/*========================================================================= Program: CMake - Cross-Platform Makefile Generator Module: $RCSfile: cmComputeLinkDepends.cxx,v $ Language: C++ Date: $Date: 2008-05-01 16:35:39 $ Version: $Revision: 1.12.2.4 $ Copyright (c) 2002 Kitware, Inc., Insight Consortium. All rights reserved. See Copyright.txt or http://www.cmake.org/HTML/Copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "cmComputeLinkDepends.h" #include "cmComputeComponentGraph.h" #include "cmGlobalGenerator.h" #include "cmLocalGenerator.h" #include "cmMakefile.h" #include "cmTarget.h" #include "cmake.h" #include #include #include /* This file computes an ordered list of link items to use when linking a single target in one configuration. Each link item is identified by the string naming it. A graph of dependencies is created in which each node corresponds to one item and directed eges lead from nodes to those which must *precede* them on the link line. For example, the graph C -> B -> A will lead to the link line order A B C The set of items placed in the graph is formed with a breadth-first search of the link dependencies starting from the main target. There are two types of items: those with known direct dependencies and those without known dependencies. We will call the two types "known items" and "unknown items", respecitvely. Known items are those whose names correspond to targets (built or imported) and those for which an old-style _LIB_DEPENDS variable is defined. All other items are unknown and we must infer dependencies for them. Known items have dependency lists ordered based on how the user specified them. We can use this order to infer potential dependencies of unknown items. For example, if link items A and B are unknown and items X and Y are known, then we might have the following dependency lists: X: Y A B Y: A B The explicitly known dependencies form graph edges X <- Y , X <- A , X <- B , Y <- A , Y <- B We can also infer the edge A <- B because *every* time A appears B is seen on its right. We do not know whether A really needs symbols from B to link, but it *might* so we must preserve their order. This is the case also for the following explict lists: X: A B Y Y: A B Here, A is followed by the set {B,Y} in one list, and {B} in the other list. The intersection of these sets is {B}, so we can infer that A depends on at most B. Meanwhile B is followed by the set {Y} in one list and {} in the other. The intersection is {} so we can infer that B has no dependencies. Let's make a more complex example by adding unknown item C and considering these dependency lists: X: A B Y C Y: A C B The explicit edges are X <- Y , X <- A , X <- B , X <- C , Y <- A , Y <- B , Y <- C For the unknown items, we infer dependencies by looking at the "follow" sets: A: intersect( {B,Y,C} , {C,B} ) = {B,C} ; infer edges A <- B , A <- C B: intersect( {Y,C} , {} ) = {} ; infer no edges C: intersect( {} , {B} ) = {} ; infer no edges Note that targets are never inferred as dependees because outside libraries should not depend on them. ------------------------------------------------------------------------------ Once the complete graph is formed from all known and inferred dependencies we must use it to produce a valid link line. If the dependency graph were known to be acyclic a simple depth-first-search would produce a correct link line. Unfortunately we cannot make this assumption so the following technique is used. The original graph is converted to a directed acyclic graph in which each node corresponds to a strongly connected component of the original graph. For example, the dependency graph X <- A <- B <- C <- A <- Y contains strongly connected components {X}, {A,B,C}, and {Y}. The implied directed acyclic graph (DAG) is {X} <- {A,B,C} <- {Y} The final list of link items is constructed by a series of depth-first-searches through this DAG of components. When visiting a component all outgoing edges are followed first because the neighbors must precede it. Once neighbors across all edges have been emitted it is safe to emit the current component. Trivial components (those with one item) are handled simply by emitting the item. Non-trivial components (those with more than one item) are assumed to consist only of static libraries that may be safely repeated on the link line. We emit members of the component multiple times (see code below for details). The final link line for the example graph