/* Distributed under the OSI-approved BSD 3-Clause License. See accompanying file Copyright.txt or https://cmake.org/licensing#kwsys for details. */ #if defined(_WIN32) # define NOMINMAX // use our min,max # if !defined(_WIN32_WINNT) && defined(_MSC_VER) && _MSC_VER >= 1800 # define _WIN32_WINNT 0x0600 // vista # endif # if !defined(_WIN32_WINNT) && !(defined(_MSC_VER) && _MSC_VER < 1300) # define _WIN32_WINNT 0x0501 # endif # include // WSADATA, include before sys/types.h #endif #if (defined(__GNUC__) || defined(__PGI)) && !defined(_GNU_SOURCE) # define _GNU_SOURCE #endif // TODO: // We need an alternative implementation for many functions in this file // when USE_ASM_INSTRUCTIONS gets defined as 0. // // Consider using these on Win32/Win64 for some of them: // // IsProcessorFeaturePresent // http://msdn.microsoft.com/en-us/library/ms724482(VS.85).aspx // // GetProcessMemoryInfo // http://msdn.microsoft.com/en-us/library/ms683219(VS.85).aspx #include "kwsysPrivate.h" #include KWSYS_HEADER(SystemInformation.hxx) #include KWSYS_HEADER(Process.h) // Work-around CMake dependency scanning limitation. This must // duplicate the above list of headers. #if 0 # include "Process.h.in" # include "SystemInformation.hxx.in" #endif #include #include #include #include #include #include #include #include #include #include #if defined(_WIN32) # include # if defined(_MSC_VER) && _MSC_VER >= 1800 # define KWSYS_WINDOWS_DEPRECATED_GetVersionEx # endif # include # if defined(KWSYS_SYS_HAS_PSAPI) # include # endif # if !defined(siginfo_t) typedef int siginfo_t; # endif #else # include # include // extern int errno; # include # include # include // getrlimit # include # include // int uname(struct utsname *buf); # include #endif #if defined(__CYGWIN__) && !defined(_WIN32) # include # undef _WIN32 #endif #if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \ defined(__DragonFly__) # include # include # include # include # include # if defined(KWSYS_SYS_HAS_IFADDRS_H) # include # include # define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN # endif #endif #if defined(KWSYS_SYS_HAS_MACHINE_CPU_H) # include #endif #ifdef __APPLE__ # include # include # include # include # include # include # include # include # if defined(KWSYS_SYS_HAS_IFADDRS_H) # include # include # define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN # endif # if !(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ - 0 >= 1050) # undef KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE # endif #endif #if defined(__linux) || defined(__sun) || defined(_SCO_DS) || \ defined(__GLIBC__) || defined(__GNU__) # include # include # include # if defined(KWSYS_SYS_HAS_IFADDRS_H) # include # include # if defined(__LSB_VERSION__) /* LSB has no getifaddrs */ # elif defined(__ANDROID_API__) && __ANDROID_API__ < 24 /* Android has no getifaddrs prior to API 24. */ # else # define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN # endif # endif # if defined(KWSYS_CXX_HAS_RLIMIT64) using ResourceLimitType = struct rlimit64; # define GetResourceLimit getrlimit64 # else typedef struct rlimit ResourceLimitType; # define GetResourceLimit getrlimit # endif #elif defined(__hpux) # include # include # if defined(KWSYS_SYS_HAS_MPCTL_H) # include # endif #endif #ifdef __HAIKU__ # include #endif #if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE) # include # if defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE) # include # endif # if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP) # include # endif #else # undef KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE # undef KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP #endif #include // int isdigit(int c); #include #include #include #include #if defined(_MSC_VER) && (_MSC_VER >= 1300) && !defined(_WIN64) && \ !defined(__clang__) # define USE_ASM_INSTRUCTIONS 1 #else # define USE_ASM_INSTRUCTIONS 0 #endif #if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__clang__) && \ !defined(_M_ARM64) # include # define USE_CPUID_INTRINSICS 1 #else # define USE_CPUID_INTRINSICS 0 #endif #if USE_ASM_INSTRUCTIONS || USE_CPUID_INTRINSICS # define USE_CPUID 1 #else # define USE_CPUID 0 #endif #if USE_CPUID # define CPUID_AWARE_COMPILER /** * call CPUID instruction * * Will return false if the instruction failed. */ static bool call_cpuid(int select, int result[4]) { # if USE_CPUID_INTRINSICS __cpuid(result, select); return true; # else int tmp[4]; # if defined(_MSC_VER) // Use SEH to determine CPUID presence __try { _asm { # ifdef CPUID_AWARE_COMPILER ; we must push/pop the registers <> writes to, as the ; optimiser does not know about <>, and so does not expect ; these registers to change. push eax push ebx push ecx push edx # endif ; <> mov eax, select # ifdef CPUID_AWARE_COMPILER cpuid # else _asm _emit 0x0f _asm _emit 0xa2 # endif mov tmp[0 * TYPE int], eax mov tmp[1 * TYPE int], ebx mov tmp[2 * TYPE int], ecx mov tmp[3 * TYPE int], edx # ifdef CPUID_AWARE_COMPILER pop edx pop ecx pop ebx pop eax # endif } } __except (1) { return false; } memcpy(result, tmp, sizeof(tmp)); # endif // The cpuid instruction succeeded. return true; # endif } #endif namespace KWSYS_NAMESPACE { template T min(T a, T b) { return a < b ? a : b; } extern "C" { using SigAction = void (*)(int, siginfo_t*, void*); } // Define SystemInformationImplementation class using DELAY_FUNC = void (*)(unsigned int); class SystemInformationImplementation { public: SystemInformationImplementation(); ~SystemInformationImplementation() = default; const char* GetVendorString() const; const char* GetVendorID(); std::string GetTypeID() const; std::string GetFamilyID() const; std::string GetModelID() const; std::string GetModelName() const; std::string GetSteppingCode() const; const char* GetExtendedProcessorName() const; const char* GetProcessorSerialNumber() const; int GetProcessorCacheSize() const; unsigned int GetLogicalProcessorsPerPhysical() const; float GetProcessorClockFrequency() const; int GetProcessorAPICID() const; int GetProcessorCacheXSize(long int) const; bool DoesCPUSupportFeature(long int) const; const char* GetOSName(); const char* GetHostname(); int GetFullyQualifiedDomainName(std::string& fqdn); const char* GetOSRelease(); const char* GetOSVersion(); const char* GetOSPlatform(); bool Is64Bits() const; unsigned int GetNumberOfLogicalCPU() const; // per physical cpu unsigned int GetNumberOfPhysicalCPU() const; bool DoesCPUSupportCPUID(); // Retrieve memory information in MiB. size_t GetTotalVirtualMemory() const; size_t GetAvailableVirtualMemory() const; size_t GetTotalPhysicalMemory() const; size_t GetAvailablePhysicalMemory() const; long long GetProcessId(); // Retrieve memory information in KiB. long long GetHostMemoryTotal(); long long GetHostMemoryAvailable(const char* hostLimitEnvVarName); long long GetHostMemoryUsed(); long long GetProcMemoryAvailable(const char* hostLimitEnvVarName, const char* procLimitEnvVarName); long long GetProcMemoryUsed(); double GetLoadAverage(); // enable/disable stack trace signal handler. static void SetStackTraceOnError(int enable); // get current stack static std::string GetProgramStack(int firstFrame, int wholePath); /** Run the different checks */ void RunCPUCheck(); void RunOSCheck(); void RunMemoryCheck(); public: using ID = struct tagID { int Type; int Family; int Model; int Revision; int ExtendedFamily; int ExtendedModel; std::string ProcessorName; std::string Vendor; std::string SerialNumber; std::string ModelName; }; using CPUPowerManagement = struct tagCPUPowerManagement { bool HasVoltageID; bool HasFrequencyID; bool HasTempSenseDiode; }; using CPUExtendedFeatures = struct tagCPUExtendedFeatures { bool Has3DNow; bool Has3DNowPlus; bool SupportsMP; bool HasMMXPlus; bool HasSSEMMX; unsigned int LogicalProcessorsPerPhysical; int APIC_ID; CPUPowerManagement PowerManagement; }; using CPUFeatures = struct CPUtagFeatures { bool HasFPU; bool HasTSC; bool HasMMX; bool HasSSE; bool HasSSEFP; bool HasSSE2; bool HasIA64; bool HasAPIC; bool HasCMOV; bool HasMTRR; bool HasACPI; bool HasSerial; bool HasThermal; int CPUSpeed; int L1CacheSize; int L2CacheSize; int L3CacheSize; CPUExtendedFeatures ExtendedFeatures; }; enum Manufacturer { AMD, Intel, NSC, UMC, Cyrix, NexGen, IDT, Rise, Transmeta, Sun, IBM, Motorola, HP, Hygon, Zhaoxin, Apple, UnknownManufacturer }; protected: // For windows bool RetrieveCPUFeatures(); bool RetrieveCPUIdentity(); bool RetrieveCPUCacheDetails(); bool RetrieveClassicalCPUCacheDetails(); bool RetrieveCPUClockSpeed(); bool RetrieveClassicalCPUClockSpeed(); bool RetrieveCPUExtendedLevelSupport(int); bool RetrieveExtendedCPUFeatures(); bool RetrieveProcessorSerialNumber(); bool RetrieveCPUPowerManagement(); bool RetrieveClassicalCPUIdentity(); bool RetrieveExtendedCPUIdentity(); // Processor information Manufacturer ChipManufacturer; CPUFeatures Features; ID ChipID; float CPUSpeedInMHz; unsigned int NumberOfLogicalCPU; unsigned int NumberOfPhysicalCPU; void CPUCountWindows(); // For windows unsigned char GetAPICId(); // For windows bool IsSMTSupported() const; static long long GetCyclesDifference(DELAY_FUNC, unsigned int); // For windows // For Linux and Cygwin, /proc/cpuinfo formats are slightly different bool RetreiveInformationFromCpuInfoFile(); std::string ExtractValueFromCpuInfoFile(std::string buffer, const char* word, size_t init = 0); bool QueryLinuxMemory(); bool QueryCygwinMemory(); static void Delay(unsigned int); static void DelayOverhead(unsigned int); void FindManufacturer(const std::string& family = ""); // For Mac bool ParseSysCtl(); int CallSwVers(const char* arg, std::string& ver); void TrimNewline(std::string&); std::string ExtractValueFromSysCtl(const char* word); std::string SysCtlBuffer; // For Solaris bool QuerySolarisMemory(); bool QuerySolarisProcessor(); std::string ParseValueFromKStat(const char* arguments); std::string RunProcess(std::vector args); // For Haiku OS bool QueryHaikuInfo(); // For QNX bool QueryQNXMemory(); bool QueryQNXProcessor(); // For OpenBSD, FreeBSD, NetBSD, DragonFly bool QueryBSDMemory(); bool QueryBSDProcessor(); // For HP-UX bool QueryHPUXMemory(); bool QueryHPUXProcessor(); // For Microsoft Windows bool QueryWindowsMemory(); // For AIX bool QueryAIXMemory(); bool QueryProcessorBySysconf(); bool QueryProcessor(); // Evaluate the memory information. bool QueryMemoryBySysconf(); bool QueryMemory(); size_t TotalVirtualMemory; size_t AvailableVirtualMemory; size_t TotalPhysicalMemory; size_t AvailablePhysicalMemory; size_t CurrentPositionInFile; // Operating System information bool QueryOSInformation(); std::string OSName; std::string Hostname; std::string OSRelease; std::string OSVersion; std::string OSPlatform; bool OSIs64Bit; }; SystemInformation::SystemInformation() { this->Implementation = new SystemInformationImplementation; } SystemInformation::~SystemInformation() { delete this->Implementation; } const char* SystemInformation::GetVendorString() { return this->Implementation->GetVendorString(); } const char* SystemInformation::GetVendorID() { return this->Implementation->GetVendorID(); } std::string SystemInformation::GetTypeID() { return this->Implementation->GetTypeID(); } std::string SystemInformation::GetFamilyID() { return this->Implementation->GetFamilyID(); } std::string SystemInformation::GetModelID() { return this->Implementation->GetModelID(); } std::string SystemInformation::GetModelName() { return this->Implementation->GetModelName(); } std::string SystemInformation::GetSteppingCode() { return this->Implementation->GetSteppingCode(); } const char* SystemInformation::GetExtendedProcessorName() { return this->Implementation->GetExtendedProcessorName(); } const char* SystemInformation::GetProcessorSerialNumber() { return this->Implementation->GetProcessorSerialNumber(); } int SystemInformation::GetProcessorCacheSize() { return this->Implementation->GetProcessorCacheSize(); } unsigned int SystemInformation::GetLogicalProcessorsPerPhysical() { return this->Implementation->GetLogicalProcessorsPerPhysical(); } float SystemInformation::GetProcessorClockFrequency() { return this->Implementation->GetProcessorClockFrequency(); } int SystemInformation::GetProcessorAPICID() { return this->Implementation->GetProcessorAPICID(); } int SystemInformation::GetProcessorCacheXSize(long int l) { return this->Implementation->GetProcessorCacheXSize(l); } bool SystemInformation::DoesCPUSupportFeature(long int i) { return this->Implementation->DoesCPUSupportFeature(i); } std::string SystemInformation::GetCPUDescription() { std::ostringstream oss; oss << this->GetNumberOfPhysicalCPU() << " core "; if (this->GetModelName().empty()) { oss << this->GetProcessorClockFrequency() << " MHz " << this->GetVendorString() << " " << this->GetExtendedProcessorName(); } else { oss << this->GetModelName(); } // remove extra spaces std::string tmp = oss.str(); size_t pos; while ((pos = tmp.find(" ")) != std::string::npos) { tmp.replace(pos, 2, " "); } return tmp; } const char* SystemInformation::GetOSName() { return this->Implementation->GetOSName(); } const char* SystemInformation::GetHostname() { return this->Implementation->GetHostname(); } std::string SystemInformation::GetFullyQualifiedDomainName() { std::string fqdn; this->Implementation->GetFullyQualifiedDomainName(fqdn); return fqdn; } const char* SystemInformation::GetOSRelease() { return this->Implementation->GetOSRelease(); } const char* SystemInformation::GetOSVersion() { return this->Implementation->GetOSVersion(); } const char* SystemInformation::GetOSPlatform() { return this->Implementation->GetOSPlatform(); } int SystemInformation::GetOSIsWindows() { #if defined(_WIN32) return 1; #else return 0; #endif } int SystemInformation::GetOSIsLinux() { #if defined(__linux) return 1; #else return 0; #endif } int SystemInformation::GetOSIsApple() { #if defined(__APPLE__) return 1; #else return 0; #endif } std::string SystemInformation::GetOSDescription() { std::ostringstream oss; oss << this->GetOSName() << " " << this->GetOSRelease() << " " << this->GetOSVersion(); return oss.str(); } bool SystemInformation::Is64Bits() { return this->Implementation->Is64Bits(); } unsigned int SystemInformation::GetNumberOfLogicalCPU() // per physical cpu { return this->Implementation->GetNumberOfLogicalCPU(); } unsigned int SystemInformation::GetNumberOfPhysicalCPU() { return this->Implementation->GetNumberOfPhysicalCPU(); } bool SystemInformation::DoesCPUSupportCPUID() { return this->Implementation->DoesCPUSupportCPUID(); } // Retrieve memory information in MiB. size_t SystemInformation::GetTotalVirtualMemory() { return this->Implementation->GetTotalVirtualMemory(); } size_t SystemInformation::GetAvailableVirtualMemory() { return