ kwsysProcess_Kill(cp); cp->Killed = 0; cp->SelectError = 1; return 1; } } } } /* If we have data, break early. */ if(wd->PipeId) { return 1; } if(kwsysProcessGetTimeoutLeft(&wd->TimeoutTime, wd->User?wd->UserTimeout:0, &timeoutLength)) { /* Timeout has already expired. */ wd->Expired = 1; return 1; } if((timeoutLength.tv_sec == 0) && (timeoutLength.tv_usec == 0)) { /* Timeout has already expired. */ wd->Expired = 1; return 1; } /* Sleep a little, try again. */ { unsigned int msec = ((timeoutLength.tv_sec * 1000) + (timeoutLength.tv_usec / 1000)); if (msec > 100000) { msec = 100000; /* do not sleep more than 100 milliseconds at a time */ } kwsysProcess_usleep(msec); } return 0; #endif } /*--------------------------------------------------------------------------*/ int kwsysProcess_WaitForExit(kwsysProcess* cp, double* userTimeout) { int status = 0; int prPipe = 0; /* Make sure we are executing a process. */ if(!cp || cp->State != kwsysProcess_State_Executing) { return 1; } /* Wait for all the pipes to close. Ignore all data. */ while((prPipe = kwsysProcess_WaitForData(cp, 0, 0, userTimeout)) > 0) { if(prPipe == kwsysProcess_Pipe_Timeout) { return 0; } } /* Check if there was an error in one of the waitpid calls. */ if(cp->State == kwsysProcess_State_Error) { /* The error message is already in its buffer. Tell kwsysProcessCleanup to not create it. */ kwsysProcessCleanup(cp, 0); return 1; } /* Check whether the child reported an error invoking the process. */ if(cp->SelectError) { /* The error message is already in its buffer. Tell kwsysProcessCleanup to not create it. */ kwsysProcessCleanup(cp, 0); cp->State = kwsysProcess_State_Error; return 1; } /* Use the status of the last process in the pipeline. */ status = cp->CommandExitCodes[cp->NumberOfCommands-1]; /* Determine the outcome. */ if(cp->Killed) { /* We killed the child. */ cp->State = kwsysProcess_State_Killed; } else if(cp->TimeoutExpired) { /* The timeout expired. */ cp->State = kwsysProcess_State_Expired; } else if(WIFEXITED(status)) { /* The child exited normally. */ cp->State = kwsysProcess_State_Exited; cp->ExitException = kwsysProcess_Exception_None; cp->ExitCode = status; cp->ExitValue = (int)WEXITSTATUS(status); } else if(WIFSIGNALED(status)) { /* The child received an unhandled signal. */ cp->State = kwsysProcess_State_Exception; cp->ExitCode = status; kwsysProcessSetExitException(cp, (int)WTERMSIG(status)); } else { /* Error getting the child return code. */ strcpy(cp->ErrorMessage, "Error getting child return code."); cp->State = kwsysProcess_State_Error; } /* Normal cleanup. */ kwsysProcessCleanup(cp, 0); return 1; } /*--------------------------------------------------------------------------*/ void kwsysProcess_Kill(kwsysProcess* cp) { int i; /* Make sure we are executing a process. */ if(!cp || cp->State != kwsysProcess_State_Executing) { return; } /* First close the child exit report pipe write end to avoid causing a SIGPIPE when the child terminates and our signal handler tries to report it after we have already closed the read end. */ kwsysProcessCleanupDescriptor(&cp->SignalPipe); #if !defined(__APPLE__) /* Close all the pipe read ends. Do this before killing the children because Cygwin has problems killing processes that are blocking to wait for writing to their output pipes. */ kwsysProcessClosePipes(cp); #endif /* Kill the children. */ cp->Killed = 1; for(i=0; i < cp->NumberOfCommands; ++i) { int status; if(cp->ForkPIDs[i]) { /* Kill the child. */ kwsysProcessKill(cp->ForkPIDs[i]); /* Reap the child. Keep trying until the call is not interrupted. */ while((waitpid(cp->ForkPIDs[i], &status, 0) < 0) && (errno == EINTR)); } } #if defined(__APPLE__) /* Close all the pipe read ends. Do this after killing the children because OS X has problems closing pipe read ends whose pipes are full and still have an open write end. */ kwsysProcessClosePipes(cp); #endif cp->CommandsLeft = 0; } /*--------------------------------------------------------------------------*/ /* Initialize a process control structure for kwsysProcess_Execute. */ static int kwsysProcessInitialize(kwsysProcess* cp) { int i; for(i=0; i < KWSYSPE_PIPE_COUNT; ++i) { cp->PipeReadEnds[i] = -1; } cp->SignalPipe = -1; cp->SelectError = 0; cp->StartTime.tv_sec = -1; cp->StartTime.tv_usec = -1; cp->TimeoutTime.tv_sec = -1; cp->TimeoutTime.tv_usec = -1; cp->TimeoutExpired = 0; cp->PipesLeft = 0; cp->CommandsLeft = 0; #if KWSYSPE_USE_SELECT FD_ZERO(&cp->PipeSet); #endif cp->State = kwsysProcess_State_Starting; cp->Killed = 0; cp->ExitException = kwsysProcess_Exception_None; cp->ExitCode = 1; cp->ExitValue = 1; cp->ErrorMessage[0] = 0; strcpy(cp->ExitExceptionString, "No exception"); if(cp->ForkPIDs) { free(cp->ForkPIDs); } cp->ForkPIDs = (pid_t*)malloc(sizeof(pid_t)*cp->NumberOfCommands); if(!cp->ForkPIDs) { return 0; } memset(cp->ForkPIDs, 0, sizeof(pid_t)*cp->NumberOfCommands); if(cp->CommandExitCodes) { free(cp->CommandExitCodes); } cp->CommandExitCodes = (int*)malloc(sizeof(int)*cp->NumberOfCommands); if(!cp->CommandExitCodes) { return 