might be X A B C A B C Y ------------------------------------------------------------------------------ The initial exploration of dependencies using a BFS associates an integer index with each link item. When the graph is built outgoing edges are sorted by this index. This preserves the original link order as much as possible subject to the dependencies. We then further preserve the original link line by appending items to make sure all those that might be static libraries appear in the order and multiplicity that they do in the original line. After the initial exploration of the link interface tree, any transitive (dependent) shared libraries that were encountered and not included in the interface are processed in their own BFS. This BFS follows only the dependent library lists and not the link interfaces. They are added to the link items with a mark indicating that the are transitive dependencies. Then cmComputeLinkInformation deals with them on a per-platform basis. */ //---------------------------------------------------------------------------- cmComputeLinkDepends ::cmComputeLinkDepends(cmTarget* target, const char* config) { // Store context information. this->Target = target; this->Makefile = this->Target->GetMakefile(); this->LocalGenerator = this->Makefile->GetLocalGenerator(); this->GlobalGenerator = this->LocalGenerator->GetGlobalGenerator(); this->CMakeInstance = this->GlobalGenerator->GetCMakeInstance(); // The configuration being linked. this->Config = config; // Enable debug mode if requested. this->DebugMode = this->Makefile->IsOn("CMAKE_LINK_DEPENDS_DEBUG_MODE"); // Assume no compatibility until set. this->OldLinkDirMode = false; } //---------------------------------------------------------------------------- cmComputeLinkDepends::~cmComputeLinkDepends() { for(std::vector::iterator i = this->InferredDependSets.begin(); i != this->InferredDependSets.end(); ++i) { delete *i; } } //---------------------------------------------------------------------------- void cmComputeLinkDepends::SetOldLinkDirMode(bool b) { this->OldLinkDirMode = b; } //---------------------------------------------------------------------------- void cmComputeLinkDepends::SetSharedRegex(std::string const& regex) { this->SharedRegexString = regex; } //---------------------------------------------------------------------------- std::vector const& cmComputeLinkDepends::Compute() { // Follow the link dependencies of the target to be linked. this->AddTargetLinkEntries(-1, this->Target->GetOriginalLinkLibraries()); // Complete the breadth-first search of dependencies. while(!this->BFSQueue.empty()) { // Get the next entry. BFSEntry qe = this->BFSQueue.front(); this->BFSQueue.pop(); // Follow the entry's dependencies. this->FollowLinkEntry(qe); } // Complete the search of shared library dependencies. while(!this->SharedDepQueue.empty()) { // Handle the next entry. this->HandleSharedDependency(this->SharedDepQueue.front()); this->SharedDepQueue.pop(); } // Infer dependencies of targets for which they were not known. this->InferDependencies(); // Cleanup the constraint graph. this->CleanConstraintGraph(); // Display the constraint graph. if(this->DebugMode) { fprintf(stderr, "---------------------------------------" "---------------------------------------\n"); fprintf(stderr, "Link dependency analysis for target %s, config %s\n", this->Target->GetName(), this->Config?this->Config:"noconfig"); this->DisplayConstraintGraph(); } // Compute the final ordering. this->OrderLinkEntires(); this->PreserveOriginalEntries(); // Compute the final set of link entries. for(std::vector::const_iterator li = this->FinalLinkOrder.begin(); li != this->FinalLinkOrder.end(); ++li) { this->FinalLinkEntries.push_back(this->EntryList[*li]); } // Display the final set. if(this->DebugMode) { this->DisplayFinalEntries(); } return this->FinalLinkEntries; } //---------------------------------------------------------------------------- std::map::iterator cmComputeLinkDepends::AllocateLinkEntry(std::string const& item) { std::map::value_type index_entry(item, static_cast(this->EntryList.size())); std::map::iterator lei = this->LinkEntryIndex.insert(index_entry).first; this->EntryList.push_back(LinkEntry()); this->InferredDependSets.push_back(0); this->EntryConstraintGraph.push_back(NodeList()); return lei; } //---------------------------------------------------------------------------- int cmComputeLinkDepends::AddLinkEntry(std::string