this->Implementation->GetAvailableVirtualMemory(); } size_t SystemInformation::GetTotalPhysicalMemory() { return this->Implementation->GetTotalPhysicalMemory(); } size_t SystemInformation::GetAvailablePhysicalMemory() { return this->Implementation->GetAvailablePhysicalMemory(); } std::string SystemInformation::GetMemoryDescription( const char* hostLimitEnvVarName, const char* procLimitEnvVarName) { std::ostringstream oss; oss << "Host Total: " << this->GetHostMemoryTotal() << " KiB, Host Available: " << this->GetHostMemoryAvailable(hostLimitEnvVarName) << " KiB, Process Available: " << this->GetProcMemoryAvailable(hostLimitEnvVarName, procLimitEnvVarName) << " KiB"; return oss.str(); } // host memory info in units of KiB. long long SystemInformation::GetHostMemoryTotal() { return this->Implementation->GetHostMemoryTotal(); } long long SystemInformation::GetHostMemoryAvailable( const char* hostLimitEnvVarName) { return this->Implementation->GetHostMemoryAvailable(hostLimitEnvVarName); } long long SystemInformation::GetHostMemoryUsed() { return this->Implementation->GetHostMemoryUsed(); } // process memory info in units of KiB. long long SystemInformation::GetProcMemoryAvailable( const char* hostLimitEnvVarName, const char* procLimitEnvVarName) { return this->Implementation->GetProcMemoryAvailable(hostLimitEnvVarName, procLimitEnvVarName); } long long SystemInformation::GetProcMemoryUsed() { return this->Implementation->GetProcMemoryUsed(); } double SystemInformation::GetLoadAverage() { return this->Implementation->GetLoadAverage(); } long long SystemInformation::GetProcessId() { return this->Implementation->GetProcessId(); } void SystemInformation::SetStackTraceOnError(int enable) { SystemInformationImplementation::SetStackTraceOnError(enable); } std::string SystemInformation::GetProgramStack(int firstFrame, int wholePath) { return SystemInformationImplementation::GetProgramStack(firstFrame, wholePath); } /** Run the different checks */ void SystemInformation::RunCPUCheck() { this->Implementation->RunCPUCheck(); } void SystemInformation::RunOSCheck() { this->Implementation->RunOSCheck(); } void SystemInformation::RunMemoryCheck() { this->Implementation->RunMemoryCheck(); } // SystemInformationImplementation starts here #if USE_CPUID # define STORE_TLBCACHE_INFO(x, y) x = (x < (y)) ? (y) : x # define TLBCACHE_INFO_UNITS (15) #endif #if USE_ASM_INSTRUCTIONS # define CLASSICAL_CPU_FREQ_LOOP 10000000 # define RDTSC_INSTRUCTION _asm _emit 0x0f _asm _emit 0x31 #endif #define INITIAL_APIC_ID_BITS 0xFF000000 // initial APIC ID for the processor this code is running on. // Default value = 0xff if HT is not supported // Hide implementation details in an anonymous namespace. namespace { // ***************************************************************************** #if defined(__linux) || defined(__APPLE__) || defined(__CYGWIN__) int LoadLines(FILE* file, std::vector& lines) { // Load each line in the given file into a the vector. int nRead = 0; const int bufSize = 1024; char buf[bufSize] = { '\0' }; while (!feof(file) && !ferror(file)) { errno = 0; if (fgets(buf, bufSize, file) == nullptr) { if (ferror(file) && (errno == EINTR)) { clearerr(file); } continue; } char* pBuf = buf; while (*pBuf) { if (*pBuf == '\n') *pBuf = '\0'; pBuf += 1; } lines.emplace_back(buf); ++nRead; } if (ferror(file)) { return 0; } return nRead; } # if defined(__linux) || defined(__CYGWIN__) // ***************************************************************************** int LoadLines(const char* fileName, std::vector& lines) { FILE* file = fopen(fileName, "r"); if (file == nullptr) { return 0; } int nRead = LoadLines(file, lines); fclose(file); return nRead; } # endif // **************************************************************************** template int NameValue(std::vector const& lines, std::string const& name, T& value) { size_t nLines = lines.size(); for (size_t i = 0; i < nLines; ++i) { size_t at = lines[i].find(name); if (at == std::string::npos) { continue; } std::istringstream is(lines[i].substr(at + name.size())); is >> value; return 0; } return -1; } #endif #if defined(__linux) || defined(__CYGWIN__) // **************************************************************************** template int GetFieldsFromFile(const char* fileName, const char** fieldNames, T* values) { std::vector fields; if (!LoadLines(fileName, fields)) { return -1; } int i = 0; while (fieldNames[i] != nullptr) { int ierr = NameValue(fields, fieldNames[i], values[i]); if (ierr) { return -(i + 2); } i += 1; } return 0; } // **************************************************************************** template int GetFieldFromFile(const char* fileName, const char* fieldName, T& value) { const char* fieldNames[2] = { fieldName, nullptr }; T values[1] = { T(0) }; int ierr = GetFieldsFromFile(fileName, fieldNames, values); if (ierr) { return ierr; } value = values[0]; return 0; } #endif // **************************************************************************** #if defined(__APPLE__) template int GetFieldsFromCommand(const char* command, const char** fieldNames, T* values) { FILE* file = popen(command, "r"); if (file == nullptr) { return -1; } std::vector fields; int nl = LoadLines(file, fields); pclose(file); if (nl == 0) { return -1; } int i = 0; while (fieldNames[i] != nullptr) { int ierr = NameValue(fields, fieldNames[i], values[i]); if (ierr) { return -(i + 2); } i += 1; } return 0; } #endif // **************************************************************************** #if !defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__) void StacktraceSignalHandler(int sigNo, siginfo_t* sigInfo, void* /*sigContext*/) { # if defined(__linux) || defined(__APPLE__) std::ostringstream oss; oss << std::endl << "=========================================================" << std::endl << "Process id " << getpid() << " "; switch (sigNo) { case SIGINT: oss << "Caught SIGINT"; break; case SIGTERM: oss << "Caught SIGTERM"; break; case SIGABRT: oss << "Caught SIGABRT"; break; case SIGFPE: oss << "Caught SIGFPE at " << (sigInfo->si_addr == nullptr ? "0x" : "") << sigInfo->si_addr << " "; switch (sigInfo->si_code) { # if defined(FPE_INTDIV) case FPE_INTDIV: oss << "integer division by zero"; break; # endif # if defined(FPE_INTOVF) case FPE_INTOVF: oss << "integer overflow"; break; # endif case FPE_FLTDIV: oss << "floating point divide by zero"; break; case FPE_FLTOVF: oss << "floating point overflow"; break; case FPE_FLTUND: oss << "floating point underflow"; break; case FPE_FLTRES: oss << "floating point inexact result"; break; case FPE_FLTINV: oss << "floating point invalid operation"; break; # if defined(FPE_FLTSUB) case FPE_FLTSUB: oss << "floating point subscript out of range"; break; # endif default: oss << "code " << sigInfo->si_code; break; } break; case SIGSEGV: oss << "Caught SIGSEGV at " << (sigInfo->si_addr == nullptr ? "0x" : "") << sigInfo->si_addr << " "; switch (sigInfo->si_code) { case SEGV_MAPERR: oss << "address not mapped to object"; break; case SEGV_ACCERR: oss << "invalid permission for mapped object"; break; default: oss << "code " << sigInfo->si_code; break; } break; case SIGBUS: oss << "Caught SIGBUS at " << (sigInfo->si_addr == nullptr ? "0x" : "") << sigInfo->si_addr << " "; switch (sigInfo->si_code) { case BUS_ADRALN: oss << "invalid address alignment"; break; # if defined(BUS_ADRERR) case BUS_ADRERR: oss << "nonexistent physical address"; break; # endif # if defined(BUS_OBJERR) case BUS_OBJERR: oss << "object-specific hardware error"; break; # endif # if defined(BUS_MCEERR_AR) case BUS_MCEERR_AR: oss << "Hardware memory error consumed on a machine check; action " "required."; break; # endif # if defined(BUS_MCEERR_AO) case BUS_MCEERR_AO: oss << "Hardware memory error detected in process but not consumed; " "action optional."; break; # endif default: oss << "code " << sigInfo->si_code; break; } break; case SIGILL: oss << "Caught SIGILL at " << (sigInfo->si_addr == nullptr ? "0x" : "") << sigInfo->si_addr << " "; switch (sigInfo->si_code) { case ILL_ILLOPC: oss << "illegal opcode"; break; # if defined(ILL_ILLOPN) case ILL_ILLOPN: oss << "illegal operand"; break; # endif # if defined(ILL_ILLADR) case ILL_ILLADR: oss << "illegal addressing mode."; break; # endif case ILL_ILLTRP: oss << "illegal trap"; break; case ILL_PRVOPC: oss << "privileged opcode"; break; # if defined(ILL_PRVREG) case ILL_PRVREG: oss << "privileged register"; break; # endif # if defined(ILL_COPROC) case ILL_COPROC: oss << "co-processor error"; break; # endif # if defined(ILL_BADSTK) case ILL_BADSTK: oss << "internal stack error"; break; # endif default: oss << "code " << sigInfo->si_code; break; } break; default: oss << "Caught " << sigNo << " code " << sigInfo->si_code; break; } oss << std::endl << "Program Stack:" << std::endl << SystemInformationImplementation::GetProgramStack(2, 0) << "=========================================================" << std::endl; std::cerr << oss.str() << std::endl; // restore the previously registered handlers // and abort SystemInformationImplementation::SetStackTraceOnError(0); abort(); # else // avoid warning C4100 (void)sigNo; (void)sigInfo; # endif } #endif #if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE) # define safes(_arg) ((_arg) ? (_arg) : "???") // Description: // A container for symbol properties. Each instance // must be Initialized. class SymbolProperties { public: SymbolProperties(); // Description: // The SymbolProperties instance must be initialized by // passing a stack address. void Initialize(void* address); // Description: // Get the symbol's stack address. void* GetAddress() const { return this->Address; } // Description: // If not set paths will be removed. eg, from a binary // or source file. void SetReportPath(int rp) { this->ReportPath = rp; } // Description: // Set/Get the name of the binary file that the symbol // is found in. void SetBinary(const char* binary) { this->Binary = safes(binary); } std::string GetBinary() const; // Description: // Set the name of the function that the symbol is found in. // If c++ demangling is supported it will be demangled. void SetFunction(const char* function) { this->Function = this->Demangle(function); } std::string GetFunction() const { return this->Function; } // Description: // Set/Get the name of the source file where the symbol // is defined. void SetSourceFile(const char* sourcefile) { this->SourceFile = safes(sourcefile); } std::string GetSourceFile() const { return this->GetFileName(this->SourceFile); } // Description: // Set/Get the line number where the symbol is defined void SetLineNumber(long linenumber) { this->LineNumber = linenumber; } long GetLineNumber() const { return this->LineNumber; } // Description: // Set the address where the binary image is mapped // into memory. void SetBinaryBaseAddress(void* address) { this->BinaryBaseAddress = address; } private: void* GetRealAddress() const { return (void*)((char*)this->Address - (char*)this->BinaryBaseAddress); } std::string GetFileName(const std::string& path) const; std::string Demangle(const char* symbol) const; private: std::string Binary; void* BinaryBaseAddress; void* Address; std::string SourceFile; std::string Function; long LineNumber; int ReportPath; }; std::ostream& operator<<(std::ostream& os, const SymbolProperties& sp) { # if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP) os << std::hex << sp.GetAddress() << " : " << sp.GetFunction() << " [(" << sp.GetBinary() << ") " << sp.GetSourceFile() << ":" << std::dec << sp.GetLineNumber() << "]"; # elif defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE) void* addr = sp.GetAddress(); char** syminfo = backtrace_symbols(&addr, 1); os << safes(syminfo[0]); free(syminfo); # else (void)os; (void)sp; # endif return os; } SymbolProperties::SymbolProperties() { // not using an initializer list // to avoid some PGI compiler warnings this->SetBinary("???"); this->SetBinaryBaseAddress(nullptr); this->Address = nullptr; this->SetSourceFile("???"); this->SetFunction("???"); this->SetLineNumber(-1); this->SetReportPath(0); // avoid PGI compiler warnings this->GetRealAddress(); this->GetFunction(); this->GetSourceFile(); this->GetLineNumber(); } std::string SymbolProperties::GetFileName(const std::string& path) const { std::string file(path); if (!this->ReportPath) { size_t at = file.rfind('/'); if (at != std::string::npos) { file.erase(0, at + 1); } } return file; } std::string SymbolProperties::GetBinary() const { // only linux has proc fs # if defined(__linux__) if (this->Binary == "/proc/self/exe") { std::string binary; char buf[1024] = { '\0' }; ssize_t ll = 0; if ((ll = readlink("/proc/self/exe", buf, 1024)) > 0 && ll < 1024) { buf[ll] = '\0'; binary = buf; } else { binary = "/proc/self/exe"; } return this->GetFileName(binary); } # endif return this->GetFileName(this->Binary); } std::string SymbolProperties::Demangle(const char* symbol) const { std::string result = safes(symbol); # if defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE) int status = 0; size_t bufferLen = 1024; char* buffer = (char*)malloc(1024); char* demangledSymbol = abi::__cxa_demangle(symbol, buffer, &bufferLen, &status); if (!status) { result = demangledSymbol; } free(buffer); # else (void)symbol; # endif return result; } void SymbolProperties::Initialize(void* address) { this->Address = address; # if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP) // first fallback option can demangle c++ functions Dl_info info; int ierr = dladdr(this->Address, &info); if (ierr && info.dli_sname && info.dli_saddr) { this->SetBinary(info.dli_fname); this->SetFunction(info.dli_sname); } # else // second fallback use builtin backtrace_symbols // to decode the backtrace. # endif } #endif // don't define this class if we're not using it #if defined(_WIN32) || defined(__CYGWIN__) # define KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes #endif #if defined(_MSC_VER) && _MSC_VER < 1310 # undef KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes #endif #if defined(KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes) double calculateCPULoad(unsigned __int64 idleTicks, unsigned __int64 totalTicks) { static double previousLoad = -0.0; static unsigned __int64 previousIdleTicks = 0; static unsigned __int64 previousTotalTicks = 0; unsigned __int64 const idleTicksSinceLastTime = idleTicks - previousIdleTicks; unsigned __int64 const totalTicksSinceLastTime = totalTicks - previousTotalTicks; double load; if (previousTotalTicks == 0 || totalTicksSinceLastTime == 0) { // No new information. Use previous result. load = previousLoad; } else { // Calculate load since last time. load = 1.0 - double(idleTicksSinceLastTime) / totalTicksSinceLastTime; // Smooth