0; } memset(cp->CommandExitCodes, 0, sizeof(int)*cp->NumberOfCommands); /* Allocate memory to save the real working directory. */ if ( cp->WorkingDirectory ) { #if defined(MAXPATHLEN) cp->RealWorkingDirectoryLength = MAXPATHLEN; #elif defined(PATH_MAX) cp->RealWorkingDirectoryLength = PATH_MAX; #else cp->RealWorkingDirectoryLength = 4096; #endif cp->RealWorkingDirectory = malloc(cp->RealWorkingDirectoryLength); if(!cp->RealWorkingDirectory) { return 0; } } return 1; } /*--------------------------------------------------------------------------*/ /* Free all resources used by the given kwsysProcess instance that were allocated by kwsysProcess_Execute. */ static void kwsysProcessCleanup(kwsysProcess* cp, int error) { int i; if(error) { /* We are cleaning up due to an error. Report the error message if one has not been provided already. */ if(cp->ErrorMessage[0] == 0) { strncpy(cp->ErrorMessage, strerror(errno), KWSYSPE_PIPE_BUFFER_SIZE); } /* Set the error state. */ cp->State = kwsysProcess_State_Error; /* Kill any children already started. */ if(cp->ForkPIDs) { int status; for(i=0; i < cp->NumberOfCommands; ++i) { if(cp->ForkPIDs[i]) { /* Kill the child. */ kwsysProcessKill(cp->ForkPIDs[i]); /* Reap the child. Keep trying until the call is not interrupted. */ while((waitpid(cp->ForkPIDs[i], &status, 0) < 0) && (errno == EINTR)); } } } /* Restore the working directory. */ if(cp->RealWorkingDirectory) { while((chdir(cp->RealWorkingDirectory) < 0) && (errno == EINTR)); } } /* If not creating a detached child, remove this object from the global set of process objects that wish to be notified when a child exits. */ if(!cp->OptionDetach) { kwsysProcessesRemove(cp); } /* Free memory. */ if(cp->ForkPIDs) { free(cp->ForkPIDs); cp->ForkPIDs = 0; } if(cp->RealWorkingDirectory) { free(cp->RealWorkingDirectory); cp->RealWorkingDirectory = 0; } /* Close pipe handles. */ for(i=0; i < KWSYSPE_PIPE_COUNT; ++i) { kwsysProcessCleanupDescriptor(&cp->PipeReadEnds[i]); } } /*--------------------------------------------------------------------------*/ /* Close the given file descriptor if it is open. Reset its value to -1. */ static void kwsysProcessCleanupDescriptor(int* pfd) { if(pfd && *pfd >= 0) { /* Keep trying to close until it is not interrupted by a * signal. */ while((close(*pfd) < 0) && (errno == EINTR)); *pfd = -1; } } /*--------------------------------------------------------------------------*/ static void kwsysProcessClosePipes(kwsysProcess* cp) { int i; /* Close any pipes that are still open. */ for(i=0; i < KWSYSPE_PIPE_COUNT; ++i) { if(cp->PipeReadEnds[i] >= 0) { #if KWSYSPE_USE_SELECT /* If the pipe was reported by the last call to select, we must read from it. This is needed to satisfy the suggestions from "man select_tut" and is not needed for the polling implementation. Ignore the data. */ if(FD_ISSET(cp->PipeReadEnds[i], &cp->PipeSet)) { /* We are handling this pipe now. Remove it from the set. */ FD_CLR(cp->PipeReadEnds[i], &cp->PipeSet); /* The pipe is ready to read without blocking. Keep trying to read until the operation is not interrupted. */ while((read(cp->PipeReadEnds[i], cp->PipeBuffer, KWSYSPE_PIPE_BUFFER_SIZE) < 0) && (errno == EINTR)); } #endif /* We are done reading from this pipe. */ kwsysProcessCleanupDescriptor(&cp->PipeReadEnds[i]); --cp->PipesLeft; } } } /*--------------------------------------------------------------------------*/ static int kwsysProcessSetNonBlocking(int fd) { int flags = fcntl(fd, F_GETFL); if(flags >= 0) { flags = fcntl(fd, F_SETFL, flags | O_NONBLOCK); } return flags >= 0; } /*--------------------------------------------------------------------------*/ static int kwsysProcessCreate(kwsysProcess* cp, int prIndex, kwsysProcessCreateInformation* si, int* readEnd) { /* Setup the process's stdin. */ if(prIndex > 0) { si->StdIn = *readEnd; *readEnd = 0; } else if(cp->PipeFileSTDIN) { /* Open a file for the child's stdin to read. */ si->StdIn = open(cp->PipeFileSTDIN, O_RDONLY); if(si->StdIn < 0) { return 0; } /* Set close-on-exec flag on the pipe's end. */ if(fcntl(si->StdIn, F_SETFD, FD_CLOEXEC) < 0) { return 0; } } else if(cp->PipeSharedSTDIN) { si->StdIn = 0; } else if(cp->PipeNativeSTDIN[0] >= 0) { si->StdIn = cp->PipeNativeSTDIN[0]; /* Set close-on-exec flag on the pipe's ends. The read end will be dup2-ed into the stdin descriptor after the fork but before the exec. */ if((fcntl(cp->PipeNativeSTDIN[0], F_SETFD, FD_CLOEXEC) < 0) || (fcntl(cp->PipeNativeSTDIN[1], F_SETFD, FD_CLOEXEC) < 0)) { return 0; } } else { si->StdIn = -1; } /* Setup the process's stdout. */ { /* Create the pipe. */ int p[2]; if(pipe(p) < 0) { return 0; } *readEnd = p[0]; si->StdOut = p[1]; /* Set close-on-exec flag on the pipe's ends. */ if((fcntl(p[0], F_SETFD, FD_CLOEXEC) < 0) || (fcntl(p[1], F_SETFD, FD_CLOEXEC) < 0)) { return 0; } } /* Replace the stdout pipe with a file if requested. In this case the select call will report that stdout is closed immediately. */ if(prIndex == cp->NumberOfCommands-1 && cp->PipeFileSTDOUT) { if(!kwsysProcessSetupOutputPipeFile(&si->StdOut, cp->PipeFileSTDOUT)) { return 