const& item) { // Check if the item entry has already been added. std::map::iterator lei = this->LinkEntryIndex.find(item); if(lei != this->LinkEntryIndex.end()) { // Yes. We do not need to follow the item's dependencies again. return lei->second; } // Allocate a spot for the item entry. lei = this->AllocateLinkEntry(item); // Initialize the item entry. int index = lei->second; LinkEntry& entry = this->EntryList[index]; entry.Item = item; entry.Target = this->Makefile->FindTargetToUse(entry.Item.c_str()); // If the item has dependencies queue it to follow them. if(entry.Target) { // Target dependencies are always known. Follow them. BFSEntry qe = {index, 0}; this->BFSQueue.push(qe); } else { // Look for an old-style _LIB_DEPENDS variable. std::string var = entry.Item; var += "_LIB_DEPENDS"; if(const char* val = this->Makefile->GetDefinition(var.c_str())) { // The item dependencies are known. Follow them. BFSEntry qe = {index, val}; this->BFSQueue.push(qe); } else { // The item dependencies are not known. We need to infer them. this->InferredDependSets[index] = new DependSetList; } } return index; } //---------------------------------------------------------------------------- void cmComputeLinkDepends::FollowLinkEntry(BFSEntry const& qe) { // Get this entry representation. int depender_index = qe.Index; LinkEntry const& entry = this->EntryList[depender_index]; // Follow the item's dependencies. if(entry.Target) { // Follow the target dependencies. if(cmTargetLinkInterface const* iface = entry.Target->GetLinkInterface(this->Config)) { // This target provides its own link interface information. this->AddLinkEntries(depender_index, iface->Libraries); // Handle dependent shared libraries. this->QueueSharedDependencies(depender_index, iface->SharedDeps); } else if(!entry.Target->IsImported() && entry.Target->GetType() != cmTarget::EXECUTABLE) { // Use the target's link implementation as the interface. this->AddTargetLinkEntries(depender_index, entry.Target->GetOriginalLinkLibraries()); } } else { // Follow the old-style dependency list. this->AddVarLinkEntries(depender_index, qe.LibDepends); } } //---------------------------------------------------------------------------- void cmComputeLinkDepends ::QueueSharedDependencies(int depender_index, std::vector const& deps) { for(std::vector::const_iterator li = deps.begin(); li != deps.end(); ++li) { SharedDepEntry qe; qe.Item = *li; qe.DependerIndex = depender_index; this->SharedDepQueue.push(qe); } } //---------------------------------------------------------------------------- void cmComputeLinkDepends::HandleSharedDependency(SharedDepEntry const& dep) { // Check if the target already has an entry. std::map::iterator lei = this->LinkEntryIndex.find(dep.Item); if(lei == this->LinkEntryIndex.end()) { // Allocate a spot for the item entry. lei = this->AllocateLinkEntry(dep.Item); // Initialize the item entry. LinkEntry& entry = this->EntryList[lei->second]; entry.Item = dep.Item; entry.Target = this->Makefile->FindTargetToUse(dep.Item.c_str()); // This item was added specifically because it is a dependent // shared library. It may get special treatment // in cmComputeLinkInformation. entry.IsSharedDep = true; } // Get the link entry for this target. int index = lei->second; LinkEntry& entry = this->EntryList[index]; // This shared library dependency must be preceded by the item that // listed it. this->EntryConstraintGraph[index].push_back(dep.DependerIndex); // Target items may have their own dependencies. if(entry.Target) { if(cmTargetLinkInterface const* iface = entry.Target->GetLinkInterface(this->Config)) { // We use just the shared dependencies, not the interface. this->QueueSharedDependencies(index, iface->SharedDeps); } } } //---------------------------------------------------------------------------- void cmComputeLinkDepends::AddVarLinkEntries(int depender_index, const char* value) { // This is called to add the dependencies named by // _LIB_DEPENDS. The variable contains a semicolon-separated // list. The list contains link-type;item pairs and just items. std::vector deplist; cmSystemTools::ExpandListArgument(value, deplist); // Compute which library configuration to link. cmTarget::LinkLibraryType linkType = cmTarget::OPTIMIZED; if(this->Config && cmSystemTools::UpperCase(this->Config) == "DEBUG") { linkType = cmTarget::DEBUG; } // Look for entries meant for this configuration. std::vector actual_libs; cmTarget::LinkLibraryType llt = cmTarget::GENERAL; bool haveLLT = false; for(std::vector::const_iterator di = deplist.begin(); di != deplist.end(); ++di) { if(*di == "debug") { llt = cmTarget::DEBUG; haveLLT = true; } else if(*di == "optimized") { llt = cmTarget::OPTIMIZED; haveLLT = true; } else if(*di == "general") { llt = cmTarget::GENERAL; haveLLT = true; } else if(!di->empty()) { // If no explicit link type was given prior to this entry then // check if the entry has its own link type variable. This is // needed for compatibility with dependency files generated by // the export_library_dependencies command from CMake 2.4 and // lower. if(!haveLLT) { std::string var = *di; var += "_LINK_TYPE"; if(const char* val = this->Makefile->GetDefinition(var.c_str())) { if(strcmp(val, "debug") == 0) { llt = cmTarget::DEBUG; } else if(strcmp(val, "optimized") == 0) { llt = cmTarget::OPTIMIZED; } } } // If the library is meant for this link type then use it. if(llt == cmTarget::GENERAL || llt == linkType) { actual_libs.push_back(*di); } else if(this->OldLinkDirMode) { this->CheckWrongConfigItem(*di); } // Reset the link type until another explicit type is given. llt = cmTarget::GENERAL; haveLLT = false; } } // Add the entries from this list. this->AddLinkEntries(depender_index, actual_libs); } //---------------------------------------------------------------------------- void cmComputeLinkDepends::AddTargetLinkEntries(int depender_index, LinkLibraryVectorType const& libs) { // Compute which library configuration to link. cmTarget::LinkLibraryType linkType = cmTarget::OPTIMIZED; if(this->Config && cmSystemTools::UpperCase(this->Config) == "DEBUG") { linkType = cmTarget::DEBUG; } // Look for entries meant for this configuration. std::vector actual_libs; for(cmTarget::LinkLibraryVectorType::const_iterator li = libs.begin(); li != libs.end(); ++li) { if(li->second == cmTarget::GENERAL || li->second == linkType) { actual_libs.push_back(li->first); } else if(this->OldLinkDirMode) { this->CheckWrongConfigItem(li->first); } } // Add these entries. this->AddLinkEntries(depender_index, actual_libs); } //---------------------------------------------------------------------------- void cmComputeLinkDepends::AddLinkEntries(int depender_index, std::vector const& libs) { // Track inferred dependency sets implied by this list. std::map dependSets; // Loop over the libraries linked directly by the depender. for(std::vector::const_iterator li = libs.begin(); li != libs.end(); ++li) { // Skip entries that will resolve to the target getting linked or // are empty. std::string item = this->CleanItemName(*li); if(item == this->Target->GetName() || item.empty()) { continue; } // Add a link entry for this item. int dependee_index = this->AddLinkEntry(item); // The depender must come before the dependee. if(depender_index >= 0) { this->EntryConstraintGraph[dependee_index].push_back(depender_index); } else { // This is a direct dependency of the target being linked. this->OriginalEntries.push_back(dependee_index); } // Update the inferred dependencies for earlier items. for(std::map::iterator dsi = dependSets.begin(); dsi != dependSets.end(); ++dsi) { // Add this item to the inferred dependencies of other items. // Target items are never inferred dependees because unknown // items are outside libraries that should not be depending on // targets. if(!this->EntryList[dependee_index].Target && dependee_index != dsi->first) { dsi->second.insert(dependee_index); } } // If this item needs to have dependencies inferred, do so. if(this->InferredDependSets[dependee_index]) { // Make sure an entry exists to hold the set for the item. dependSets[dependee_index]; } } // Store the inferred dependency sets discovered for this list. for(std::map::iterator dsi = dependSets.begin(); dsi != dependSets.end(); ++dsi) { this->InferredDependSets[dsi->first]->push_back(dsi->second); } } //---------------------------------------------------------------------------- std::string cmComputeLinkDepends::CleanItemName(std::string const& item) { // Strip whitespace off the library names because we used to do this // in case variables were expanded at generate time. We no longer // do the expansion but users link to libraries like " ${VAR} ". std::string lib = item; std::string::size_type pos = lib.find_first_not_of(" \t\r\n"); if(pos != lib.npos) { lib = lib.substr(pos, lib.npos); } pos = lib.find_last_not_of(" \t\r\n"); if(pos != lib.npos) { lib = lib.substr(0, pos+1); } if(lib != item) { switch(this->Target->GetPolicyStatusCMP0004()) { case cmPolicies::WARN: { cmOStringStream w; w << (this->Makefile->GetPolicies() ->GetPolicyWarning(cmPolicies::CMP0004)) << "\n" << "Target \"" << this->Target->GetName() << "\" links to item \"" << item << "\" which has leading or trailing whitespace."; this->CMakeInstance->IssueMessage(cmake::AUTHOR_WARNING, w.str(), this->Target->GetBacktrace()); } case cmPolicies::OLD: break; case cmPolicies::NEW: { cmOStringStream e; e << "Target \"" << this->Target->GetName() << "\" links to item \"" << item << "\" which has leading or trailing whitespace. " << "This is now an error according to policy CMP0004."; this->CMakeInstance->IssueMessage(cmake::FATAL_ERROR, e.str(), this->Target->GetBacktrace()); } break; case cmPolicies::REQUIRED_IF_USED: case cmPolicies::REQUIRED_ALWAYS: { cmOStringStream e; e << (this->Makefile->GetPolicies() ->GetRequiredPolicyError(cmPolicies::CMP0004)) << "\n" << "Target \"" << this->Target->GetName() << "\" links to item \"" << item << "\" which has leading or trailing whitespace."; this->CMakeInstance->IssueMessage(cmake::FATAL_ERROR, e.str(), this->Target->GetBacktrace()); } break; } } return lib; } //---------------------------------------------------------------------------- void cmComputeLinkDepends::InferDependencies() { // The inferred dependency sets for each item list the possible // dependencies. The intersection of the sets for one item form its // inferred dependencies. for(unsigned int depender_index=0; depender_index < this->InferredDependSets.size(); ++depender_index) { // Skip items for which dependencies do not need to be inferred or // for which the inferred dependency sets are empty. DependSetList* sets = this->InferredDependSets[depender_index]; if(!sets || sets->empty()) { continue; } // Intersect the sets for this item. DependSetList::const_iterator i = sets->begin(); DependSet common = *i; for(++i; i != sets->end(); ++i) { DependSet intersection; cmsys_stl::set_intersection (common.begin(), common.end(), i->begin(), i->end(), std::inserter(intersection, intersection.begin())); common = intersection; } // Add the inferred dependencies to the graph. for(DependSet::const_iterator j = common.begin(); j != common.end(); ++j) { int dependee_index = *j; this->EntryConstraintGraph[dependee_index].push_back(depender_index); } } } //---------------------------------------------------------------------------- void cmComputeLinkDepends::CleanConstraintGraph() { for(Graph::iterator i = this->EntryConstraintGraph.begin(); i != this->EntryConstraintGraph.end(); ++i) { // Sort the outgoing edges for each graph node so that the // original order will be preserved as much as possible. cmsys_stl::sort(i->begin(), i->end()); // Make the edge list unique. NodeList::iterator last = cmsys_stl::unique(i->begin(), i->end()); i->erase(last, i->end()); } } //---------------------------------------------------------------------------- void cmComputeLinkDepends::DisplayConstraintGraph() { // Display the graph nodes and their edges. cmOStringStream e; for(unsigned int i=0; i < this->EntryConstraintGraph.size(); ++i) { NodeList const& nl = this->EntryConstraintGraph[i]; e << "item " << i << " is [" << this->EntryList[i].Item << "]\n"; for(NodeList::const_iterator j = nl.begin(); j != nl.end(); ++j) { e << " item " << *j << " must precede it\n"; } } fprintf(stderr, "%s\n", e.str().c_str()); } //---------------------------------------------------------------------------- void cmComputeLinkDepends::OrderLinkEntires() { // Compute the DAG of strongly connected components. The algorithm // used by cmComputeComponentGraph should identify the components in // the same order in which the items were originally discovered in // the BFS. This should preserve the original order when no // constraints disallow it. cmComputeComponentGraph ccg(this->EntryConstraintGraph); Graph const& cgraph = ccg.GetComponentGraph(); if(this->DebugMode) { this->DisplayComponents(ccg); } // Setup visit tracking. this->ComponentVisited.resize(cgraph.size(), 0); // The component graph is guaranteed to be acyclic. Start a DFS // from every entry. for(unsigned int c=0; c < cgraph.size(); ++c) { this->VisitComponent(ccg, c); } } //---------------------------------------------------------------------------- void cmComputeLinkDepends::DisplayComponents(cmComputeComponentGraph const& ccg) { fprintf(stderr, "The strongly connected components are:\n"); std::vector