if possible. if (previousLoad > 0) { load = 0.25 * load + 0.75 * previousLoad; } } previousLoad = load; previousIdleTicks = idleTicks; previousTotalTicks = totalTicks; return load; } unsigned __int64 fileTimeToUInt64(FILETIME const& ft) { LARGE_INTEGER out; out.HighPart = ft.dwHighDateTime; out.LowPart = ft.dwLowDateTime; return out.QuadPart; } #endif } // anonymous namespace SystemInformationImplementation::SystemInformationImplementation() { this->TotalVirtualMemory = 0; this->AvailableVirtualMemory = 0; this->TotalPhysicalMemory = 0; this->AvailablePhysicalMemory = 0; this->CurrentPositionInFile = 0; this->ChipManufacturer = UnknownManufacturer; memset(&this->Features, 0, sizeof(CPUFeatures)); this->ChipID.Type = 0; this->ChipID.Family = 0; this->ChipID.Model = 0; this->ChipID.Revision = 0; this->ChipID.ExtendedFamily = 0; this->ChipID.ExtendedModel = 0; this->CPUSpeedInMHz = 0; this->NumberOfLogicalCPU = 0; this->NumberOfPhysicalCPU = 0; this->OSName = ""; this->Hostname = ""; this->OSRelease = ""; this->OSVersion = ""; this->OSPlatform = ""; this->OSIs64Bit = (sizeof(void*) == 8); } void SystemInformationImplementation::RunCPUCheck() { #ifdef _WIN32 // Check to see if this processor supports CPUID. bool supportsCPUID = DoesCPUSupportCPUID(); if (supportsCPUID) { // Retrieve the CPU details. RetrieveCPUIdentity(); this->FindManufacturer(); RetrieveCPUFeatures(); } // These two may be called without support for the CPUID instruction. // (But if the instruction is there, they should be called *after* // the above call to RetrieveCPUIdentity... that's why the two if // blocks exist with the same "if (supportsCPUID)" logic... // if (!RetrieveCPUClockSpeed()) { RetrieveClassicalCPUClockSpeed(); } if (supportsCPUID) { // Retrieve cache information. if (!RetrieveCPUCacheDetails()) { RetrieveClassicalCPUCacheDetails(); } // Retrieve the extended CPU details. if (!RetrieveExtendedCPUIdentity()) { RetrieveClassicalCPUIdentity(); } RetrieveExtendedCPUFeatures(); RetrieveCPUPowerManagement(); // Now attempt to retrieve the serial number (if possible). RetrieveProcessorSerialNumber(); } this->CPUCountWindows(); #elif defined(__APPLE__) this->ParseSysCtl(); #elif defined(__SVR4) && defined(__sun) this->QuerySolarisProcessor(); #elif defined(__HAIKU__) this->QueryHaikuInfo(); #elif defined(__QNX__) this->QueryQNXProcessor(); #elif defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \ defined(__DragonFly__) this->QueryBSDProcessor(); #elif defined(__hpux) this->QueryHPUXProcessor(); #elif defined(__linux) || defined(__CYGWIN__) this->RetreiveInformationFromCpuInfoFile(); #else this->QueryProcessor(); #endif } void SystemInformationImplementation::RunOSCheck() { this->QueryOSInformation(); } void SystemInformationImplementation::RunMemoryCheck() { #if defined(__APPLE__) this->ParseSysCtl(); #elif defined(__SVR4) && defined(__sun) this->QuerySolarisMemory(); #elif defined(__HAIKU__) this->QueryHaikuInfo(); #elif defined(__QNX__) this->QueryQNXMemory(); #elif defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \ defined(__DragonFly__) this->QueryBSDMemory(); #elif defined(__CYGWIN__) this->QueryCygwinMemory(); #elif defined(_WIN32) this->QueryWindowsMemory(); #elif defined(__hpux) this->QueryHPUXMemory(); #elif defined(__linux) this->QueryLinuxMemory(); #elif defined(_AIX) this->QueryAIXMemory(); #else this->QueryMemory(); #endif } /** Get the vendor string */ const char* SystemInformationImplementation::GetVendorString() const { return this->ChipID.Vendor.c_str(); } /** Get the OS Name */ const char* SystemInformationImplementation::GetOSName() { return this->OSName.c_str(); } /** Get the hostname */ const char* SystemInformationImplementation::GetHostname() { if (this->Hostname.empty()) { this->Hostname = "localhost"; #if defined(_WIN32) WORD wVersionRequested; WSADATA wsaData; char name[255]; wVersionRequested = MAKEWORD(2, 0); if (WSAStartup(wVersionRequested, &wsaData) == 0) { gethostname(name, sizeof(name)); WSACleanup(); } this->Hostname = name; #else struct utsname unameInfo; int errorFlag = uname(&unameInfo); if (errorFlag == 0) { this->Hostname = unameInfo.nodename; } #endif } return this->Hostname.c_str(); } /** Get the FQDN */ int SystemInformationImplementation::GetFullyQualifiedDomainName( std::string& fqdn) { // in the event of absolute failure return localhost. fqdn = "localhost"; #if defined(_WIN32) int ierr; // TODO - a more robust implementation for windows, see comments // in unix implementation. WSADATA wsaData; WORD ver = MAKEWORD(2, 0); ierr = WSAStartup(ver, &wsaData); if (ierr) { return -1; } char base[256] = { '\0' }; ierr = gethostname(base, 256); if (ierr) { WSACleanup(); return -2; } fqdn = base; HOSTENT* hent = gethostbyname(base); if (hent) { fqdn = hent->h_name; } WSACleanup(); return 0; #elif defined(KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN) // gethostname typical returns an alias for loopback interface // we want the fully qualified domain name. Because there are // any number of interfaces on this system we look for the // first of these that contains the name returned by gethostname // and is longer. failing that we return gethostname and indicate // with a failure code. Return of a failure code is not necessarily // an indication of an error. for instance gethostname may return // the fully qualified domain name, or there may not be one if the // system lives on a private network such as in the case of a cluster // node. int ierr = 0; char base[NI_MAXHOST]; ierr = gethostname(base, NI_MAXHOST); if (ierr) { return -1; } size_t baseSize = strlen(base); fqdn = base; struct ifaddrs* ifas; struct ifaddrs* ifa; ierr = getifaddrs(&ifas); if (ierr) { return -2; } for (ifa = ifas; ifa != nullptr; ifa = ifa->ifa_next) { int fam = ifa->ifa_addr ? ifa->ifa_addr->sa_family : -1; // Skip Loopback interfaces if (((fam == AF_INET) || (fam == AF_INET6)) && !(ifa->ifa_flags & IFF_LOOPBACK)) { char host[NI_MAXHOST] = { '\0' }; const size_t addrlen = (fam == AF_INET ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)); ierr = getnameinfo(ifa->ifa_addr, static_cast(addrlen), host, NI_MAXHOST, nullptr, 0, NI_NAMEREQD); if (ierr) { // don't report the failure now since we may succeed on another // interface. If all attempts fail then return the failure code. ierr = -3; continue; } std::string candidate = host; if ((candidate.find(base) != std::string::npos) && baseSize < candidate.size()) { // success, stop now. ierr = 0; fqdn = candidate; break; } } } freeifaddrs(ifas); return ierr; #else /* TODO: Implement on more platforms. */ fqdn = this->GetHostname(); return -1; #endif } /** Get the OS release */ const char* SystemInformationImplementation::GetOSRelease() { return this->OSRelease.c_str(); } /** Get the OS version */ const char* SystemInformationImplementation::GetOSVersion() { return this->OSVersion.c_str(); } /** Get the OS platform */ const char* SystemInformationImplementation::GetOSPlatform() { return this->OSPlatform.c_str(); } /** Get the vendor ID */ const char* SystemInformationImplementation::GetVendorID() { // Return the vendor ID. switch (this->ChipManufacturer) { case Intel: return "Intel Corporation"; case AMD: return "Advanced Micro Devices"; case NSC: return "National Semiconductor"; case Cyrix: return "Cyrix Corp., VIA Inc."; case NexGen: return "NexGen Inc., Advanced Micro Devices"; case IDT: return "IDT\\Centaur, Via Inc., Shanghai Zhaoxin Semiconductor Co., " "Ltd."; case UMC: return "United Microelectronics Corp."; case Rise: return "Rise"; case Transmeta: return "Transmeta"; case Sun: return "Sun Microelectronics"; case IBM: return "IBM"; case Motorola: return "Motorola"; case HP: return "Hewlett-Packard"; case Hygon: return "Chengdu Haiguang IC Design Co., Ltd."; case Zhaoxin: return "Shanghai Zhaoxin Semiconductor Co., Ltd."; case Apple: return "Apple"; case UnknownManufacturer: default: return "Unknown Manufacturer"; } } /** Return the type ID of the CPU */ std::string SystemInformationImplementation::GetTypeID() const { std::ostringstream str; str << this->ChipID.Type; return str.str(); } /** Return the family of the CPU present */ std::string SystemInformationImplementation::GetFamilyID() const { std::ostringstream str; str << this->ChipID.Family; return str.str(); } // Return the model of CPU present */ std::string SystemInformationImplementation::GetModelID() const { std::ostringstream str; str << this->ChipID.Model; return str.str(); } // Return the model name of CPU present */ std::string SystemInformationImplementation::GetModelName() const { return this->ChipID.ModelName; } /** Return the stepping code of the CPU present. */ std::string SystemInformationImplementation::GetSteppingCode() const { std::ostringstream str; str << this->ChipID.Revision; return str.str(); } /** Return the stepping code of the CPU present. */ const char* SystemInformationImplementation::GetExtendedProcessorName() const { return this->ChipID.ProcessorName.c_str(); } /** Return the serial number of the processor * in hexadecimal: xxxx-xxxx-xxxx-xxxx-xxxx-xxxx. */ const char* SystemInformationImplementation::GetProcessorSerialNumber() const { return this->ChipID.SerialNumber.c_str(); } /** Return the logical processors per physical */ unsigned int SystemInformationImplementation::GetLogicalProcessorsPerPhysical() const { return this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical; } /** Return the processor clock frequency. */ float SystemInformationImplementation::GetProcessorClockFrequency() const { return this->CPUSpeedInMHz; } /** Return the APIC ID. */ int SystemInformationImplementation::GetProcessorAPICID() const { return this->Features.ExtendedFeatures.APIC_ID; } /** Return the L1 cache size. */ int SystemInformationImplementation::GetProcessorCacheSize() const { return this->Features.L1CacheSize; } /** Return the chosen cache size. */ int SystemInformationImplementation::GetProcessorCacheXSize( long int dwCacheID) const { switch (dwCacheID) { case SystemInformation::CPU_FEATURE_L1CACHE: return this->Features.L1CacheSize; case SystemInformation::CPU_FEATURE_L2CACHE: return this->Features.L2CacheSize; case SystemInformation::CPU_FEATURE_L3CACHE: return this->Features.L3CacheSize; } return -1; } bool SystemInformationImplementation::DoesCPUSupportFeature( long int dwFeature) const { bool bHasFeature = false; // Check for MMX instructions. if (((dwFeature & SystemInformation::CPU_FEATURE_MMX) != 0) && this->Features.HasMMX) bHasFeature = true; // Check for MMX+ instructions. if (((dwFeature & SystemInformation::CPU_FEATURE_MMX_PLUS) != 0) && this->Features.ExtendedFeatures.HasMMXPlus) bHasFeature = true; // Check for SSE FP instructions. if (((dwFeature & SystemInformation::CPU_FEATURE_SSE) != 0) && this->Features.HasSSE) bHasFeature = true; // Check for SSE FP instructions. if (((dwFeature & SystemInformation::CPU_FEATURE_SSE_FP) != 0) && this->Features.HasSSEFP) bHasFeature = true; // Check for SSE MMX instructions. if (((dwFeature & SystemInformation::CPU_FEATURE_SSE_MMX) != 0) && this->Features.ExtendedFeatures.HasSSEMMX) bHasFeature = true; // Check for SSE2 instructions. if (((dwFeature & SystemInformation::CPU_FEATURE_SSE2) != 0) && this->Features.HasSSE2) bHasFeature = true; // Check for 3DNow! instructions. if (((dwFeature & SystemInformation::CPU_FEATURE_AMD_3DNOW) != 0) && this->Features.ExtendedFeatures.Has3DNow) bHasFeature = true; // Check for 3DNow+ instructions. if (((dwFeature & SystemInformation::CPU_FEATURE_AMD_3DNOW_PLUS) != 0) && this->Features.ExtendedFeatures.Has3DNowPlus) bHasFeature = true; // Check for IA64 instructions. if (((dwFeature & SystemInformation::CPU_FEATURE_IA64) != 0) && this->Features.HasIA64) bHasFeature = true; // Check for MP capable. if (((dwFeature & SystemInformation::CPU_FEATURE_MP_CAPABLE) != 0) && this->Features.ExtendedFeatures.SupportsMP) bHasFeature = true; // Check for a serial number for the processor. if (((dwFeature & SystemInformation::CPU_FEATURE_SERIALNUMBER) != 0) && this->Features.HasSerial) bHasFeature = true; // Check for a local APIC in the processor. if (((dwFeature & SystemInformation::CPU_FEATURE_APIC) != 0) && this->Features.HasAPIC) bHasFeature = true; // Check for CMOV instructions. if (((dwFeature & SystemInformation::CPU_FEATURE_CMOV) != 0) && this->Features.HasCMOV) bHasFeature = true; // Check for MTRR instructions. if (((dwFeature & SystemInformation::CPU_FEATURE_MTRR) != 0) && this->Features.HasMTRR) bHasFeature = true; // Check for L1 cache size. if (((dwFeature & SystemInformation::CPU_FEATURE_L1CACHE) != 0) && (this->Features.L1CacheSize != -1)) bHasFeature = true; // Check for L2 cache size. if (((dwFeature & SystemInformation::CPU_FEATURE_L2CACHE) != 0) && (this->Features.L2CacheSize != -1)) bHasFeature = true; // Check for L3 cache size. if (((dwFeature & SystemInformation::CPU_FEATURE_L3CACHE) != 0) && (this->Features.L3CacheSize != -1)) bHasFeature = true; // Check for ACPI capability. if (((dwFeature & SystemInformation::CPU_FEATURE_ACPI) != 0) && this->Features.HasACPI) bHasFeature = true; // Check for thermal monitor support. if (((dwFeature & SystemInformation::CPU_FEATURE_THERMALMONITOR) != 0) && this->Features.HasThermal) bHasFeature = true; // Check for temperature sensing diode support. if (((dwFeature & SystemInformation::CPU_FEATURE_TEMPSENSEDIODE) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode) bHasFeature = true; // Check for frequency ID support. if (((dwFeature & SystemInformation::CPU_FEATURE_FREQUENCYID) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID) bHasFeature = true; // Check for voltage ID support. if (((dwFeature & SystemInformation::CPU_FEATURE_VOLTAGEID_FREQUENCY) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasVoltageID) bHasFeature = true; // Check for FPU support. if (((dwFeature & SystemInformation::CPU_FEATURE_FPU) != 0) && this->Features.HasFPU) bHasFeature = true; return bHasFeature; } void SystemInformationImplementation::Delay(unsigned int uiMS) { #ifdef _WIN32 LARGE_INTEGER Frequency, StartCounter, EndCounter; __int64 x; // Get the frequency of the high performance counter. if (!QueryPerformanceFrequency(&Frequency)) return; x = Frequency.QuadPart / 1000 * uiMS; // Get the starting position of the counter. QueryPerformanceCounter(&StartCounter); do { // Get the ending position of the counter. QueryPerformanceCounter(&EndCounter); } while (EndCounter.QuadPart - StartCounter.QuadPart < x); #endif (void)uiMS; } bool SystemInformationImplementation::DoesCPUSupportCPUID() { #if USE_CPUID int dummy[4] = { 0, 0, 0, 0 }; # if USE_ASM_INSTRUCTIONS return call_cpuid(0, dummy); # else call_cpuid(0, dummy); return dummy[0] || dummy[1] || dummy[2] || dummy[3]; # endif #else // Assume