0; } } /* Replace the stdout pipe with the parent's if requested. In this case the select call will report that stderr is closed immediately. */ if(prIndex == cp->NumberOfCommands-1 && cp->PipeSharedSTDOUT) { kwsysProcessCleanupDescriptor(&si->StdOut); si->StdOut = 1; } /* Replace the stdout pipe with the native pipe provided if any. In this case the select call will report that stdout is closed immediately. */ if(prIndex == cp->NumberOfCommands-1 && cp->PipeNativeSTDOUT[1] >= 0) { if(!kwsysProcessSetupOutputPipeNative(&si->StdOut, cp->PipeNativeSTDOUT)) { return 0; } } /* Create the error reporting pipe. */ if(pipe(si->ErrorPipe) < 0) { return 0; } /* Set close-on-exec flag on the error pipe's write end. */ if(fcntl(si->ErrorPipe[1], F_SETFD, FD_CLOEXEC) < 0) { return 0; } /* Fork off a child process. */ cp->ForkPIDs[prIndex] = kwsysProcessFork(cp, si); if(cp->ForkPIDs[prIndex] < 0) { return 0; } if(cp->ForkPIDs[prIndex] == 0) { /* Close the read end of the error reporting pipe. */ close(si->ErrorPipe[0]); /* Setup the stdin, stdout, and stderr pipes. */ if(si->StdIn > 0) { dup2(si->StdIn, 0); } else if(si->StdIn < 0) { close(0); } if(si->StdOut != 1) { dup2(si->StdOut, 1); } if(si->StdErr != 2) { dup2(si->StdErr, 2); } /* Clear the close-on-exec flag for stdin, stdout, and stderr. All other pipe handles will be closed when exec succeeds. */ fcntl(0, F_SETFD, 0); fcntl(1, F_SETFD, 0); fcntl(2, F_SETFD, 0); /* Restore all default signal handlers. */ kwsysProcessRestoreDefaultSignalHandlers(); /* Execute the real process. If successful, this does not return. */ execvp(cp->Commands[prIndex][0], cp->Commands[prIndex]); /* Failure. Report error to parent and terminate. */ kwsysProcessChildErrorExit(si->ErrorPipe[1]); } /* A child has been created. */ ++cp->CommandsLeft; /* We are done with the error reporting pipe write end. */ kwsysProcessCleanupDescriptor(&si->ErrorPipe[1]); /* Block until the child's exec call succeeds and closes the error pipe or writes data to the pipe to report an error. */ { kwsysProcess_ssize_t total = 0; kwsysProcess_ssize_t n = 1; /* Read the entire error message up to the length of our buffer. */ while(total < KWSYSPE_PIPE_BUFFER_SIZE && n > 0) { /* Keep trying to read until the operation is not interrupted. */ while(((n = read(si->ErrorPipe[0], cp->ErrorMessage+total, KWSYSPE_PIPE_BUFFER_SIZE-total)) < 0) && (errno == EINTR)); if(n > 0) { total += n; } } /* We are done with the error reporting pipe read end. */ kwsysProcessCleanupDescriptor(&si->ErrorPipe[0]); if(total > 0) { /* The child failed to execute the process. */ return 0; } } /* Successfully created this child process. */ if(prIndex > 0 || si->StdIn > 0) { /* The parent process does not need the input pipe read end. */ kwsysProcessCleanupDescriptor(&si->StdIn); } /* The parent process does not need the output pipe write ends. */ if(si->StdOut != 1) { kwsysProcessCleanupDescriptor(&si->StdOut); } return 1; } /*--------------------------------------------------------------------------*/ static void kwsysProcessDestroy(kwsysProcess* cp) { /* A child process has terminated. Reap it if it is one handled by this object. */ int i; for(i=0; i < cp->NumberOfCommands; ++i) { if(cp->ForkPIDs[i]) { int result; while(((result = waitpid(cp->ForkPIDs[i], &cp->CommandExitCodes[i], WNOHANG)) < 0) && (errno == EINTR)); if(result > 0) { /* This child has termianted. */ cp->ForkPIDs[i] = 0; if(--cp->CommandsLeft == 0) { /* All children have terminated. Close the signal pipe write end so that no more notifications are sent to this object. */ kwsysProcessCleanupDescriptor(&cp->SignalPipe); /* TODO: Once the children have terminated, switch WaitForData to use a non-blocking read to get the rest of the data from the pipe. This is needed when grandchildren keep the output pipes open. */ } } else if(result < 0 && cp->State != kwsysProcess_State_Error) { /* Unexpected error. Report the first time this happens. */ strncpy(cp->ErrorMessage, strerror(errno), KWSYSPE_PIPE_BUFFER_SIZE); cp->State = kwsysProcess_State_Error; } } } } /*--------------------------------------------------------------------------*/ static int kwsysProcessSetupOutputPipeFile(int* p, const char* name) { int fout; if(!name) { return 1; } /* Close the existing descriptor. */ kwsysProcessCleanupDescriptor(p); /* Open a file for the pipe to write (permissions 644). */ if((fout = open(name, O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) < 0) { return 0; } /* Set close-on-exec flag on the pipe's end. */ if(fcntl(fout, F_SETFD, FD_CLOEXEC) < 0) { return 0; } /* Assign the replacement descriptor. */ *p = fout; return 1; } /*--------------------------------------------------------------------------*/ static int kwsysProcessSetupOutputPipeNative(int* p, int des[2]) { /* Close the existing descriptor. */ kwsysProcessCleanupDescriptor(p); /* Set close-on-exec flag on the pipe's ends. The proper end will be dup2-ed into the standard descriptor number after fork but before exec. */ if((fcntl(des[0], F_SETFD, FD_CLOEXEC) < 