const& components = ccg.GetComponents(); for(unsigned int c=0; c < components.size(); ++c) { fprintf(stderr, "Component (%u):\n", c); NodeList const& nl = components[c]; for(NodeList::const_iterator ni = nl.begin(); ni != nl.end(); ++ni) { int i = *ni; fprintf(stderr, " item %d [%s]\n", i, this->EntryList[i].Item.c_str()); } } fprintf(stderr, "\n"); } //---------------------------------------------------------------------------- void cmComputeLinkDepends::VisitComponent(cmComputeComponentGraph const& ccg, unsigned int c) { // Check if the node has already been visited. if(this->ComponentVisited[c]) { return; } // We are now visiting this component so mark it. this->ComponentVisited[c] = 1; // Visit the neighbors of the component first. NodeList const& nl = ccg.GetComponentGraphEdges(c); for(NodeList::const_iterator ni = nl.begin(); ni != nl.end(); ++ni) { this->VisitComponent(ccg, *ni); } // Now that all items required to come before this one have been // emmitted, emit this component's items. this->EmitComponent(ccg.GetComponent(c)); } //---------------------------------------------------------------------------- void cmComputeLinkDepends::EmitComponent(NodeList const& nl) { assert(!nl.empty()); // Handle trivial components. if(nl.size() == 1) { this->FinalLinkOrder.push_back(nl[0]); return; } // This is a non-trivial strongly connected component of the // original graph. It consists of two or more libraries (archives) // that mutually require objects from one another. In the worst // case we may have to repeat the list of libraries as many times as // there are object files in the biggest archive. For now we just // list them twice. // // The list of items in the component has been sorted by the order // of discovery in the original BFS of dependencies. This has the // advantage that the item directly linked by a target requiring // this component will come first which minimizes the number of // repeats needed. for(NodeList::const_iterator ni = nl.begin(); ni != nl.end(); ++ni) { this->FinalLinkOrder.push_back(*ni); } for(NodeList::const_iterator ni = nl.begin(); ni != nl.end(); ++ni) { this->FinalLinkOrder.push_back(*ni); } } //---------------------------------------------------------------------------- void cmComputeLinkDepends::DisplayFinalEntries() { fprintf(stderr, "target [%s] links to:\n", this->Target->GetName()); for(std::vector::const_iterator lei = this->FinalLinkEntries.begin(); lei != this->FinalLinkEntries.end(); ++lei) { if(lei->Target) { fprintf(stderr, " target [%s]\n", lei->Target->GetName()); } else { fprintf(stderr, " item [%s]\n", lei->Item.c_str()); } } fprintf(stderr, "\n"); } //---------------------------------------------------------------------------- void cmComputeLinkDepends::CheckWrongConfigItem(std::string const& item) { if(!this->OldLinkDirMode) { return; } // For CMake 2.4 bug-compatibility we need to consider the output // directories of targets linked in another configuration as link // directories. if(cmTarget* tgt = this->Makefile->FindTargetToUse(item.c_str())) { if(!tgt->IsImported()) { this->OldWrongConfigItems.insert(tgt); } } } //---------------------------------------------------------------------------- void cmComputeLinkDepends::PreserveOriginalEntries() { // Regular expression to match shared libraries. cmsys::RegularExpression shared_lib(this->SharedRegexString.c_str()); // Skip the part of the input sequence that already appears in the // output. std::vector::const_iterator in = this->OriginalEntries.begin(); std::vector::const_iterator out = this->FinalLinkOrder.begin(); while(in != this->OriginalEntries.end() && out != this->FinalLinkOrder.end()) { cmTarget* tgt = this->EntryList[*in].Target; if((tgt && tgt->GetType() != cmTarget::STATIC_LIBRARY) || (!tgt && shared_lib.find(this->EntryList[*in].Item))) { // Skip input items known to not be static libraries. ++in; } else if(*in == *out) { // The input and output items match. Move on to the next items. ++in; ++out; } else { // The output item does not match the next input item. Skip it. ++out; } } // Append the part of the input sequence that does not already // appear in the output. while(in != this->OriginalEntries.end()) { cmTarget* tgt = this->EntryList[*in].Target; if((tgt && tgt->GetType() != cmTarget::STATIC_LIBRARY) || (!tgt && shared_lib.find(this->EntryList[*in].Item))) { // Skip input items known to not be static libraries. ++in; } else { this->FinalLinkOrder.push_back(*in++); } } }