no cpuid instruction. return false; #endif } bool SystemInformationImplementation::RetrieveCPUFeatures() { #if USE_CPUID int cpuinfo[4] = { 0, 0, 0, 0 }; if (!call_cpuid(1, cpuinfo)) { return false; } // Retrieve the features of CPU present. this->Features.HasFPU = ((cpuinfo[3] & 0x00000001) != 0); // FPU Present --> Bit 0 this->Features.HasTSC = ((cpuinfo[3] & 0x00000010) != 0); // TSC Present --> Bit 4 this->Features.HasAPIC = ((cpuinfo[3] & 0x00000200) != 0); // APIC Present --> Bit 9 this->Features.HasMTRR = ((cpuinfo[3] & 0x00001000) != 0); // MTRR Present --> Bit 12 this->Features.HasCMOV = ((cpuinfo[3] & 0x00008000) != 0); // CMOV Present --> Bit 15 this->Features.HasSerial = ((cpuinfo[3] & 0x00040000) != 0); // Serial Present --> Bit 18 this->Features.HasACPI = ((cpuinfo[3] & 0x00400000) != 0); // ACPI Capable --> Bit 22 this->Features.HasMMX = ((cpuinfo[3] & 0x00800000) != 0); // MMX Present --> Bit 23 this->Features.HasSSE = ((cpuinfo[3] & 0x02000000) != 0); // SSE Present --> Bit 25 this->Features.HasSSE2 = ((cpuinfo[3] & 0x04000000) != 0); // SSE2 Present --> Bit 26 this->Features.HasThermal = ((cpuinfo[3] & 0x20000000) != 0); // Thermal Monitor Present --> Bit 29 this->Features.HasIA64 = ((cpuinfo[3] & 0x40000000) != 0); // IA64 Present --> Bit 30 # if USE_ASM_INSTRUCTIONS // Retrieve extended SSE capabilities if SSE is available. if (this->Features.HasSSE) { // Attempt to __try some SSE FP instructions. __try { // Perform: orps xmm0, xmm0 _asm { _emit 0x0f _emit 0x56 _emit 0xc0 } // SSE FP capable processor. this->Features.HasSSEFP = true; } __except (1) { // bad instruction - processor or OS cannot handle SSE FP. this->Features.HasSSEFP = false; } } else { // Set the advanced SSE capabilities to not available. this->Features.HasSSEFP = false; } # else this->Features.HasSSEFP = false; # endif // Retrieve Intel specific extended features. if (this->ChipManufacturer == Intel) { bool SupportsSMT = ((cpuinfo[3] & 0x10000000) != 0); // Intel specific: SMT --> Bit 28 if ((SupportsSMT) && (this->Features.HasAPIC)) { // Retrieve APIC information if there is one present. this->Features.ExtendedFeatures.APIC_ID = ((cpuinfo[1] & 0xFF000000) >> 24); } } return true; #else return false; #endif } /** Find the manufacturer given the vendor id */ void SystemInformationImplementation::FindManufacturer( const std::string& family) { if (this->ChipID.Vendor == "GenuineIntel") this->ChipManufacturer = Intel; // Intel Corp. else if (this->ChipID.Vendor == "UMC UMC UMC ") this->ChipManufacturer = UMC; // United Microelectronics Corp. else if (this->ChipID.Vendor == "AuthenticAMD") this->ChipManufacturer = AMD; // Advanced Micro Devices else if (this->ChipID.Vendor == "AMD ISBETTER") this->ChipManufacturer = AMD; // Advanced Micro Devices (1994) else if (this->ChipID.Vendor == "HygonGenuine") this->ChipManufacturer = Hygon; // Chengdu Haiguang IC Design Co., Ltd. else if (this->ChipID.Vendor == "CyrixInstead") this->ChipManufacturer = Cyrix; // Cyrix Corp., VIA Inc. else if (this->ChipID.Vendor == "NexGenDriven") this->ChipManufacturer = NexGen; // NexGen Inc. (now AMD) else if (this->ChipID.Vendor == "CentaurHauls") this->ChipManufacturer = IDT; // original IDT/Centaur/VIA (now Zhaoxin) else if (this->ChipID.Vendor == " Shanghai ") this->ChipManufacturer = Zhaoxin; // Shanghai Zhaoxin Semiconductor Co., Ltd. else if (this->ChipID.Vendor == "RiseRiseRise") this->ChipManufacturer = Rise; // Rise else if (this->ChipID.Vendor == "GenuineTMx86") this->ChipManufacturer = Transmeta; // Transmeta else if (this->ChipID.Vendor == "TransmetaCPU") this->ChipManufacturer = Transmeta; // Transmeta else if (this->ChipID.Vendor == "Geode By NSC") this->ChipManufacturer = NSC; // National Semiconductor else if (this->ChipID.Vendor == "Sun") this->ChipManufacturer = Sun; // Sun Microelectronics else if (this->ChipID.Vendor == "IBM") this->ChipManufacturer = IBM; // IBM Microelectronics else if (this->ChipID.Vendor == "Hewlett-Packard") this->ChipManufacturer = HP; // Hewlett-Packard else if (this->ChipID.Vendor == "Motorola") this->ChipManufacturer = Motorola; // Motorola Microelectronics else if (family.compare(0, 7, "PA-RISC") == 0) this->ChipManufacturer = HP; // Hewlett-Packard else if (this->ChipID.Vendor == "Apple") this->ChipManufacturer = Apple; // Apple else this->ChipManufacturer = UnknownManufacturer; // Unknown manufacturer } /** */ bool SystemInformationImplementation::RetrieveCPUIdentity() { #if USE_CPUID int localCPUVendor[4]; int localCPUSignature[4]; if (!call_cpuid(0, localCPUVendor)) { return false; } if (!call_cpuid(1, localCPUSignature)) { return false; } // Process the returned information. // ; eax = 0 --> eax: maximum value of CPUID instruction. // ; ebx: part 1 of 3; CPU signature. // ; edx: part 2 of 3; CPU signature. // ; ecx: part 3 of 3; CPU signature. char vbuf[13]; memcpy(&(vbuf[0]), &(localCPUVendor[1]), sizeof(int)); memcpy(&(vbuf[4]), &(localCPUVendor[3]), sizeof(int)); memcpy(&(vbuf[8]), &(localCPUVendor[2]), sizeof(int)); vbuf[12] = '\0'; this->ChipID.Vendor = vbuf; // Retrieve the family of CPU present. // ; eax = 1 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type, // bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision // ; ebx: 31..24 - default APIC ID, 23..16 - logical processor ID, // 15..8 - CFLUSH chunk size , 7..0 - brand ID // ; edx: CPU feature flags this->ChipID.ExtendedFamily = ((localCPUSignature[0] & 0x0FF00000) >> 20); // Bits 27..20 Used this->ChipID.ExtendedModel = ((localCPUSignature[0] & 0x000F0000) >> 16); // Bits 19..16 Used this->ChipID.Type = ((localCPUSignature[0] & 0x0000F000) >> 12); // Bits 15..12 Used this->ChipID.Family = ((localCPUSignature[0] & 0x00000F00) >> 8); // Bits 11..8 Used this->ChipID.Model = ((localCPUSignature[0] & 0x000000F0) >> 4); // Bits 7..4 Used this->ChipID.Revision = ((localCPUSignature[0] & 0x0000000F) >> 0); // Bits 3..0 Used return true; #else return false; #endif } /** */ bool SystemInformationImplementation::RetrieveCPUCacheDetails() { #if USE_CPUID int L1Cache[4] = { 0, 0, 0, 0 }; int L2Cache[4] = { 0, 0, 0, 0 }; // Check to see if what we are about to do is supported... if (RetrieveCPUExtendedLevelSupport(0x80000005)) { if (!call_cpuid(0x80000005, L1Cache)) { return false; } // Save the L1 data cache size (in KB) from ecx: bits 31..24 as well as // data cache size from edx: bits 31..24. this->Features.L1CacheSize = ((L1Cache[2] & 0xFF000000) >> 24); this->Features.L1CacheSize += ((L1Cache[3] & 0xFF000000) >> 24); } else { // Store -1 to indicate the cache could not be queried. this->Features.L1CacheSize = -1; } // Check to see if what we are about to do is supported... if (RetrieveCPUExtendedLevelSupport(0x80000006)) { if (!call_cpuid(0x80000006, L2Cache)) { return false; } // Save the L2 unified cache size (in KB) from ecx: bits 31..16. this->Features.L2CacheSize = ((L2Cache[2] & 0xFFFF0000) >> 16); } else { // Store -1 to indicate the cache could not be queried. this->Features.L2CacheSize = -1; } // Define L3 as being not present as we cannot test for it. this->Features.L3CacheSize = -1; #endif // Return failure if we cannot detect either cache with this method. return ((this->Features.L1CacheSize == -1) && (this->Features.L2CacheSize == -1)) ? false : true; } /** */ bool SystemInformationImplementation::RetrieveClassicalCPUCacheDetails() { #if USE_CPUID int TLBCode = -1, TLBData = -1, L1Code = -1, L1Data = -1, L1Trace = -1, L2Unified = -1, L3Unified = -1; int TLBCacheData[4] = { 0, 0, 0, 0 }; int TLBPassCounter = 0; int TLBCacheUnit = 0; do { if (!call_cpuid(2, TLBCacheData)) { return false; } int bob = ((TLBCacheData[0] & 0x00FF0000) >> 16); (void)bob; // Process the returned TLB and cache information. for (int nCounter = 0; nCounter < TLBCACHE_INFO_UNITS; nCounter++) { // First of all - decide which unit we are dealing with. switch (nCounter) { // eax: bits 8..15 : bits 16..23 : bits 24..31 case 0: TLBCacheUnit = ((TLBCacheData[0] & 0x0000FF00) >> 8); break; case 1: TLBCacheUnit = ((TLBCacheData[0] & 0x00FF0000) >> 16); break; case 2: TLBCacheUnit = ((TLBCacheData[0] & 0xFF000000) >> 24); break; // ebx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31 case 3: TLBCacheUnit = ((TLBCacheData[1] & 0x000000FF) >> 0); break; case 4: TLBCacheUnit = ((TLBCacheData[1] & 0x0000FF00) >> 8); break; case 5: TLBCacheUnit = ((TLBCacheData[1] & 0x00FF0000) >> 16); break; case 6: TLBCacheUnit = ((TLBCacheData[1] & 0xFF000000) >> 24); break; // ecx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31 case 7: TLBCacheUnit = ((TLBCacheData[2] & 0x000000FF) >> 0); break; case 8: TLBCacheUnit = ((TLBCacheData[2] & 0x0000FF00) >> 8); break; case 9: TLBCacheUnit = ((TLBCacheData[2] & 0x00FF0000) >> 16); break; case 10: TLBCacheUnit = ((TLBCacheData[2] & 0xFF000000) >> 24); break; // edx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31 case 11: TLBCacheUnit = ((TLBCacheData[3] & 0x000000FF) >> 0); break; case 12: TLBCacheUnit = ((TLBCacheData[3] & 0x0000FF00) >> 8); break; case 13: TLBCacheUnit = ((TLBCacheData[3] & 0x00FF0000) >> 16); break; case 14: TLBCacheUnit = ((TLBCacheData[3] & 0xFF000000) >> 24); break; // Default case - an error has occurred. default: return false; } // Now process the resulting unit to see what it means.... switch (TLBCacheUnit) { case 0x00: break; case 0x01: STORE_TLBCACHE_INFO(TLBCode, 4); break; case 0x02: STORE_TLBCACHE_INFO(TLBCode, 4096); break; case 0x03: STORE_TLBCACHE_INFO(TLBData, 4); break; case 0x04: STORE_TLBCACHE_INFO(TLBData, 4096); break; case 0x06: STORE_TLBCACHE_INFO(L1Code, 8); break; case 0x08: STORE_TLBCACHE_INFO(L1Code, 16); break; case 0x0a: STORE_TLBCACHE_INFO(L1Data, 8); break; case 0x0c: STORE_TLBCACHE_INFO(L1Data, 16); break; case 0x10: STORE_TLBCACHE_INFO(L1Data, 16); break; // <-- FIXME: IA-64 Only case 0x15: STORE_TLBCACHE_INFO(L1Code, 16); break; // <-- FIXME: IA-64 Only case 0x1a: STORE_TLBCACHE_INFO(L2Unified, 96); break; // <-- FIXME: IA-64 Only case 0x22: STORE_TLBCACHE_INFO(L3Unified, 512); break; case 0x23: STORE_TLBCACHE_INFO(L3Unified, 1024); break; case 0x25: STORE_TLBCACHE_INFO(L3Unified, 2048); break; case 0x29: STORE_TLBCACHE_INFO(L3Unified, 4096); break; case 0x39: STORE_TLBCACHE_INFO(L2Unified, 128); break; case 0x3c: STORE_TLBCACHE_INFO(L2Unified, 256); break; case 0x40: STORE_TLBCACHE_INFO(L2Unified, 0); break; // <-- FIXME: No integrated L2 cache (P6 core) or L3 cache (P4 // core). case 0x41: STORE_TLBCACHE_INFO(L2Unified, 128); break; case 0x42: STORE_TLBCACHE_INFO(L2Unified, 256); break; case 0x43: STORE_TLBCACHE_INFO(L2Unified, 512); break; case 0x44: STORE_TLBCACHE_INFO(L2Unified, 1024); break; case 0x45: STORE_TLBCACHE_INFO(L2Unified, 2048); break; case 0x50: STORE_TLBCACHE_INFO(TLBCode, 4096); break; case 0x51: STORE_TLBCACHE_INFO(TLBCode, 4096); break; case 0x52: STORE_TLBCACHE_INFO(TLBCode, 4096); break; case 0x5b: STORE_TLBCACHE_INFO(TLBData, 4096); break; case 0x5c: STORE_TLBCACHE_INFO(TLBData, 4096); break; case 0x5d: STORE_TLBCACHE_INFO(TLBData, 4096); break; case 0x66: STORE_TLBCACHE_INFO(L1Data, 8); break; case 0x67: STORE_TLBCACHE_INFO(L1Data, 16); break; case 0x68: STORE_TLBCACHE_INFO(L1Data, 32); break; case 0x70: STORE_TLBCACHE_INFO(L1Trace, 12); break; case 0x71: STORE_TLBCACHE_INFO(L1Trace, 16); break; case 0x72: STORE_TLBCACHE_INFO(L1Trace, 32); break; case 0x77: STORE_TLBCACHE_INFO(L1Code, 16); break; // <-- FIXME: IA-64 Only case 0x79: STORE_TLBCACHE_INFO(L2Unified, 128); break; case 0x7a: STORE_TLBCACHE_INFO(L2Unified, 256); break; case 0x7b: STORE_TLBCACHE_INFO(L2Unified, 512); break; case 0x7c: STORE_TLBCACHE_INFO(L2Unified, 1024); break; case 0x7e: STORE_TLBCACHE_INFO(L2Unified, 256); break; case 0x81: STORE_TLBCACHE_INFO(L2Unified, 128); break; case 0x82: STORE_TLBCACHE_INFO(L2Unified, 256); break; case 0x83: STORE_TLBCACHE_INFO(L2Unified, 512); break; case 0x84: STORE_TLBCACHE_INFO(L2Unified, 1024); break; case 0x85: STORE_TLBCACHE_INFO(L2Unified, 2048); break; case 0x88: STORE_TLBCACHE_INFO(L3Unified, 2048); break; // <-- FIXME: IA-64 Only case 0x89: STORE_TLBCACHE_INFO(L3Unified, 4096); break; // <-- FIXME: IA-64 Only case 0x8a: STORE_TLBCACHE_INFO(L3Unified, 8192); break; // <-- FIXME: IA-64 Only case 0x8d: STORE_TLBCACHE_INFO(L3Unified, 3096); break; // <-- FIXME: IA-64 Only case 0x90: STORE_TLBCACHE_INFO(TLBCode, 262144); break; // <-- FIXME: IA-64 Only case 0x96: STORE_TLBCACHE_INFO(TLBCode, 262144); break; // <-- FIXME: IA-64 Only case 0x9b: STORE_TLBCACHE_INFO(TLBCode, 262144); break; // <-- FIXME: IA-64 Only // Default case - an error has occurred. default: return false; } } // Increment the TLB pass counter. TLBPassCounter++; } while ((TLBCacheData[0] & 0x000000FF) > TLBPassCounter); // Ok - we now have the maximum TLB, L1, L2, and L3 sizes... if ((L1Code == -1) && (L1Data == -1) && (L1Trace == -1)) { this->Features.L1CacheSize = -1; } else if ((L1Code == -1) && (L1Data == -1) && (L1Trace != -1)) { this->Features.L1CacheSize = L1Trace; } else if ((L1Code != -1) && (L1Data == -1)) { this->Features.L1CacheSize = L1Code; } else if ((L1Code == -1) && (L1Data != -1)) { this->Features.L1CacheSize = L1Data; } else if ((L1Code != -1) && (L1Data != -1)) { this->Features.L1CacheSize = L1Code + L1Data; } else { this->Features.L1CacheSize = -1; } // Ok - we now have the maximum TLB, L1, L2, and L3 sizes... if (L2Unified == -1) { this->Features.L2CacheSize = -1; } else { this->Features.L2CacheSize = L2Unified; } // Ok - we now have the maximum TLB, L1, L2, and L3 sizes... if (L3Unified == -1) { this->Features.L3CacheSize = -1; } else { this->Features.L3CacheSize = L3Unified; } return true; #else return false; #endif } /** */ bool SystemInformationImplementation::RetrieveCPUClockSpeed() { bool retrieved = false; #if defined(_WIN32) unsigned int uiRepetitions = 1; unsigned int uiMSecPerRepetition = 50; __int64 i64Total = 0; __int64 i64Overhead = 0; // Check if the TSC implementation works at all if (this->Features.HasTSC && GetCyclesDifference(SystemInformationImplementation::Delay, uiMSecPerRepetition) > 0) { for (unsigned int nCounter = 0; nCounter < uiRepetitions; nCounter++) { i64Total += GetCyclesDifference(SystemInformationImplementation::Delay, uiMSecPerRepetition); i64Overhead += GetCyclesDifference( SystemInformationImplementation::DelayOverhead, uiMSecPerRepetition); } // Calculate the MHz speed. i64Total -= i64Overhead; i64Total /= uiRepetitions; i64Total /= uiMSecPerRepetition; i64Total /= 1000; // Save the CPU speed. this->CPUSpeedInMHz = (float)i64Total; retrieved = true; } // If RDTSC is not supported, we fallback to trying to read this value // from the registry: if (!retrieved) { HKEY hKey = nullptr; LONG err = RegOpenKeyExW(HKEY_LOCAL_MACHINE, L"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0, KEY_READ, &hKey); if (ERROR_SUCCESS == err) { DWORD dwType = 0; DWORD data = 0; DWORD dwSize = sizeof(DWORD); err = RegQueryValueExW(hKey, L"~MHz", 0, &dwType, (LPBYTE)&data, &dwSize); if (ERROR_SUCCESS == err) { this->CPUSpeedInMHz = (float)data; retrieved = true; } RegCloseKey(hKey); hKey = nullptr; } } #endif return retrieved; } /** */ bool SystemInformationImplementation::RetrieveClassicalCPUClockSpeed() { #if USE_ASM_INSTRUCTIONS LARGE_INTEGER liStart, liEnd, liCountsPerSecond; double dFrequency, dDifference; // Attempt to get a starting tick count. QueryPerformanceCounter(&liStart); __try { _asm { mov eax, 0x80000000 mov ebx, CLASSICAL_CPU_FREQ_LOOP Timer_Loop: bsf ecx,eax dec ebx jnz Timer_Loop } } __except (1) { return false; } // Attempt to get a starting tick count. QueryPerformanceCounter(&liEnd); // Get the difference... NB: This is in seconds.... QueryPerformanceFrequency(&liCountsPerSecond); dDifference = (((double)liEnd.QuadPart - (double)liStart.QuadPart) / (double)liCountsPerSecond.QuadPart); // Calculate the clock speed. if (this->ChipID.Family == 3) { // 80386 processors.... Loop time is 115 cycles! dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 115) / dDifference) / 1000000); } else if (this->ChipID.Family == 4) { // 80486 processors.... Loop time is 47 cycles! dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 47) / dDifference) / 1000000); } else if (this->ChipID.Family == 5) { // Pentium processors.... Loop time is 43 cycles! dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 43) / dDifference) / 1000000); } // Save the clock speed. this->Features.CPUSpeed = (int)dFrequency; return true; #else return false; #endif } /** */ bool SystemInformationImplementation::RetrieveCPUExtendedLevelSupport( int CPULevelToCheck) { int cpuinfo[4] = { 0, 0, 0, 0 }; // The extended CPUID is supported by various vendors starting with the // following CPU models: // // Manufacturer & Chip Name | Family Model Revision // // AMD K6, K6-2 | 5 6 x // Cyrix GXm, Cyrix III "Joshua" | 5 4 x // IDT C6-2 | 5 8 x // VIA Cyrix III | 6 5 x // Transmeta Crusoe | 5 x x // Intel Pentium 4 | f x x // // We check to see if a supported processor is present... if (this->ChipManufacturer == AMD) { if (this->ChipID.Family < 5) return false; if ((this->ChipID.Family == 5) && (this->ChipID.Model < 6)) return false; } else if (this->ChipManufacturer == Cyrix) { if (this->ChipID.Family < 5) return false; if ((this->ChipID.Family == 5) && (this->ChipID.Model < 4)) return false; if ((this->ChipID.Family == 6) && (this->ChipID.Model < 5)) return false; } else if (this->ChipManufacturer == IDT) { if (this->ChipID.Family < 5) return false; if ((this->ChipID.Family == 5) && (this->ChipID.Model < 8)) return false; } else if (this->ChipManufacturer == Transmeta) { if (this->ChipID.Family < 5) return false; } else if (this->ChipManufacturer == Intel) { if (this->ChipID.Family < 0xf) { return false; } } #if USE_CPUID if (!call_cpuid(0x80000000, cpuinfo)) { return false; } #endif // Now we have to check the level wanted vs level returned... int nLevelWanted = (CPULevelToCheck & 0x7FFFFFFF); int nLevelReturn = (cpuinfo[0] & 0x7FFFFFFF); // Check to see if the level provided is supported... if (nLevelWanted > nLevelReturn) { return false; } return true; } /** */ bool SystemInformationImplementation::RetrieveExtendedCPUFeatures() { // Check that we are not using an Intel processor as it does not support // this. if (this->ChipManufacturer == Intel) { return false; } // Check to see if what we are about to do is supported... if (!RetrieveCPUExtendedLevelSupport(static_cast(0x80000001))) { return false; } #if USE_CPUID int localCPUExtendedFeatures[4] = { 0, 0, 0, 0 }; if (!call_cpuid(0x80000001, localCPUExtendedFeatures)) { return false; } // Retrieve the extended features of CPU present. this->Features.ExtendedFeatures.Has3DNow = ((localCPUExtendedFeatures[3] & 0x80000000) != 0); // 3DNow Present --> Bit 31. this->Features.ExtendedFeatures.Has3DNowPlus = ((localCPUExtendedFeatures[3] & 0x40000000) != 0); // 3DNow+ Present -- > Bit 30. this->Features.ExtendedFeatures.HasSSEMMX = ((localCPUExtendedFeatures[3] & 0x00400000) != 0); // SSE MMX Present --> Bit 22. this->Features.ExtendedFeatures.SupportsMP = ((localCPUExtendedFeatures[3] & 0x00080000) != 0); // MP Capable -- > Bit 19. // Retrieve AMD specific extended features. if (this->ChipManufacturer == AMD || this->ChipManufacturer == Hygon) { this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures[3] & 0x00400000) != 0); // AMD specific: MMX-SSE --> Bit 22 } // Retrieve Cyrix specific extended features. if (this->ChipManufacturer == Cyrix) { this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures[3] & 0x01000000) != 0); // Cyrix specific: Extended MMX --> Bit 24 } return true; #else return false; #endif } /** */ bool SystemInformationImplementation::RetrieveProcessorSerialNumber() { // Check to see if the processor supports the processor serial number. if (!this->Features.HasSerial) { return false; } #if USE_CPUID int SerialNumber[4]; if (!call_cpuid(3, SerialNumber)) { return false; } // Process the returned information. // ; eax = 3 --> ebx: top 32 bits are the processor signature bits --> NB: // Transmeta only ?!? // ; ecx: middle 32 bits are the processor signature bits // ; edx: bottom 32 bits are the processor signature bits char sn[128]; sprintf(sn, "%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x", ((SerialNumber[1] & 0xff000000) >> 24), ((SerialNumber[1] & 0x00ff0000) >> 16), ((SerialNumber[1] & 0x0000ff00) >> 8), ((SerialNumber[1] & 0x000000ff) >> 0), ((SerialNumber[2] & 0xff000000) >> 24), ((SerialNumber[2] & 0x00ff0000) >> 16), ((SerialNumber[2] & 0x0000ff00) >> 8), ((SerialNumber[2] & 0x000000ff) >> 0), ((SerialNumber[3] & 0xff000000) >> 24), ((SerialNumber[3] & 0x00ff0000) >> 16), ((SerialNumber[3] & 0x0000ff00) >> 8), ((SerialNumber[3] & 0x000000ff) >> 0)); this->ChipID.SerialNumber = sn; return true; #else return false; #endif } /** */ bool SystemInformationImplementation::RetrieveCPUPowerManagement() { // Check to see if what we are about to do is supported... if (!RetrieveCPUExtendedLevelSupport(static_cast(0x80000007))) { this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = false; this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = false; this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = false; return false; } #if USE_CPUID int localCPUPowerManagement[4] = { 0, 0, 0, 0 }; if (!call_cpuid(0x80000007, localCPUPowerManagement)) { return false; } // Check for the power management capabilities of the CPU. this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = ((localCPUPowerManagement[3] & 0x00000001) != 0); this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = ((localCPUPowerManagement[3] & 0x00000002) != 0); this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = ((localCPUPowerManagement[3] & 0x00000004) != 0); return true; #else return false; #endif } #if USE_CPUID // Used only in USE_CPUID implementation below. static void SystemInformationStripLeadingSpace(std::string& str) { // Because some manufacturers have leading white space - we have to // post-process the name. std::string::size_type pos = str.find_first_not_of(" "); if (pos != std::string::npos) { str.erase(0, pos); } } #endif /** */ bool SystemInformationImplementation::RetrieveExtendedCPUIdentity() { // Check to see if what we are about to do is supported... if (!RetrieveCPUExtendedLevelSupport(static_cast(0x80000002))) return false; if (!RetrieveCPUExtendedLevelSupport(static_cast(0x80000003))) return false; if (!RetrieveCPUExtendedLevelSupport(static_cast(0x80000004))) return false; #if USE_CPUID int CPUExtendedIdentity[12]; if (!call_cpuid(0x80000002, CPUExtendedIdentity)) { return false; } if (!call_cpuid(0x80000003, CPUExtendedIdentity + 4)) { return false; } if (!call_cpuid(0x80000004, CPUExtendedIdentity + 8)) { return false; } // Process the returned information. char nbuf[49]; memcpy(&(nbuf[0]), &(CPUExtendedIdentity[0]), sizeof(int)); memcpy(&(nbuf[4]), &(CPUExtendedIdentity[1]), sizeof(int)); memcpy(&(nbuf[8]), &(CPUExtendedIdentity[2]), sizeof(int)); memcpy(&(nbuf[12]), &(CPUExtendedIdentity[3]), sizeof(int)); memcpy(&(nbuf[16]), &(CPUExtendedIdentity[4]), sizeof(int)); memcpy(&(nbuf[20]), &(CPUExtendedIdentity[5]), sizeof(int)); memcpy(&(nbuf[24]), &(CPUExtendedIdentity[6]), sizeof(int)); memcpy(&(nbuf[28]), &(CPUExtendedIdentity[7]), sizeof(int)); memcpy(&(nbuf[32]), &(CPUExtendedIdentity[8]), sizeof(int)); memcpy(&(nbuf[36]), &(CPUExtendedIdentity[9]), sizeof(int)); memcpy(&(nbuf[40]), &(CPUExtendedIdentity[10]), sizeof(int)); memcpy(&(nbuf[44]), &(CPUExtendedIdentity[11]), sizeof(int)); nbuf[48] = '\0'; this->ChipID.ProcessorName = nbuf; this->ChipID.ModelName = nbuf; // Because some manufacturers have leading white space - we have to // post-process the name. SystemInformationStripLeadingSpace(this->ChipID.ProcessorName); return true; #else return false; #endif } /** */ bool SystemInformationImplementation::RetrieveClassicalCPUIdentity() { // Start by decided which manufacturer we are using.... switch (this->ChipManufacturer) { case Intel: // Check the family / model / revision to determine the CPU ID. switch (this->ChipID.Family) { case 3: this->ChipID.ProcessorName = "Newer i80386 family"; break; case 4: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "i80486DX-25/33"; break; case 1: this->ChipID.ProcessorName = "i80486DX-50"; break; case 2: this->ChipID.ProcessorName = "i80486SX"; break; case 3: this->ChipID.ProcessorName = "i80486DX2"; break; case 4: this->ChipID.ProcessorName = "i80486SL"; break; case 5: this->ChipID.ProcessorName = "i80486SX2"; break; case 7: this->ChipID.ProcessorName = "i80486DX2 WriteBack"; break; case 8: this->ChipID.ProcessorName = "i80486DX4"; break; case 9: this->ChipID.ProcessorName = "i80486DX4 WriteBack"; break; default: this->ChipID.ProcessorName = "Unknown 80486 family"; return false; } break; case 5: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "P5 A-Step"; break; case 1: this->ChipID.ProcessorName = "P5"; break; case 2: this->ChipID.ProcessorName = "P54C"; break; case 3: this->ChipID.ProcessorName = "P24T OverDrive"; break; case 4: this->ChipID.ProcessorName = "P55C"; break; case 7: this->ChipID.ProcessorName = "P54C"; break; case 8: this->ChipID.ProcessorName = "P55C (0.25micron)"; break; default: this->ChipID.ProcessorName = "Unknown Pentium family"; return false; } break; case 6: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "P6 A-Step"; break; case 1: this->ChipID.ProcessorName = "P6"; break; case 3: this->ChipID.ProcessorName = "Pentium II (0.28 micron)"; break; case 5: this->ChipID.ProcessorName = "Pentium II (0.25 micron)"; break; case 6: this->ChipID.ProcessorName = "Pentium II With On-Die L2 Cache"; break; case 7: this->ChipID.ProcessorName = "Pentium III (0.25 micron)"; break; case 8: this->ChipID.ProcessorName = "Pentium III (0.18 micron) With 256 KB On-Die L2 Cache "; break; case 0xa: this->ChipID.ProcessorName = "Pentium III (0.18 micron) With 1 Or 2 MB On-Die L2 Cache "; break; case 0xb: this->ChipID.ProcessorName = "Pentium III (0.13 micron) With " "256 Or 512 KB On-Die L2 Cache "; break; case 23: this->ChipID.ProcessorName = "Intel(R) Core(TM)2 Duo CPU T9500 @ 2.60GHz"; break; default: this->ChipID.ProcessorName = "Unknown P6 family"; return false; } break; case 7: this->ChipID.ProcessorName = "Intel Merced (IA-64)"; break; case 0xf: // Check the extended family bits... switch (this->ChipID.ExtendedFamily) { case 0: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "Pentium IV (0.18 micron)"; break; case 1: this->ChipID.ProcessorName = "Pentium IV (0.18 micron)"; break; case 2: this->ChipID.ProcessorName = "Pentium IV (0.13 micron)"; break; default: this->ChipID.ProcessorName = "Unknown Pentium 4 family"; return false; } break; case 1: this->ChipID.ProcessorName = "Intel McKinley (IA-64)"; break; default: this->ChipID.ProcessorName = "Pentium"; } break; default: this->ChipID.ProcessorName = "Unknown Intel family"; return false; } break; case AMD: // Check the family / model / revision to determine the CPU ID. switch (this->ChipID.Family) { case 4: switch (this->ChipID.Model) { case 3: this->ChipID.ProcessorName = "80486DX2"; break; case 7: this->ChipID.ProcessorName = "80486DX2 WriteBack"; break; case 8: this->ChipID.ProcessorName = "80486DX4"; break; case 9: this->ChipID.ProcessorName = "80486DX4 WriteBack"; break; case 0xe: this->ChipID.ProcessorName = "5x86"; break; case 0xf: this->ChipID.ProcessorName = "5x86WB"; break; default: this->ChipID.ProcessorName = "Unknown 80486 family"; return false; } break; case 5: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "SSA5 (PR75, PR90 = PR100)"; break; case 1: this->ChipID.ProcessorName = "5k86 (PR120 = PR133)"; break; case 2: this->ChipID.ProcessorName = "5k86 (PR166)"; break; case 3: this->ChipID.ProcessorName = "5k86 (PR200)"; break; case 6: this->ChipID.ProcessorName = "K6 (0.30 micron)"; break; case 7: this->ChipID.ProcessorName = "K6 (0.25 micron)"; break; case 8: this->ChipID.ProcessorName = "K6-2"; break; case 9: this->ChipID.ProcessorName = "K6-III"; break; case 0xd: this->ChipID.ProcessorName = "K6-2+ or K6-III+ (0.18 micron)"; break; default: this->ChipID.ProcessorName = "Unknown 80586 family"; return false; } break; case 6: switch (this->ChipID.Model) { case 1: this->ChipID.ProcessorName = "Athlon- (0.25 micron)"; break; case 2: this->ChipID.ProcessorName = "Athlon- (0.18 micron)"; break; case 3: this->ChipID.ProcessorName = "Duron- (SF core)"; break; case 4: this->ChipID.ProcessorName = "Athlon- (Thunderbird core)"; break; case 6: this->ChipID.ProcessorName = "Athlon- (Palomino core)"; break; case 7: this->ChipID.ProcessorName = "Duron- (Morgan core)"; break; case 8: if (this->Features.ExtendedFeatures.SupportsMP) this->ChipID.ProcessorName = "Athlon - MP (Thoroughbred core)"; else this->ChipID.ProcessorName = "Athlon - XP (Thoroughbred core)"; break; default: this->ChipID.ProcessorName = "Unknown K7 family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown AMD family"; return false; } break; case Hygon: this->ChipID.ProcessorName = "Unknown Hygon family"; return false; case Transmeta: switch (this->ChipID.Family) { case 5: switch (this->ChipID.Model) { case 4: this->ChipID.ProcessorName = "Crusoe TM3x00 and TM5x00"; break; default: this->ChipID.ProcessorName = "Unknown Crusoe family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown Transmeta family"; return false; } break; case Rise: switch (this->ChipID.Family) { case 5: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "mP6 (0.25 micron)"; break; case 