0) || (fcntl(des[1], F_SETFD, FD_CLOEXEC) < 0)) { return 0; } /* Assign the replacement descriptor. */ *p = des[1]; return 1; } /*--------------------------------------------------------------------------*/ /* Get the time at which either the process or user timeout will expire. Returns 1 if the user timeout is first, and 0 otherwise. */ static int kwsysProcessGetTimeoutTime(kwsysProcess* cp, double* userTimeout, kwsysProcessTime* timeoutTime) { /* The first time this is called, we need to calculate the time at which the child will timeout. */ if(cp->Timeout && cp->TimeoutTime.tv_sec < 0) { kwsysProcessTime length = kwsysProcessTimeFromDouble(cp->Timeout); cp->TimeoutTime = kwsysProcessTimeAdd(cp->StartTime, length); } /* Start with process timeout. */ *timeoutTime = cp->TimeoutTime; /* Check if the user timeout is earlier. */ if(userTimeout) { kwsysProcessTime currentTime = kwsysProcessTimeGetCurrent(); kwsysProcessTime userTimeoutLength = kwsysProcessTimeFromDouble(*userTimeout); kwsysProcessTime userTimeoutTime = kwsysProcessTimeAdd(currentTime, userTimeoutLength); if(timeoutTime->tv_sec < 0 || kwsysProcessTimeLess(userTimeoutTime, *timeoutTime)) { *timeoutTime = userTimeoutTime; return 1; } } return 0; } /*--------------------------------------------------------------------------*/ /* Get the length of time before the given timeout time arrives. Returns 1 if the time has already arrived, and 0 otherwise. */ static int kwsysProcessGetTimeoutLeft(kwsysProcessTime* timeoutTime, double* userTimeout, kwsysProcessTimeNative* timeoutLength) { if(timeoutTime->tv_sec < 0) { /* No timeout time has been requested. */ return 0; } else { /* Calculate the remaining time. */ kwsysProcessTime currentTime = kwsysProcessTimeGetCurrent(); kwsysProcessTime timeLeft = kwsysProcessTimeSubtract(*timeoutTime, currentTime); if(timeLeft.tv_sec < 0 && userTimeout && *userTimeout <= 0) { /* Caller has explicitly requested a zero timeout. */ timeLeft.tv_sec = 0; timeLeft.tv_usec = 0; } if(timeLeft.tv_sec < 0) { /* Timeout has already expired. */ return 1; } else { /* There is some time left. */ timeoutLength->tv_sec = timeLeft.tv_sec; timeoutLength->tv_usec = timeLeft.tv_usec; return 0; } } } /*--------------------------------------------------------------------------*/ static kwsysProcessTime kwsysProcessTimeGetCurrent(void) { kwsysProcessTime current; kwsysProcessTimeNative current_native; gettimeofday(¤t_native, 0); current.tv_sec = (long)current_native.tv_sec; current.tv_usec = (long)current_native.tv_usec; return current; } /*--------------------------------------------------------------------------*/ static double kwsysProcessTimeToDouble(kwsysProcessTime t) { return (double)t.tv_sec + t.tv_usec*0.000001; } /*--------------------------------------------------------------------------*/ static kwsysProcessTime kwsysProcessTimeFromDouble(double d) { kwsysProcessTime t; t.tv_sec = (long)d; t.tv_usec = (long)((d-t.tv_sec)*1000000); return t; } /*--------------------------------------------------------------------------*/ static int kwsysProcessTimeLess(kwsysProcessTime in1, kwsysProcessTime in2) { return ((in1.tv_sec < in2.tv_sec) || ((in1.tv_sec == in2.tv_sec) && (in1.tv_usec < in2.tv_usec))); } /*--------------------------------------------------------------------------*/ static kwsysProcessTime kwsysProcessTimeAdd(kwsysProcessTime in1, kwsysProcessTime in2) { kwsysProcessTime out; out.tv_sec = in1.tv_sec + in2.tv_sec; out.tv_usec = in1.tv_usec + in2.tv_usec; if(out.tv_usec > 1000000) { out.tv_usec -= 1000000; out.tv_sec += 1; } return out; } /*--------------------------------------------------------------------------*/ static kwsysProcessTime kwsysProcessTimeSubtract(kwsysProcessTime in1, kwsysProcessTime in2) { kwsysProcessTime out; out.tv_sec = in1.tv_sec - in2.tv_sec; out.tv_usec = in1.tv_usec - in2.tv_usec; if(out.tv_usec < 0) { out.tv_usec += 1000000; out.tv_sec -= 1; } return out; } /*--------------------------------------------------------------------------*/ #define KWSYSPE_CASE(type, str) \ cp->ExitException = kwsysProcess_Exception_##type; \ strcpy(cp->ExitExceptionString, str) static void kwsysProcessSetExitException(kwsysProcess* cp, int sig) { switch (sig) { #ifdef SIGSEGV case SIGSEGV: KWSYSPE_CASE(Fault, "Segmentation fault"); break; #endif #ifdef SIGBUS # if !defined(SIGSEGV) || SIGBUS != SIGSEGV case SIGBUS: KWSYSPE_CASE(Fault, "Bus error"); break; # endif #endif #ifdef SIGFPE case SIGFPE: KWSYSPE_CASE(Numerical, "Floating-point exception"); break; #endif #ifdef SIGILL case SIGILL: KWSYSPE_CASE(Illegal, "Illegal instruction"); break; #endif #ifdef SIGINT case SIGINT: KWSYSPE_CASE(Interrupt, "User interrupt"); break; #endif #ifdef SIGABRT case SIGABRT: KWSYSPE_CASE(Other, "Child aborted"); break; #endif #ifdef SIGKILL case SIGKILL: KWSYSPE_CASE(Other, "Child killed"); break; #endif #ifdef SIGTERM case SIGTERM: KWSYSPE_CASE(Other, "Child terminated"); break; #endif #ifdef SIGHUP case SIGHUP: KWSYSPE_CASE(Other, "SIGHUP"); break; #endif #ifdef SIGQUIT case SIGQUIT: KWSYSPE_CASE(Other, "SIGQUIT"); break; #endif #ifdef SIGTRAP case SIGTRAP: KWSYSPE_CASE(Other, "SIGTRAP"); break; #endif #ifdef SIGIOT # if !defined(SIGABRT) || SIGIOT != SIGABRT case SIGIOT: KWSYSPE_CASE(Other, "SIGIOT"); break; # endif #endif #ifdef SIGUSR1 case SIGUSR1: KWSYSPE_CASE(Other, "SIGUSR1"); break; #endif #ifdef SIGUSR2 case SIGUSR2: KWSYSPE_CASE(Other, "SIGUSR2"); break; #endif #ifdef SIGPIPE case SIGPIPE: KWSYSPE_CASE(Other, "SIGPIPE"); break; #endif #ifdef SIGALRM case SIGALRM: KWSYSPE_CASE(Other, "SIGALRM"); break; #endif #ifdef SIGSTKFLT case SIGSTKFLT: KWSYSPE_CASE(Other, "SIGSTKFLT"); break; #endif #ifdef SIGCHLD case SIGCHLD: KWSYSPE_CASE(Other, "SIGCHLD"); break; #elif defined(SIGCLD) case SIGCLD: KWSYSPE_CASE(Other, "SIGCLD"); break; #endif #ifdef SIGCONT case SIGCONT: KWSYSPE_CASE(Other, "SIGCONT"); break; #endif #ifdef SIGSTOP case SIGSTOP: KWSYSPE_CASE(Other, "SIGSTOP"); break; #endif #ifdef SIGTSTP case SIGTSTP: KWSYSPE_CASE(Other, "SIGTSTP"); break; #endif #ifdef SIGTTIN case SIGTTIN: KWSYSPE_CASE(Other, "SIGTTIN"); break; #endif #ifdef SIGTTOU case SIGTTOU: KWSYSPE_CASE(Other, "SIGTTOU"); break; #endif #ifdef SIGURG case SIGURG: KWSYSPE_CASE(Other, "SIGURG"); break; #endif #ifdef SIGXCPU case SIGXCPU: KWSYSPE_CASE(Other, "SIGXCPU"); break; #endif #ifdef SIGXFSZ case SIGXFSZ: KWSYSPE_CASE(Other, "SIGXFSZ"); break; #endif #ifdef SIGVTALRM case SIGVTALRM: KWSYSPE_CASE(Other, "SIGVTALRM"); break; #endif #ifdef SIGPROF case SIGPROF: KWSYSPE_CASE(Other, "SIGPROF"); break; #endif #ifdef SIGWINCH case SIGWINCH: KWSYSPE_CASE(Other, "SIGWINCH"); break; #endif #ifdef SIGPOLL case SIGPOLL: KWSYSPE_CASE(Other, "SIGPOLL"); break; #endif #ifdef SIGIO # if !defined(SIGPOLL) || SIGIO != SIGPOLL case SIGIO: KWSYSPE_CASE(Other, "SIGIO"); break; # endif #endif #ifdef SIGPWR case SIGPWR: KWSYSPE_CASE(Other, "SIGPWR"); break; #endif #ifdef SIGSYS case SIGSYS: KWSYSPE_CASE(Other, "SIGSYS"); break; #endif #ifdef SIGUNUSED # if !defined(SIGSYS) || SIGUNUSED != SIGSYS case SIGUNUSED: KWSYSPE_CASE(Other, "SIGUNUSED"); break; # endif #endif default: cp->ExitException = kwsysProcess_Exception_Other; sprintf(cp->ExitExceptionString, "Signal %d", sig); break; } } #undef KWSYSPE_CASE /*--------------------------------------------------------------------------*/ /* When the child process encounters an error before its program is invoked, this is called to report the error to the parent and exit. */ static void kwsysProcessChildErrorExit(int errorPipe) { /* Construct the error message. */ char buffer[KWSYSPE_PIPE_BUFFER_SIZE]; strncpy(buffer, strerror(errno), KWSYSPE_PIPE_BUFFER_SIZE); /* Report the error to the parent through the special pipe. */ write(errorPipe, buffer, strlen(buffer)); /* Terminate without cleanup. */ _exit(1); } /*--------------------------------------------------------------------------*/ /* Restores all signal handlers to their default values. */ static void kwsysProcessRestoreDefaultSignalHandlers(void) { struct sigaction act; memset(&act, 0, sizeof(struct sigaction)); act.sa_handler = SIG_DFL; #ifdef SIGHUP sigaction(SIGHUP, &act, 0); #endif #ifdef SIGINT sigaction(SIGINT, &act, 0); #endif #ifdef SIGQUIT sigaction(SIGQUIT, &act, 0); #endif #ifdef SIGILL sigaction(SIGILL, &act, 0); #endif #ifdef SIGTRAP sigaction(SIGTRAP, &act, 0); #endif #ifdef SIGABRT sigaction(SIGABRT, &act, 0); #endif #ifdef SIGIOT sigaction(SIGIOT, &act, 0); #endif #ifdef SIGBUS sigaction(SIGBUS, &act, 0); #endif #ifdef SIGFPE sigaction(SIGFPE, &act, 0); #endif #ifdef SIGUSR1 sigaction(SIGUSR1, &act, 0); #endif #ifdef SIGSEGV sigaction(SIGSEGV, &act, 0); #endif #ifdef SIGUSR2 sigaction(SIGUSR2, &act, 0); #endif #ifdef SIGPIPE sigaction(SIGPIPE, &act, 0); #endif #ifdef SIGALRM sigaction(SIGALRM, &act, 0); #endif #ifdef SIGTERM sigaction(SIGTERM, &act, 0); #endif #ifdef SIGSTKFLT sigaction(SIGSTKFLT, &act, 0); #endif #ifdef SIGCLD sigaction(SIGCLD, &act, 0); #endif #ifdef SIGCHLD sigaction(SIGCHLD, &act, 0); #endif #ifdef SIGCONT sigaction(SIGCONT, &act, 0); #endif #ifdef SIGTSTP sigaction(SIGTSTP, &act, 0); #endif #ifdef SIGTTIN sigaction(SIGTTIN, &act, 0); #endif #ifdef SIGTTOU sigaction(SIGTTOU, &act, 0); #endif #ifdef SIGURG sigaction(SIGURG, &act, 0); #endif #ifdef SIGXCPU sigaction(SIGXCPU, &act, 0); #endif #ifdef SIGXFSZ sigaction(SIGXFSZ, &act, 0); #endif #ifdef SIGVTALRM sigaction(SIGVTALRM, &act, 0); #endif #ifdef SIGPROF sigaction(SIGPROF, &act, 0); #endif #ifdef SIGWINCH sigaction(SIGWINCH, &act, 0); #endif #ifdef SIGPOLL sigaction(SIGPOLL, &act, 0); #endif #ifdef SIGIO sigaction(SIGIO, &act, 0); #endif #ifdef SIGPWR sigaction(SIGPWR, &act, 0); #endif #ifdef SIGSYS sigaction(SIGSYS, &act, 0); #endif #ifdef SIGUNUSED sigaction(SIGUNUSED, &act, 0); #endif } /*--------------------------------------------------------------------------*/ static void kwsysProcessExit(void) { _exit(0); } /*--------------------------------------------------------------------------*/ static pid_t kwsysProcessFork(kwsysProcess* cp, kwsysProcessCreateInformation* si) { /* Create a detached process if requested. */ if(cp->OptionDetach) { /* Create