2: this->ChipID.ProcessorName = "mP6 (0.18 micron)"; break; default: this->ChipID.ProcessorName = "Unknown Rise family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown Rise family"; return false; } break; case UMC: switch (this->ChipID.Family) { case 4: switch (this->ChipID.Model) { case 1: this->ChipID.ProcessorName = "U5D"; break; case 2: this->ChipID.ProcessorName = "U5S"; break; default: this->ChipID.ProcessorName = "Unknown UMC family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown UMC family"; return false; } break; case IDT: switch (this->ChipID.Family) { case 5: switch (this->ChipID.Model) { case 4: this->ChipID.ProcessorName = "C6"; break; case 8: this->ChipID.ProcessorName = "C2"; break; case 9: this->ChipID.ProcessorName = "C3"; break; default: this->ChipID.ProcessorName = "Unknown IDT\\Centaur\\VIA\\Zhaoxin family"; return false; } break; case 6: switch (this->ChipID.Model) { case 6: this->ChipID.ProcessorName = "VIA Cyrix III - Samuel"; break; case 0xf: this->ChipID.ProcessorName = "Zhaoxin zxc"; break; default: this->ChipID.ProcessorName = "Unknown IDT\\Centaur\\VIA\\Zhaoxin family"; return false; } break; case 7: switch (this->ChipID.Model) { case 0x1b: this->ChipID.ProcessorName = "Zhaoxin kx5000"; break; case 0x3b: this->ChipID.ProcessorName = "Zhaoxin kx6000"; break; default: this->ChipID.ProcessorName = "Unknown IDT\\Centaur\\VIA\\Zhaoxin family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown IDT\\Centaur\\VIA\\Zhaoxin family"; return false; } break; case Zhaoxin: switch (this->ChipID.Family) { case 6: switch (this->ChipID.Model) { case 0x19: this->ChipID.ProcessorName = "Zhaoxin zxc"; break; default: this->ChipID.ProcessorName = "Unknown Zhaoxin family"; return false; } break; case 7: switch (this->ChipID.Model) { case 0x1b: this->ChipID.ProcessorName = "Zhaoxin kx5000"; break; case 0x3b: this->ChipID.ProcessorName = "Zhaoxin kx6000"; break; default: this->ChipID.ProcessorName = "Unknown Zhaoxin family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown Zhaoxin family"; return false; } break; case Cyrix: switch (this->ChipID.Family) { case 4: switch (this->ChipID.Model) { case 4: this->ChipID.ProcessorName = "MediaGX GX = GXm"; break; case 9: this->ChipID.ProcessorName = "5x86"; break; default: this->ChipID.ProcessorName = "Unknown Cx5x86 family"; return false; } break; case 5: switch (this->ChipID.Model) { case 2: this->ChipID.ProcessorName = "Cx6x86"; break; case 4: this->ChipID.ProcessorName = "MediaGX GXm"; break; default: this->ChipID.ProcessorName = "Unknown Cx6x86 family"; return false; } break; case 6: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "6x86MX"; break; case 5: this->ChipID.ProcessorName = "Cyrix M2 Core"; break; case 6: this->ChipID.ProcessorName = "WinChip C5A Core"; break; case 7: this->ChipID.ProcessorName = "WinChip C5B\\C5C Core"; break; case 8: this->ChipID.ProcessorName = "WinChip C5C-T Core"; break; default: this->ChipID.ProcessorName = "Unknown 6x86MX\\Cyrix III family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown Cyrix family"; return false; } break; case NexGen: switch (this->ChipID.Family) { case 5: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "Nx586 or Nx586FPU"; break; default: this->ChipID.ProcessorName = "Unknown NexGen family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown NexGen family"; return false; } break; case NSC: this->ChipID.ProcessorName = "Cx486SLC \\ DLC \\ Cx486S A-Step"; break; case Sun: case IBM: case Motorola: case HP: case UnknownManufacturer: default: this->ChipID.ProcessorName = "Unknown family"; // We cannot identify the processor. return false; } return true; } /** Extract a value from the CPUInfo file */ std::string SystemInformationImplementation::ExtractValueFromCpuInfoFile( std::string buffer, const char* word, size_t init) { size_t pos = buffer.find(word, init); if (pos != std::string::npos) { this->CurrentPositionInFile = pos; pos = buffer.find(':', pos); size_t pos2 = buffer.find('\n', pos); if (pos != std::string::npos && pos2 != std::string::npos) { // It may happen that the beginning matches, but this is still not the // requested key. // An example is looking for "cpu" when "cpu family" comes first. So we // check that // we have only spaces from here to pos, otherwise we search again. for (size_t i = this->CurrentPositionInFile + strlen(word); i < pos; ++i) { if (buffer[i] != ' ' && buffer[i] != '\t') { return this->ExtractValueFromCpuInfoFile(buffer, word, pos2); } } buffer.erase(0, pos + 2); buffer.resize(pos2 - pos - 2); return buffer; } } this->CurrentPositionInFile = std::string::npos; return ""; } /** Query for the cpu status */ bool SystemInformationImplementation::RetreiveInformationFromCpuInfoFile() { this->NumberOfLogicalCPU = 0; this->NumberOfPhysicalCPU = 0; std::string buffer; FILE* fd = fopen("/proc/cpuinfo", "r"); if (!fd) { std::cout << "Problem opening /proc/cpuinfo" << std::endl; return false; } size_t fileSize = 0; while (!feof(fd)) { buffer += static_cast(fgetc(fd)); fileSize++; } fclose(fd); buffer.resize(fileSize - 2); // Number of logical CPUs (combination of multiple processors, multi-core // and SMT) size_t pos = buffer.find("processor\t"); while (pos != std::string::npos) { this->NumberOfLogicalCPU++; pos = buffer.find("processor\t", pos + 1); } #if defined(__linux) || defined(__CYGWIN__) // Count sockets. std::set PhysicalIDs; std::string idc = this->ExtractValueFromCpuInfoFile(buffer, "physical id"); while (this->CurrentPositionInFile != std::string::npos) { int id = atoi(idc.c_str()); PhysicalIDs.insert(id); idc = this->ExtractValueFromCpuInfoFile(buffer, "physical id", this->CurrentPositionInFile + 1); } uint64_t NumberOfSockets = PhysicalIDs.size(); NumberOfSockets = std::max(NumberOfSockets, (uint64_t)1); // Physical ids returned by Linux don't distinguish cores. // We want to record the total number of cores in this->NumberOfPhysicalCPU // (checking only the first proc) std::string Cores = this->ExtractValueFromCpuInfoFile(buffer, "cpu cores"); if (Cores.empty()) { // Linux Sparc is different Cores = this->ExtractValueFromCpuInfoFile(buffer, "ncpus probed"); } auto NumberOfCoresPerSocket = (unsigned int)atoi(Cores.c_str()); NumberOfCoresPerSocket = std::max(NumberOfCoresPerSocket, 1u); this->NumberOfPhysicalCPU = NumberOfCoresPerSocket * (unsigned int)NumberOfSockets; #else // For systems which do not have "physical id" entries, neither "cpu cores" // this has to be fixed for hyper-threading. std::string cpucount = this->ExtractValueFromCpuInfoFile(buffer, "cpu count"); this->NumberOfPhysicalCPU = this->NumberOfLogicalCPU = atoi(cpucount.c_str()); #endif // gotta have one, and if this is 0 then we get a / by 0n // better to have a bad answer than a crash if (this->NumberOfPhysicalCPU <= 0) { this->NumberOfPhysicalCPU = 1; } if (this->NumberOfLogicalCPU == 0) { this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU; } // LogicalProcessorsPerPhysical>1 => SMT. this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = this->NumberOfLogicalCPU / this->NumberOfPhysicalCPU; // CPU speed (checking only the first processor) std::string CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer, "cpu MHz"); if (!CPUSpeed.empty()) { this->CPUSpeedInMHz = static_cast(atof(CPUSpeed.c_str())); } #ifdef __linux else { // Linux Sparc: CPU speed is in Hz and encoded in hexadecimal CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer, "Cpu0ClkTck"); if (!CPUSpeed.empty()) { this->CPUSpeedInMHz = static_cast(strtoull(CPUSpeed.c_str(), nullptr, 16)) / 1000000.0f; } else { // if the kernel is build as Sparc32 it's in decimal, note the different // case CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer, "CPU0ClkTck"); this->CPUSpeedInMHz = static_cast(strtoull(CPUSpeed.c_str(), nullptr, 10)) / 1000000.0f; } } #endif // Chip family std::string familyStr = this->ExtractValueFromCpuInfoFile(buffer, "cpu family"); if (familyStr.empty()) { familyStr = this->ExtractValueFromCpuInfoFile(buffer, "CPU architecture"); } this->ChipID.Family = atoi(familyStr.c_str()); // Chip Vendor this->ChipID.Vendor = this->ExtractValueFromCpuInfoFile(buffer, "vendor_id"); this->FindManufacturer(familyStr); // second try for setting family if (this->ChipID.Family == 0 && this->ChipManufacturer == HP) { if (familyStr == "PA-RISC 1.1a") this->ChipID.Family = 0x11a; else if (familyStr == "PA-RISC 2.0") this->ChipID.Family = 0x200; // If you really get CMake to work on a machine not belonging to // any of those families I owe you a dinner if you get it to // contribute nightly builds regularly. } // Chip Model this->ChipID.Model = atoi(this->ExtractValueFromCpuInfoFile(buffer, "model").c_str()); if (!this->RetrieveClassicalCPUIdentity()) { // Some platforms (e.g. PA-RISC) tell us their CPU name here. // Note: x86 does not. std::string cpuname = this->ExtractValueFromCpuInfoFile(buffer, "cpu"); if (!cpuname.empty()) { this->ChipID.ProcessorName = cpuname; } } // Chip revision std::string cpurev = this->ExtractValueFromCpuInfoFile(buffer, "stepping"); if (cpurev.empty()) { cpurev = this->ExtractValueFromCpuInfoFile(buffer, "CPU revision"); } this->ChipID.Revision = atoi(cpurev.c_str()); // Chip Model Name this->ChipID.ModelName = this->ExtractValueFromCpuInfoFile(buffer, "model name"); // L1 Cache size // Different architectures may show different names for the caches. // Sum up everything we find. std::vector cachename; cachename.clear(); cachename.push_back("cache size"); // e.g. x86 cachename.push_back("I-cache"); // e.g. PA-RISC cachename.push_back("D-cache"); // e.g. PA-RISC this->Features.L1CacheSize = 0; for (auto& index : cachename) { std::string cacheSize = this->ExtractValueFromCpuInfoFile(buffer, index); if (!cacheSize.empty()) { pos = cacheSize.find(" KB"); if (pos != std::string::npos) { cacheSize.resize(pos); } this->Features.L1CacheSize += atoi(cacheSize.c_str()); } } // processor feature flags (probably x86 specific) std::string cpuflags = this->ExtractValueFromCpuInfoFile(buffer, "flags"); if (!cpurev.empty()) { // now we can match every flags as space + flag + space cpuflags = " " + cpuflags + " "; if ((cpuflags.find(" fpu ") != std::string::npos)) { this->Features.HasFPU = true; } if ((cpuflags.find(" tsc ") != std::string::npos)) { this->Features.HasTSC = true; } if ((cpuflags.find(" mmx ") != std::string::npos)) { this->Features.HasMMX = true; } if ((cpuflags.find(" sse ") != std::string::npos)) { this->Features.HasSSE = true; } if ((cpuflags.find(" sse2 ") != std::string::npos)) { this->Features.HasSSE2 = true; } if ((cpuflags.find(" apic ") != std::string::npos)) { this->Features.HasAPIC = true; } if ((cpuflags.find(" cmov ") != std::string::npos)) { this->Features.HasCMOV = true; } if ((cpuflags.find(" mtrr ") != std::string::npos)) { this->Features.HasMTRR = true; } if ((cpuflags.find(" acpi ") != std::string::npos)) { this->Features.HasACPI = true; } if ((cpuflags.find(" 3dnow ") != std::string::npos)) { this->Features.ExtendedFeatures.Has3DNow = true; } } return true; } bool SystemInformationImplementation::QueryProcessorBySysconf() { #if defined(_SC_NPROC_ONLN) && !defined(_SC_NPROCESSORS_ONLN) // IRIX names this slightly different # define _SC_NPROCESSORS_ONLN _SC_NPROC_ONLN #endif #ifdef _SC_NPROCESSORS_ONLN long c = sysconf(_SC_NPROCESSORS_ONLN); if (c <= 0) { return false; } this->NumberOfPhysicalCPU = static_cast(c); this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU; return true; #else return false; #endif } bool SystemInformationImplementation::QueryProcessor() { return this->QueryProcessorBySysconf(); } /** Get total system RAM in units of KiB. */ long long SystemInformationImplementation::GetHostMemoryTotal() { #if defined(_WIN32) # if defined(_MSC_VER) && _MSC_VER < 1300 MEMORYSTATUS stat; stat.dwLength = sizeof(stat); GlobalMemoryStatus(&stat); return stat.dwTotalPhys / 1024; # else MEMORYSTATUSEX statex; statex.dwLength = sizeof(statex); GlobalMemoryStatusEx(&statex); return statex.ullTotalPhys / 1024; # endif #elif defined(__linux) || defined(__CYGWIN__) long long memTotal = 0; int ierr = GetFieldFromFile("/proc/meminfo", "MemTotal:", memTotal); if (ierr) { return -1; } return memTotal; #elif defined(__APPLE__) uint64_t mem; size_t len = sizeof(mem); int ierr = sysctlbyname("hw.memsize", &mem, &len, nullptr, 0); if (ierr) { return -1; } return mem / 1024; #else return 0; #endif } /** Get total system RAM in units of KiB. This may differ from the host total if a host-wide resource limit is applied. */ long long SystemInformationImplementation::GetHostMemoryAvailable( const char* hostLimitEnvVarName) { long long memTotal = this->GetHostMemoryTotal(); // the following mechanism is provided for systems that // apply resource limits across groups of processes. // this is of use on certain SMP systems (eg. SGI UV) // where the host has a large amount of ram but a given user's // access to it is severely restricted. The system will // apply a limit across a set of processes. Units are in KiB. if (hostLimitEnvVarName) { const char* hostLimitEnvVarValue = getenv(hostLimitEnvVarName); if (hostLimitEnvVarValue) { long long hostLimit = std::atoll(hostLimitEnvVarValue); if (hostLimit > 0) { memTotal = min(hostLimit, memTotal); } } } return memTotal; } /** Get total system RAM in units of KiB. This may differ from the host total if a per-process resource limit is applied. */ long long SystemInformationImplementation::GetProcMemoryAvailable( const char* hostLimitEnvVarName, const char* procLimitEnvVarName) { long long memAvail = this->GetHostMemoryAvailable(hostLimitEnvVarName); // the following mechanism is provide for systems where rlimits // are not employed. Units are in KiB. if (procLimitEnvVarName) { const char* procLimitEnvVarValue = getenv(procLimitEnvVarName); if (procLimitEnvVarValue) { long long procLimit = std::atoll(procLimitEnvVarValue); if (procLimit > 0) { memAvail = min(procLimit, memAvail); } } } #if defined(__linux) int ierr; ResourceLimitType rlim; ierr = GetResourceLimit(RLIMIT_DATA, &rlim); if ((ierr == 0) && (rlim.rlim_cur != RLIM_INFINITY)) { memAvail = min((long long)rlim.rlim_cur / 1024, memAvail); } ierr = GetResourceLimit(RLIMIT_AS, &rlim); if ((ierr == 0) && (rlim.rlim_cur != RLIM_INFINITY)) { memAvail = min((long long)rlim.rlim_cur / 1024, memAvail); } #elif defined(__APPLE__) struct rlimit rlim; int ierr; ierr = getrlimit(RLIMIT_DATA, &rlim); if ((ierr == 0) && (rlim.rlim_cur != RLIM_INFINITY)) { memAvail = min((long long)rlim.rlim_cur / 1024, memAvail); } ierr = getrlimit(RLIMIT_RSS, &rlim); if ((ierr == 0) && (rlim.rlim_cur != RLIM_INFINITY)) { memAvail = min((long long)rlim.rlim_cur / 1024, memAvail); } #endif return memAvail; } /** Get RAM used by all