an intermediate process. */ pid_t middle_pid = fork(); if(middle_pid < 0) { /* Fork failed. Return as if we were not detaching. */ return middle_pid; } else if(middle_pid == 0) { /* This is the intermediate process. Create the real child. */ pid_t child_pid = fork(); if(child_pid == 0) { /* This is the real child process. There is nothing to do here. */ return 0; } else { /* Use the error pipe to report the pid to the real parent. */ while((write(si->ErrorPipe[1], &child_pid, sizeof(child_pid)) < 0) && (errno == EINTR)); /* Exit without cleanup. The parent holds all resources. */ kwsysProcessExit(); return 0; /* Never reached, but avoids SunCC warning. */ } } else { /* This is the original parent process. The intermediate process will use the error pipe to report the pid of the detached child. */ pid_t child_pid; int status; while((read(si->ErrorPipe[0], &child_pid, sizeof(child_pid)) < 0) && (errno == EINTR)); /* Wait for the intermediate process to exit and clean it up. */ while((waitpid(middle_pid, &status, 0) < 0) && (errno == EINTR)); return child_pid; } } else { /* Not creating a detached process. Use normal fork. */ return fork(); } } /*--------------------------------------------------------------------------*/ /* We try to obtain process information by invoking the ps command. Here we define the command to call on each platform and the corresponding parsing format string. The parsing format should have two integers to store: the pid and then the ppid. */ #if defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) # define KWSYSPE_PS_COMMAND "ps axo pid,ppid" # define KWSYSPE_PS_FORMAT "%d %d\n" #elif defined(__hpux) || defined(__sparc) || defined(__sgi) || defined(_AIX) # define KWSYSPE_PS_COMMAND "ps -ef" # define KWSYSPE_PS_FORMAT "%*s %d %d %*[^\n]\n" #elif defined(__CYGWIN__) # define KWSYSPE_PS_COMMAND "ps aux" # define KWSYSPE_PS_FORMAT "%d %d %*[^\n]\n" #endif /*--------------------------------------------------------------------------*/ static void kwsysProcessKill(pid_t process_id) { #if defined(__linux__) || defined(__CYGWIN__) DIR* procdir; #endif /* Kill the process now to make sure it does not create more children. Do not reap it yet so we can identify its existing children. There is a small race condition here. If the child forks after we begin looking for children below but before it receives this kill signal we might miss a child. Also we might not be able to catch up to a fork bomb. */ kill(process_id, SIGKILL); /* Kill all children if we can find them. */ #if defined(__linux__) || defined(__CYGWIN__) /* First try using the /proc filesystem. */ if((procdir = opendir("/proc")) != NULL) { #if defined(MAXPATHLEN) char fname[MAXPATHLEN]; #elif defined(PATH_MAX) char fname[PATH_MAX]; #else char fname[4096]; #endif char buffer[KWSYSPE_PIPE_BUFFER_SIZE+1]; struct dirent* d; /* Each process has a directory in /proc whose name is the pid. Within this directory is a file called stat that has the following format: pid (command line) status ppid ... We want to get the ppid for all processes. Those that have process_id as their parent should be recursively killed. */ for(d = readdir(procdir); d; d = readdir(procdir)) { int pid; if(sscanf(d->d_name, "%d", &pid) == 1 && pid != 0) { struct stat finfo; sprintf(fname, "/proc/%d/stat", pid); if(stat(fname, &finfo) == 0) { FILE* f = fopen(fname, "r"); if(f) { int nread = fread(buffer, 1, KWSYSPE_PIPE_BUFFER_SIZE, f); buffer[nread] = '\0'; if(nread > 0) { const char* rparen = strrchr(buffer, ')'); int ppid; if(rparen && (sscanf(rparen+1, "%*s %d", &ppid) == 1)) { if(ppid == process_id) { /* Recursively kill this child and its children. */ kwsysProcessKill(pid); } } } fclose(f); } } } } closedir(procdir); } else #endif { #if defined(KWSYSPE_PS_COMMAND) /* Try running "ps" to get the process information. */ FILE* ps = popen(KWSYSPE_PS_COMMAND, "r"); /* Make sure the process started and provided a valid header. */ if(ps && fscanf(ps, "%*[^\n]\n") != EOF) { /* Look for processes whose parent is the process being killed. */ int pid, ppid; while(fscanf(ps, KWSYSPE_PS_FORMAT, &pid, &ppid) == 2) { if(ppid == process_id) { /* Recursively kill this child and its children. */ kwsysProcessKill(pid); } } } /* We are done with the ps process. */ if(ps) { pclose(ps); } #endif } } /*--------------------------------------------------------------------------*/ /* Global set of executing processes for use by the signal handler. This global instance will be zero-initialized by the compiler. */ typedef struct kwsysProcessInstances_s { int Count; int Size; kwsysProcess** Processes; } kwsysProcessInstances; static kwsysProcessInstances kwsysProcesses; /* The old SIGCHLD handler. */ static struct sigaction kwsysProcessesOldSigChldAction; /*--------------------------------------------------------------------------*/ static void kwsysProcessesUpdate(kwsysProcessInstances* newProcesses) { /* Block SIGCHLD while we update the set of pipes to check. TODO: sigprocmask is undefined for threaded apps. See pthread_sigmask. */ sigset_t newset; sigset_t oldset; sigemptyset(&newset); sigaddset(&newset, SIGCHLD); sigprocmask(SIG_BLOCK, &newset, &oldset); /* Store the new set in that seen by the signal handler. */ kwsysProcesses = *newProcesses; /* Restore the signal mask to the previous setting. */ sigprocmask(SIG_SETMASK, &oldset, 0); } /*--------------------------------------------------------------------------*/ static int kwsysProcessesAdd(kwsysProcess* cp) { /* Create a pipe through which the signal handler can notify the given process object that a child has exited. */ { /* Create the pipe. */ int p[2]; if(pipe(p) < 0) { return 0; } /* Store the pipes now to be sure they are cleaned up later. */ cp->PipeReadEnds[KWSYSPE_PIPE_SIGNAL] = p[0]; cp->SignalPipe = p[1]; /* Switch the pipe to non-blocking mode so that reading a byte can be an atomic test-and-set. */ if(!kwsysProcessSetNonBlocking(p[0]) || !kwsysProcessSetNonBlocking(p[1])) { return 0; } /* The children do not need this pipe. Set close-on-exec flag on the pipe's ends. */ if((fcntl(p[0], F_SETFD, FD_CLOEXEC) < 0) || (fcntl(p[1], F_SETFD, FD_CLOEXEC) < 0)) { return 0; } } /* Attempt to add the given signal pipe to the signal handler set. */ { /* Make sure there is enough space for the new signal pipe. */ kwsysProcessInstances oldProcesses = kwsysProcesses; kwsysProcessInstances newProcesses = oldProcesses; if(oldProcesses.Count == oldProcesses.Size) { /* Start with enough space for a small number of process instances and double the size each time more is needed. */ newProcesses.Size = oldProcesses.Size? oldProcesses.Size*2 : 4; /* Try allocating the new block of memory. */ if((newProcesses.Processes = ((kwsysProcess**) malloc(newProcesses.Size* sizeof(kwsysProcess*))))) { /* Copy the old pipe set to the new memory. */ if(oldProcesses.Count > 0) { memcpy(newProcesses.Processes, oldProcesses.Processes, (oldProcesses.Count * sizeof(kwsysProcess*))); } } else { /* Failed to allocate memory for the new signal pipe set. */ return 0; } } /* Append the new signal pipe to the set. */ newProcesses.Processes[newProcesses.Count++] = cp; /* Store the new set in that seen by the signal handler. */ kwsysProcessesUpdate(&newProcesses); /* Free the original pipes if new ones were allocated. */ if(newProcesses.Processes != oldProcesses.Processes) { free(oldProcesses.Processes); } /* If this is the first process, enable the signal handler. */ if(newProcesses.Count == 1) { /* Install our handler for SIGCHLD. Repeat call until it is not interrupted. */ struct sigaction newSigChldAction; memset(&newSigChldAction, 0, sizeof(struct sigaction)); #if KWSYSPE_USE_SIGINFO newSigChldAction.sa_sigaction = kwsysProcessesSignalHandler; newSigChldAction.sa_flags = SA_NOCLDSTOP | SA_SIGINFO; # ifdef SA_RESTART newSigChldAction.sa_flags |= SA_RESTART; # endif #else newSigChldAction.sa_handler = kwsysProcessesSignalHandler; newSigChldAction.sa_flags = SA_NOCLDSTOP; #endif while((sigaction(SIGCHLD, &newSigChldAction, &kwsysProcessesOldSigChldAction) < 0) && (errno == EINTR)); } } return 1; } /*--------------------------------------------------------------------------*/ static void kwsysProcessesRemove(kwsysProcess* cp) { /* Attempt to remove the given signal pipe from the signal handler set. */ { /* Find the given process in the set. */ kwsysProcessInstances newProcesses = kwsysProcesses; int i; for(i=0; i < newProcesses.Count; ++i) { if(newProcesses.Processes[i] == cp) { break; } } if(i < newProcesses.Count) { /* Remove the process from the set. */ --newProcesses.Count; for(; i < newProcesses.Count; ++i) { newProcesses.Processes[i] = newProcesses.Processes[i+1]; } /* If this was the last process, disable the signal handler. */ if(newProcesses.Count == 0) { /* Restore the SIGCHLD handler. Repeat call until it is not interrupted. */ while((sigaction(SIGCHLD, &kwsysProcessesOldSigChldAction, 0) < 0) && (errno == EINTR)); /* Free the table of process pointers since it is now empty. This is safe because the signal handler has been removed. */ newProcesses.Size = 0; free(newProcesses.Processes); newProcesses.Processes = 0; } /* Store the new set in that seen by the signal handler. */ kwsysProcessesUpdate(&newProcesses); } } /* Close the pipe through which the signal handler may have notified the given process object that a child has exited. */ kwsysProcessCleanupDescriptor(&cp->SignalPipe); } /*--------------------------------------------------------------------------*/ static void kwsysProcessesSignalHandler(int signum #if KWSYSPE_USE_SIGINFO , siginfo_t* info, void* ucontext #endif ) { (void)signum; #if KWSYSPE_USE_SIGINFO (void)info; (void)ucontext; #endif /* Signal all process objects that a child has terminated. */ { int i; for(i=0; i < kwsysProcesses.Count; ++i) { /* Set the pipe in a signalled state. */ char buf = 1; kwsysProcess* cp = kwsysProcesses.Processes[i]; read(cp->PipeReadEnds[KWSYSPE_PIPE_SIGNAL], &buf, 1); write(cp->SignalPipe, &buf, 1); } } #if !KWSYSPE_USE_SIGINFO /* Re-Install our handler for SIGCHLD. Repeat call until it is not interrupted. */ { struct sigaction newSigChldAction; memset(&newSigChldAction, 0, sizeof(struct sigaction)); newSigChldAction.sa_handler = kwsysProcessesSignalHandler; newSigChldAction.sa_flags = SA_NOCLDSTOP; while((sigaction(SIGCHLD, &newSigChldAction, &kwsysProcessesOldSigChldAction) < 0) && (errno == EINTR)); } #endif } /*--------------------------------------------------------------------------*/ static int kwsysProcessAppendByte(char* local, char** begin, char** end, int* size, char c) { /* Allocate space for the character. */ if((*end - *begin) >= *size) { kwsysProcess_ptrdiff_t length = *end - *begin; char* newBuffer = (char*)malloc(*size*2); if(!newBuffer) { return 0; } memcpy(newBuffer, *begin, length*sizeof(char)); if(*begin != local) { free(*begin); } *begin = newBuffer; *end = *begin + length; *size *= 2; } /* Store the character. */ *(*end)++ = c; return 1; } /*--------------------------------------------------------------------------*/ static int kwsysProcessAppendArgument(char** local, char*** begin, char*** end, int* size, char* arg_local, char** arg_begin, char** arg_end, int* arg_size) { /* Append a null-terminator to the argument string. */ if(!kwsysProcessAppendByte(arg_local, arg_begin, arg_end, arg_size, '\0')) { return 0; } /* Allocate space for the argument pointer. */ if((*end - *begin) >= *size) { kwsysProcess_ptrdiff_t length = *end - *begin; char** newPointers = (char**)malloc(*size*2*sizeof(char*)); if(!newPointers) { return 0; } memcpy(newPointers, *begin, length*sizeof(char*)); if(*begin != local) { free(*begin); } *begin = newPointers; *end = *begin + length; *size *= 2; } /* Allocate space for the argument string. */ **end = (char*)malloc(*arg_end - *arg_begin); if(!**end) { return 0; } /* Store the argument in the command array. */ memcpy(**end, *arg_begin, *arg_end - *arg_begin); ++(*end); /* Reset the argument to be empty. */ *arg_end = *arg_begin; return 1; } /*--------------------------------------------------------------------------*/ #define KWSYSPE_LOCAL_BYTE_COUNT 1024 #define KWSYSPE_LOCAL_ARGS_COUNT 32 static char** kwsysProcessParseVerbatimCommand(const char* command) { /* Create a buffer for argument pointers during parsing. */ char* local_pointers[KWSYSPE_LOCAL_ARGS_COUNT]; int pointers_size = KWSYSPE_LOCAL_ARGS_COUNT; char** pointer_begin = local_pointers; char** pointer_end = pointer_begin; /* Create a buffer for argument strings during parsing. */ char local_buffer[KWSYSPE_LOCAL_BYTE_COUNT]; int buffer_size = KWSYSPE_LOCAL_BYTE_COUNT; char* buffer_begin = local_buffer; char* buffer_end = buffer_begin; /* Parse the command string. Try to behave like a UNIX shell. */ char** newCommand = 0; const char* c = command; int in_argument = 0; int in_escape = 0; int in_single = 0; int in_double = 0; int failed = 0; for(;*c; ++c) { if(in_escape) { /* This character is escaped so do no special handling. */ if(!in_argument) { in_argument = 1; } if(!kwsysProcessAppendByte(local_buffer, &buffer_begin, &buffer_end, &buffer_size, *c)) { failed = 1; break; } in_escape = 0; } else if(*c == '\\' && !in_single) { /* The next character should be escaped. */ in_escape = 1; } else if(*c == '\'' && !in_double) { /* Enter or exit single-quote state. */ if(in_single) { in_single = 0; } else { in_single = 1; if(!in_argument) { in_argument = 1; } } } else if(*c == '"' && !in_single) { /* Enter or exit double-quote state. */ if(in_double) { in_double = 0; } else { in_double = 1; if(!in_argument) { in_argument = 1; } } } else if(isspace(*c)) { if(in_argument) { if(in_single || in_double) { /* This space belongs to a quoted argument. */ if(!kwsysProcessAppendByte(local_buffer, &buffer_begin, &buffer_end, &buffer_size, *c)) { failed = 1; break; } } else { /* This argument has been terminated by whitespace. */ if(!kwsysProcessAppendArgument(local_pointers, &pointer_begin, &pointer_end, &pointers_size, local_buffer, &buffer_begin, &buffer_end, &buffer_size)) { failed = 1; break; } in_argument = 0; } } } else { /* This character belong to an argument. */ if(!in_argument) { in_argument = 1; } if(!kwsysProcessAppendByte(local_buffer, &buffer_begin, &buffer_end, &buffer_size, *c)) { failed = 1; break; } } } /* Finish the last argument. */ if(in_argument) { if(!kwsysProcessAppendArgument(local_pointers, &pointer_begin, &pointer_end, &pointers_size, local_buffer, &buffer_begin, &buffer_end, &buffer_size)) { failed = 1; } } /* If we still have memory allocate space for the new command buffer. */ if(!failed) { kwsysProcess_ptrdiff_t n = pointer_end - pointer_begin; newCommand = (char**)malloc((n+1)*sizeof(char*)); } if(newCommand) { /* Copy the arguments into the new command buffer. */ kwsysProcess_ptrdiff_t n = pointer_end - pointer_begin; memcpy(newCommand, pointer_begin, sizeof(char*)*n); newCommand[n] = 0; } else { /* Free arguments already allocated. */ while(pointer_end != pointer_begin) { free(*(--pointer_end)); } } /* Free temporary buffers. */ if(pointer_begin != local_pointers) { free(pointer_begin); } if(buffer_begin != local_buffer) { free(buffer_begin); } /* Return the final command buffer. */ return newCommand; }