processes in the host, in units of KiB. */ long long SystemInformationImplementation::GetHostMemoryUsed() { #if defined(_WIN32) # if defined(_MSC_VER) && _MSC_VER < 1300 MEMORYSTATUS stat; stat.dwLength = sizeof(stat); GlobalMemoryStatus(&stat); return (stat.dwTotalPhys - stat.dwAvailPhys) / 1024; # else MEMORYSTATUSEX statex; statex.dwLength = sizeof(statex); GlobalMemoryStatusEx(&statex); return (statex.ullTotalPhys - statex.ullAvailPhys) / 1024; # endif #elif defined(__CYGWIN__) const char* names[3] = { "MemTotal:", "MemFree:", nullptr }; long long values[2] = { 0 }; int ierr = GetFieldsFromFile("/proc/meminfo", names, values); if (ierr) { return ierr; } long long& memTotal = values[0]; long long& memFree = values[1]; return memTotal - memFree; #elif defined(__linux) // First try to use MemAvailable, but it only works on newer kernels const char* names2[3] = { "MemTotal:", "MemAvailable:", nullptr }; long long values2[2] = { 0 }; int ierr = GetFieldsFromFile("/proc/meminfo", names2, values2); if (ierr) { const char* names4[5] = { "MemTotal:", "MemFree:", "Buffers:", "Cached:", nullptr }; long long values4[4] = { 0 }; ierr = GetFieldsFromFile("/proc/meminfo", names4, values4); if (ierr) { return ierr; } long long& memTotal = values4[0]; long long& memFree = values4[1]; long long& memBuffers = values4[2]; long long& memCached = values4[3]; return memTotal - memFree - memBuffers - memCached; } long long& memTotal = values2[0]; long long& memAvail = values2[1]; return memTotal - memAvail; #elif defined(__APPLE__) long long psz = getpagesize(); if (psz < 1) { return -1; } const char* names[3] = { "Pages wired down:", "Pages active:", nullptr }; long long values[2] = { 0 }; int ierr = GetFieldsFromCommand("vm_stat", names, values); if (ierr) { return -1; } long long& vmWired = values[0]; long long& vmActive = values[1]; return ((vmActive + vmWired) * psz) / 1024; #else return 0; #endif } /** Get system RAM used by the process associated with the given process id in units of KiB. */ long long SystemInformationImplementation::GetProcMemoryUsed() { #if defined(_WIN32) && defined(KWSYS_SYS_HAS_PSAPI) long pid = GetCurrentProcessId(); HANDLE hProc; hProc = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, false, pid); if (hProc == 0) { return -1; } PROCESS_MEMORY_COUNTERS pmc; int ok = GetProcessMemoryInfo(hProc, &pmc, sizeof(pmc)); CloseHandle(hProc); if (!ok) { return -2; } return pmc.WorkingSetSize / 1024; #elif defined(__linux) || defined(__CYGWIN__) long long memUsed = 0; int ierr = GetFieldFromFile("/proc/self/status", "VmRSS:", memUsed); if (ierr) { return -1; } return memUsed; #elif defined(__APPLE__) long long memUsed = 0; pid_t pid = getpid(); std::ostringstream oss; oss << "ps -o rss= -p " << pid; FILE* file = popen(oss.str().c_str(), "r"); if (file == nullptr) { return -1; } oss.str(""); while (!feof(file) && !ferror(file)) { char buf[256] = { '\0' }; errno = 0; size_t nRead = fread(buf, 1, 256, file); if (ferror(file) && (errno == EINTR)) { clearerr(file); } if (nRead) oss << buf; } int ierr = ferror(file); pclose(file); if (ierr) { return -2; } std::istringstream iss(oss.str()); iss >> memUsed; return memUsed; #else return 0; #endif } double SystemInformationImplementation::GetLoadAverage() { #if defined(KWSYS_CXX_HAS_GETLOADAVG) double loadavg[3] = { 0.0, 0.0, 0.0 }; if (getloadavg(loadavg, 3) > 0) { return loadavg[0]; } return -0.0; #elif defined(KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes) // Old windows.h headers do not provide GetSystemTimes. typedef BOOL(WINAPI * GetSystemTimesType)(LPFILETIME, LPFILETIME, LPFILETIME); static GetSystemTimesType pGetSystemTimes = (GetSystemTimesType)GetProcAddress(GetModuleHandleW(L"kernel32"), "GetSystemTimes"); FILETIME idleTime, kernelTime, userTime; if (pGetSystemTimes && pGetSystemTimes(&idleTime, &kernelTime, &userTime)) { unsigned __int64 const idleTicks = fileTimeToUInt64(idleTime); unsigned __int64 const totalTicks = fileTimeToUInt64(kernelTime) + fileTimeToUInt64(userTime); return calculateCPULoad(idleTicks, totalTicks) * GetNumberOfPhysicalCPU(); } return -0.0; #else // Not implemented on this platform. return -0.0; #endif } /** Get the process id of the running process. */ long long SystemInformationImplementation::GetProcessId() { #if defined(_WIN32) return GetCurrentProcessId(); #elif defined(__linux) || defined(__APPLE__) || defined(__OpenBSD__) || \ defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__) || \ defined(__CYGWIN__) return getpid(); #else return -1; #endif } /** * Used in GetProgramStack(...) below */ #if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0600 && defined(_MSC_VER) && \ _MSC_VER >= 1800 # define KWSYS_SYSTEMINFORMATION_HAS_DBGHELP # define TRACE_MAX_STACK_FRAMES 1024 # define TRACE_MAX_FUNCTION_NAME_LENGTH 1024 # pragma warning(push) # pragma warning(disable : 4091) /* 'typedef ': ignored on left of '' */ # include "dbghelp.h" # pragma warning(pop) #endif /** return current program stack in a string demangle cxx symbols if possible. */ std::string SystemInformationImplementation::GetProgramStack(int firstFrame, int wholePath) { std::ostringstream oss; std::string programStack; #ifdef KWSYS_SYSTEMINFORMATION_HAS_DBGHELP (void)wholePath; void* stack[TRACE_MAX_STACK_FRAMES]; HANDLE process = GetCurrentProcess(); SymInitialize(process, nullptr, TRUE); WORD numberOfFrames = CaptureStackBackTrace(firstFrame, TRACE_MAX_STACK_FRAMES, stack, nullptr); SYMBOL_INFO* symbol = static_cast( malloc(sizeof(SYMBOL_INFO) + (TRACE_MAX_FUNCTION_NAME_LENGTH - 1) * sizeof(TCHAR))); symbol->MaxNameLen = TRACE_MAX_FUNCTION_NAME_LENGTH; symbol->SizeOfStruct = sizeof(SYMBOL_INFO); DWORD displacement; IMAGEHLP_LINE64 line; line.SizeOfStruct = sizeof(IMAGEHLP_LINE64); for (int i = 0; i < numberOfFrames; i++) { DWORD64 address = reinterpret_cast(stack[i]); SymFromAddr(process, address, nullptr, symbol); if (SymGetLineFromAddr64(process, address, &displacement, &line)) { oss << " at " << symbol->Name << " in " << line.FileName << " line " << line.LineNumber << std::endl; } else { oss << " at " << symbol->Name << std::endl; } } free(symbol); #else programStack += "" # if !defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE) "WARNING: The stack could not be examined " "because backtrace is not supported.\n" # elif !defined(KWSYS_SYSTEMINFORMATION_HAS_DEBUG_BUILD) "WARNING: The stack trace will not use advanced " "capabilities because this is a release build.\n" # else # if !defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP) "WARNING: Function names will not be demangled " "because dladdr is not available.\n" # endif # if !defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE) "WARNING: Function names will not be demangled " "because cxxabi is not available.\n" # endif # endif ; # if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE) void* stackSymbols[256]; int nFrames = backtrace(stackSymbols, 256); for (int i = firstFrame; i < nFrames; ++i) { SymbolProperties symProps; symProps.SetReportPath(wholePath); symProps.Initialize(stackSymbols[i]); oss << symProps << std::endl; } # else (void)firstFrame; (void)wholePath; # endif #endif programStack += oss.str(); return programStack; } /** when set print stack trace in response to common signals. */ void SystemInformationImplementation::SetStackTraceOnError(int enable) { #if !defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__) static int saOrigValid = 0; static struct sigaction saABRTOrig; static struct sigaction saSEGVOrig; static struct sigaction saTERMOrig; static struct sigaction saINTOrig; static struct sigaction saILLOrig; static struct sigaction saBUSOrig; static struct sigaction saFPEOrig; if (enable && !saOrigValid) { // save the current actions sigaction(SIGABRT, nullptr, &saABRTOrig); sigaction(SIGSEGV, nullptr, &saSEGVOrig); sigaction(SIGTERM, nullptr, &saTERMOrig); sigaction(SIGINT, nullptr, &saINTOrig); sigaction(SIGILL, nullptr, &saILLOrig); sigaction(SIGBUS, nullptr, &saBUSOrig); sigaction(SIGFPE, nullptr, &saFPEOrig); // enable read, disable write saOrigValid = 1; // install ours struct sigaction sa; sa.sa_sigaction = (SigAction)StacktraceSignalHandler; sa.sa_flags = SA_SIGINFO | SA_RESETHAND; # ifdef SA_RESTART sa.sa_flags |= SA_RESTART; # endif sigemptyset(&sa.sa_mask); sigaction(SIGABRT, &sa, nullptr); sigaction(SIGSEGV, &sa, nullptr); sigaction(SIGTERM, &sa, nullptr); sigaction(SIGINT, &sa, nullptr); sigaction(SIGILL, &sa, nullptr); sigaction(SIGBUS, &sa, nullptr); sigaction(SIGFPE, &sa, nullptr); } else if (!enable && saOrigValid) { // restore previous actions sigaction(SIGABRT, &saABRTOrig, nullptr); sigaction(SIGSEGV, &saSEGVOrig, nullptr); sigaction(SIGTERM, &saTERMOrig, nullptr); sigaction(SIGINT, &saINTOrig, nullptr); sigaction(SIGILL, &saILLOrig, nullptr); sigaction(SIGBUS, &saBUSOrig, nullptr); sigaction(SIGFPE, &saFPEOrig, nullptr); // enable write, disable read saOrigValid = 0; } #else // avoid warning C4100 (void)enable; #endif } bool SystemInformationImplementation::QueryWindowsMemory() { #if defined(_WIN32) # if defined(_MSC_VER) && _MSC_VER < 1300 MEMORYSTATUS ms; unsigned long tv, tp, av, ap; ms.dwLength = sizeof(ms); GlobalMemoryStatus(&ms); # define MEM_VAL(value) dw##value # else MEMORYSTATUSEX ms; DWORDLONG tv, tp, av, ap; ms.dwLength = sizeof(ms); if (0 == GlobalMemoryStatusEx(&ms)) { return 0; } # define MEM_VAL(value) ull##value # endif tv = ms.MEM_VAL(TotalPageFile); tp = ms.MEM_VAL(TotalPhys); av = ms.MEM_VAL(AvailPageFile); ap = ms.MEM_VAL(AvailPhys); this->TotalVirtualMemory = tv >> 10 >> 10; this->TotalPhysicalMemory = tp >> 10 >> 10; this->AvailableVirtualMemory = av >> 10 >> 10; this->AvailablePhysicalMemory = ap >> 10 >> 10; return true; #else return false; #endif } bool SystemInformationImplementation::QueryLinuxMemory() { #if defined(__linux) unsigned long tv = 0; unsigned long tp = 0; unsigned long av = 0; unsigned long ap = 0; char buffer[1024]; // for reading lines int linuxMajor = 0; int linuxMinor = 0; // Find the Linux kernel version first struct utsname unameInfo; int errorFlag = uname(&unameInfo); if (errorFlag != 0) { std::cout << "Problem calling uname(): " << strerror(errno) << std::endl; return false; } if (strlen(unameInfo.release) >= 3) { // release looks like "2.6.3-15mdk-i686-up-4GB" char majorChar = unameInfo.release[0]; char minorChar = unameInfo.release[2]; if (isdigit(majorChar)) { linuxMajor = majorChar - '0'; } if (isdigit(minorChar)) { linuxMinor = minorChar - '0'; } } FILE* fd = fopen("/proc/meminfo", "r"); if (!fd) { std::cout << "Problem opening /proc/meminfo" << std::endl; return false; } if (linuxMajor >= 3 || ((linuxMajor >= 2) && (linuxMinor >= 6))) { // new /proc/meminfo format since kernel 2.6.x // Rigorously, this test should check from the developing version 2.5.x // that introduced the new format... enum { mMemTotal, mMemFree, mBuffers, mCached, mSwapTotal, mSwapFree }; const char* format[6] = { "MemTotal:%lu kB", "MemFree:%lu kB", "Buffers:%lu kB", "Cached:%lu kB", "SwapTotal:%lu kB", "SwapFree:%lu kB" }; bool have[6] = { false, false, false, false, false, false }; unsigned long value[6]; int count = 0; while (fgets(buffer, static_cast(sizeof(buffer)), fd)) { for (int i = 0; i < 6; ++i) { if (!have[i] && sscanf(buffer, format[i], &value[i]) == 1) { have[i] = true; ++count; } } } if (count == 6) { this->TotalPhysicalMemory = value[mMemTotal] / 1024; this->AvailablePhysicalMemory = (value[mMemFree] + value[mBuffers] + value[mCached]) / 1024; this->TotalVirtualMemory = value[mSwapTotal] / 1024; this->AvailableVirtualMemory = value[mSwapFree] / 1024; } else { std::cout << "Problem parsing /proc/meminfo" << std::endl; fclose(fd); return false; } } else { // /proc/meminfo format for kernel older than 2.6.x unsigned long temp; unsigned long cachedMem; unsigned long buffersMem; // Skip "total: used:..." char* r = fgets(buffer, static_cast(sizeof(buffer)), fd); int status = 0; if (r == buffer) { status += fscanf(fd, "Mem: %lu %lu %lu %lu %lu %lu\n", &tp, &temp, &ap, &temp, &buffersMem, &cachedMem); } if (status == 6) { status += fscanf(fd, "Swap: %lu %lu %lu\n", &tv, &temp, &av); } if (status == 9) { this->TotalVirtualMemory = tv >> 10 >> 10; this->TotalPhysicalMemory = tp >> 10 >> 10; this->AvailableVirtualMemory = av >> 10 >> 10; this->AvailablePhysicalMemory = (ap + buffersMem + cachedMem) >> 10 >> 10; } else { std::cout << "Problem parsing /proc/meminfo" << std::endl; fclose(fd); return false; } } fclose(fd); return true; #else return false; #endif } bool SystemInformationImplementation::QueryCygwinMemory() { #ifdef __CYGWIN__ // _SC_PAGE_SIZE does return the mmap() granularity on Cygwin, // see http://cygwin.com/ml/cygwin/2006-06/msg00350.html // Therefore just use 4096 as the page size of Windows. long m = sysconf(_SC_PHYS_PAGES); if (m < 0) { return false; } this->TotalPhysicalMemory = m >> 8; return true; #else return false; #endif } bool SystemInformationImplementation::QueryAIXMemory() { #if defined(_AIX) && defined(_SC_AIX_REALMEM) long c = sysconf(_SC_AIX_REALMEM); if (c <= 0) { return false; } this->TotalPhysicalMemory = c / 1024; return true; #else return false; #endif } bool SystemInformationImplementation::QueryMemoryBySysconf() { #if defined(_SC_PHYS_PAGES) && defined(_SC_PAGESIZE) // Assume the mmap() granularity as returned by _SC_PAGESIZE is also // the system page size. The only known system where this isn't true // is Cygwin. long p = sysconf(_SC_PHYS_PAGES); long m = sysconf(_SC_PAGESIZE); if (p < 0 || m < 0) { return false; } // assume pagesize is a power of 2 and smaller 1 MiB size_t pagediv = (1024 * 1024 / m); this->TotalPhysicalMemory = p; this->TotalPhysicalMemory /= pagediv; # if defined(_SC_AVPHYS_PAGES) p = sysconf(_SC_AVPHYS_PAGES); if (p < 0) { return false; } this->AvailablePhysicalMemory = p; this->AvailablePhysicalMemory /= pagediv; # endif return true; #else return false; #endif } /** Query for the memory status */ bool SystemInformationImplementation::QueryMemory() { return this->QueryMemoryBySysconf(); } /** */ size_t SystemInformationImplementation::GetTotalVirtualMemory() const { return this->TotalVirtualMemory; } /** */ size_t SystemInformationImplementation::GetAvailableVirtualMemory() const { return this->AvailableVirtualMemory; } size_t SystemInformationImplementation::GetTotalPhysicalMemory() const { return this->TotalPhysicalMemory; } /** */ size_t SystemInformationImplementation::GetAvailablePhysicalMemory() const { return this->AvailablePhysicalMemory; } /** Get Cycle differences */ long long SystemInformationImplementation::GetCyclesDifference( DELAY_FUNC DelayFunction, unsigned int uiParameter) { #if defined(_MSC_VER) && (_MSC_VER >= 1400) unsigned __int64 stamp1, stamp2; # ifdef _M_ARM64 stamp1 = _ReadStatusReg(ARM64_PMCCNTR_EL0); DelayFunction(uiParameter); stamp2 = _ReadStatusReg(ARM64_PMCCNTR_EL0); # else stamp1 = __rdtsc(); DelayFunction(uiParameter); stamp2 = __rdtsc(); # endif return stamp2 - stamp1; #elif USE_ASM_INSTRUCTIONS unsigned int edx1, eax1; unsigned int edx2, eax2; // Calculate the frequency of the CPU instructions. __try { _asm { push uiParameter ; push parameter param mov ebx, DelayFunction ; store func in ebx RDTSC_INSTRUCTION mov esi, eax ; esi = eax mov edi, edx ; edi = edx call ebx ; call the delay functions RDTSC_INSTRUCTION pop ebx mov edx2, edx ; edx2 = edx mov eax2, eax ; eax2 = eax mov edx1, edi ; edx2 = edi mov eax1, esi ; eax2 = esi } } __except (1) { return -1; } return ((((__int64)edx2 << 32) + eax2) - (((__int64)edx1 << 32) + eax1)); #else (void)DelayFunction; (void)uiParameter; return -1; #endif } /** Compute the delay overhead */ void SystemInformationImplementation::DelayOverhead(unsigned int uiMS) { #if defined(_WIN32) LARGE_INTEGER Frequency, StartCounter, EndCounter; __int64 x; // Get the frequency of the high performance counter. if (!QueryPerformanceFrequency(&Frequency)) { return; } x = Frequency.QuadPart / 1000 * uiMS; // Get the starting position of the counter. QueryPerformanceCounter(&StartCounter); do { // Get the ending position of the counter. QueryPerformanceCounter(&EndCounter); } while (EndCounter.QuadPart - StartCounter.QuadPart == x); #endif (void)uiMS; } /** Works only for windows */ bool SystemInformationImplementation::IsSMTSupported() const { return this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical > 1; } /** Return the APIC Id. Works only for windows. */ unsigned char SystemInformationImplementation::GetAPICId() { int Regs[4] = { 0, 0, 0, 0 }; #if USE_CPUID if (!this->IsSMTSupported()) { return static_cast(-1); // HT not supported } // Logical processor = 1 call_cpuid(1, Regs); #endif return static_cast((Regs[1] & INITIAL_APIC_ID_BITS) >> 24); } /** Count the number of CPUs. Works only on windows. */ void SystemInformationImplementation::CPUCountWindows() { #if defined(_WIN32) this->NumberOfPhysicalCPU = 0; this->NumberOfLogicalCPU = 0; typedef BOOL(WINAPI * GetLogicalProcessorInformationType)( PSYSTEM_LOGICAL_PROCESSOR_INFORMATION, PDWORD); static GetLogicalProcessorInformationType pGetLogicalProcessorInformation = (GetLogicalProcessorInformationType)GetProcAddress( GetModuleHandleW(L"kernel32"), "GetLogicalProcessorInformation"); if (!pGetLogicalProcessorInformation) { // Fallback to approximate implementation on ancient Windows versions. SYSTEM_INFO info; ZeroMemory(&info, sizeof(info)); GetSystemInfo(&info); this->NumberOfPhysicalCPU = static_cast(info.dwNumberOfProcessors); this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU; return; } std::vector ProcInfo; { DWORD Length = 0; DWORD rc = pGetLogicalProcessorInformation(nullptr, &Length); assert(FALSE == rc); (void)rc; // Silence unused variable warning assert(GetLastError() == ERROR_INSUFFICIENT_BUFFER); ProcInfo.resize(Length / sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION)); rc = pGetLogicalProcessorInformation(&ProcInfo[0], &Length); assert(rc != FALSE); (void)rc; // Silence unused variable warning } typedef std::vector::iterator pinfoIt_t; for (pinfoIt_t it = ProcInfo.begin(); it != ProcInfo.end(); ++it) { SYSTEM_LOGICAL_PROCESSOR_INFORMATION PInfo = *it; if (PInfo.Relationship != RelationProcessorCore) { continue; } std::bitset::digits> ProcMask( (unsigned long long)PInfo.ProcessorMask); unsigned int count = (unsigned int)ProcMask.count(); if (count == 0) { // I think this should never happen, but just to be safe. continue; } this->NumberOfPhysicalCPU++; this->NumberOfLogicalCPU += (unsigned int)count; this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = count; } this->NumberOfPhysicalCPU = std::max(1u, this->NumberOfPhysicalCPU); this->NumberOfLogicalCPU = std::max(1u, this->NumberOfLogicalCPU); #else #endif } /** Return the number of logical CPUs on the system */ unsigned int SystemInformationImplementation::GetNumberOfLogicalCPU() const { return this->NumberOfLogicalCPU; } /** Return the number of physical CPUs on the system */ unsigned int SystemInformationImplementation::GetNumberOfPhysicalCPU() const { return this->NumberOfPhysicalCPU; } #if defined(__APPLE__) static int kw_sysctlbyname_int32(const char* name, int32_t* value) { size_t len = sizeof(int32_t); int err = sysctlbyname(name, value, &len, nullptr, 0); if (err == 0) { assert(len == sizeof(int32_t)); } return err; } static int kw_sysctlbyname_int64(const char* name, int64_t* value) { size_t len = sizeof(int64_t); int err = sysctlbyname(name, value, &len, nullptr, 0); if (err == 0) { assert(len == sizeof(int64_t)); } return err; } #endif /** For Apple use sysctlbyname calls to find system info */ bool SystemInformationImplementation::ParseSysCtl() { #if defined(__APPLE__) char tempBuff[128]; int32_t tempInt32 = 0; int64_t tempInt64 = 0; int err = 0; size_t len; this->TotalPhysicalMemory = 0; err = kw_sysctlbyname_int64("hw.memsize", &tempInt64); if (err == 0) { this->TotalPhysicalMemory = static_cast(tempInt64 / 1024 / 1024); } this->AvailablePhysicalMemory = 0; vm_statistics_data_t vmstat; mach_msg_type_number_t count = HOST_VM_INFO_COUNT; if (host_statistics(mach_host_self(), HOST_VM_INFO, (host_info_t)&vmstat, &count) == KERN_SUCCESS) { err = kw_sysctlbyname_int64("hw.pagesize", &tempInt64); if (err == 0) { int64_t available_memory = (vmstat.free_count + vmstat.inactive_count) * tempInt64; this->AvailablePhysicalMemory = static_cast(available_memory / 1024 / 1024); } } // Virtual memory. this->AvailableVirtualMemory = 0; this->TotalVirtualMemory = 0; # ifdef VM_SWAPUSAGE int mib[2] = { CTL_VM, VM_SWAPUSAGE }; unsigned int miblen = static_cast(sizeof(mib) / sizeof(mib[0])); struct xsw_usage swap; len = sizeof(swap); err = sysctl(mib, miblen, &swap, &len, nullptr, 0); if (err == 0) { this->AvailableVirtualMemory = static_cast(swap.xsu_avail / 1024 / 1024); this->TotalVirtualMemory = static_cast(swap.xsu_total / 1024 / 1024); } # endif // CPU Info this->NumberOfPhysicalCPU = 1; err = kw_sysctlbyname_int32("hw.physicalcpu", &tempInt32); if (err == 0) { this->NumberOfPhysicalCPU = tempInt32; } this->NumberOfLogicalCPU = 1; err = kw_sysctlbyname_int32("hw.logicalcpu", &tempInt32); if (err == 0) { this->NumberOfLogicalCPU = tempInt32; } this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = 1; err = kw_sysctlbyname_int32("machdep.cpu.cores_per_package", &tempInt32); if (err == 0) { this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = tempInt32; } this->CPUSpeedInMHz = 0; err = kw_sysctlbyname_int64("hw.cpufrequency", &tempInt64); if (err == 0) { this->CPUSpeedInMHz = static_cast(tempInt64) / 1000000.0f; } // Chip family // Seems only the Intel chips will have this name so if this fails it is // a PowerPC or ARM, or something unknown this->ChipID.Vendor = ""; this->ChipID.Family = 0; this->ChipID.Model = 0; this->ChipID.Revision = 0; err = kw_sysctlbyname_int32("machdep.cpu.family", &tempInt32); if (err != 0) // Go back to names we know but are less descriptive { ::memset(tempBuff, 0, sizeof(tempBuff)); len = sizeof(tempBuff) - 1; // leave a byte for null termination err = sysctlbyname("hw.machine", &tempBuff, &len, nullptr, 0); if (err == 0) { std::string machineBuf(tempBuff); if (machineBuf.find_first_of("Power") != std::string::npos) { this->ChipID.Vendor = "IBM"; err = kw_sysctlbyname_int32("hw.cputype", &tempInt32); if (err == 0) { this->ChipID.Family = tempInt32; } err = kw_sysctlbyname_int32("hw.cpusubtype", &tempInt32); if (err == 0) { this->ChipID.Model = tempInt32; } this->FindManufacturer(); } else if (machineBuf.find_first_of("arm64") != std::string::npos) { this->ChipID.Vendor = "Apple"; this->FindManufacturer(); } } } else { // Should be an Intel Chip. err = kw_sysctlbyname_int32("machdep.cpu.family", &tempInt32); if (err == 0) { this->ChipID.Family = tempInt32; } // Chip Vendor ::memset(tempBuff, 0, sizeof(tempBuff)); len = sizeof(tempBuff) - 1; // leave a byte for null termination err = sysctlbyname("machdep.cpu.vendor", tempBuff, &len, nullptr, 0); if (err == 0) { this->ChipID.Vendor = tempBuff; } this->FindManufacturer(); // Chip Model err = kw_sysctlbyname_int32("machdep.cpu.model", &tempInt32); if (err == 0) { this->ChipID.Model = tempInt32; } // Chip Stepping err = kw_sysctlbyname_int32("machdep.cpu.stepping", &tempInt32); if (err == 0) { this->ChipID.Revision = tempInt32; } // feature string char* buf = nullptr; size_t allocSize = 128; err = 0; len = 0; // sysctlbyname() will return with err==0 && len==0 if the buffer is too // small while (err == 0 && len == 0) { delete[] buf; allocSize *= 2; buf = new char[allocSize]; if (!buf) { break; } buf[0] = ' '; len = allocSize - 2; // keep space for leading and trailing space err = sysctlbyname("machdep.cpu.features", buf + 1, &len, nullptr, 0); } if (err == 0 && buf && len) { // now we can match every flags as space + flag + space buf[len + 1] = ' '; std::string cpuflags(buf, len + 2); if (cpuflags.find(" FPU ") != std::string::npos) { this->Features.HasFPU = true; } if (cpuflags.find(" TSC ") != std::string::npos) { this->Features.HasTSC = true; } if (cpuflags.find(" MMX ") != std::string::npos) { this->Features.HasMMX = true; } if (cpuflags.find(" SSE ") != std::string::npos) { this->Features.HasSSE = true; } if (cpuflags.find(" SSE2 ") != std::string::npos) { this->Features.HasSSE2 = true; } if (cpuflags.find(" APIC ") != std::string::npos) { this->Features.HasAPIC = true; } if (cpuflags.find(" CMOV ") != std::string::npos) { this->Features.HasCMOV = true; } if (cpuflags.find(" MTRR ") != std::string::npos) { this->Features.HasMTRR = true; } if (cpuflags.find(" ACPI ") != std::string::npos) { this->Features.HasACPI = true; } } delete[] buf; } // brand string this->ChipID.ProcessorName = ""; this->ChipID.ModelName = ""; ::memset(tempBuff, 0, sizeof(tempBuff)); len = sizeof(tempBuff) - 1; // leave a byte for null termination err = sysctlbyname("machdep.cpu.brand_string", tempBuff, &len, nullptr, 0); if (err == 0) { this->ChipID.ProcessorName = tempBuff; this->ChipID.ModelName = tempBuff; } // L1 Cache size this->Features.L1CacheSize = 0; err = kw_sysctlbyname_int64("hw.l1icachesize", &tempInt64); if (err == 0) { this->Features.L1CacheSize = static_cast(tempInt64); } // L2 Cache size this->Features.L2CacheSize = 0; err = kw_sysctlbyname_int64("hw.l2cachesize", &tempInt64); if (err == 0) { this->Features.L2CacheSize = static_cast(tempInt64); } return true; #else return false; #endif } /** Extract a value from sysctl command */ std::string SystemInformationImplementation::ExtractValueFromSysCtl( const char* word) { size_t pos = this->SysCtlBuffer.find(word); if (pos != std::string::npos) { pos = this->SysCtlBuffer.find(": ", pos); size_t pos2 = this->SysCtlBuffer.find('\n', pos); if (pos != std::string::npos && pos2 != std::string::npos) { return this->SysCtlBuffer.substr(pos + 2, pos2 - pos - 2); } } return ""; } /** Run a given process */ std::string SystemInformationImplementation::RunProcess( std::vector args) { std::string buffer; // Run the application kwsysProcess* gp = kwsysProcess_New(); kwsysProcess_SetCommand(gp, args.data()); kwsysProcess_SetOption(gp, kwsysProcess_Option_HideWindow, 1); kwsysProcess_Execute(gp); char* data = nullptr; int length; double timeout = 255; int pipe; // pipe id as returned by kwsysProcess_WaitForData() while ((static_cast( pipe = kwsysProcess_WaitForData(gp, &data, &length, &timeout)), (pipe == kwsysProcess_Pipe_STDOUT || pipe == kwsysProcess_Pipe_STDERR))) // wait for 1s { buffer.append(data, length); } kwsysProcess_WaitForExit(gp, nullptr); int result = 0; switch (kwsysProcess_GetState(gp)) { case kwsysProcess_State_Exited: { result = kwsysProcess_GetExitValue(gp); } break; case kwsysProcess_State_Error: { std::cerr << "Error: Could not run " << args[0] << ":\n"; std::cerr << kwsysProcess_GetErrorString(gp) << "\n"; } break; case kwsysProcess_State_Exception: { std::cerr << "Error: " << args[0] << " terminated with an exception: " << kwsysProcess_GetExceptionString(gp) << "\n"; } break; case kwsysProcess_State_Starting: case kwsysProcess_State_Executing: case kwsysProcess_State_Expired: case kwsysProcess_State_Killed: { // Should not get here. std::cerr << "Unexpected ending state after running " << args[0] << std::endl; } break; } kwsysProcess_Delete(gp); if (result) { std::cerr << "Error " << args[0] << " returned :" << result << "\n"; } return buffer; } std::string SystemInformationImplementation::ParseValueFromKStat( const char* arguments) { std::vector args_string; std::string command = arguments; size_t start = std::string::npos; size_t pos = command.find(' ', 0); while (pos != std::string::npos) { bool inQuotes = false; // Check if we are between quotes size_t b0 = command.find('"', 0); size_t b1 = command.find('"', b0 + 1); while (b0 != std::string::npos && b1 != std::string::npos && b1 > b0) { if (pos > b0 && pos < b1) { inQuotes = true; break; } b0 = command.find('"', b1 + 1); b1 = command.find('"', b0 + 1); } if (!inQuotes) { args_string.push_back(command.substr(start + 1, pos - start - 1)); std::string& arg = args_string.back(); // Remove the quotes if any arg.erase(std::remove(arg.begin(), arg.end(), '"'), arg.end()); start = pos; } pos = command.find(' ', pos + 1); } command.erase(0, start + 1); args_string.push_back(command); std::vector args; args.reserve(3 + args_string.size()); args.push_back("kstat"); args.push_back("-p"); for (auto& i : args_string) { args.push_back(i.c_str()); } args.push_back(nullptr); std::string buffer = this->RunProcess(args); std::string value; for (size_t i = buffer.size() - 1; i > 0; i--) { if (buffer[i] == ' ' || buffer[i] == '\t') { break; } if (buffer[i] != '\n' && buffer[i] != '\r') { value.insert(0u, 1, buffer[i]); } } return value; } /** Querying for system information from Solaris */ bool SystemInformationImplementation::QuerySolarisMemory() { #if defined(__SVR4) && defined(__sun) // Solaris allows querying this value by sysconf, but if this is // a 32 bit process on a 64 bit host the returned memory will be // limited to 4GiB. So if this is a 32 bit process or if the sysconf // method fails use the kstat interface. # if SIZEOF_VOID_P == 8 if (this->QueryMemoryBySysconf()) { return true; } # endif char* tail; unsigned long totalMemory = strtoul(this->ParseValueFromKStat("-s physmem").c_str(), &tail, 0); this->TotalPhysicalMemory = totalMemory / 128; return true; #else return false; #endif } bool SystemInformationImplementation::QuerySolarisProcessor() { if (!this->QueryProcessorBySysconf()) { return false; } // Parse values this->CPUSpeedInMHz = static_cast( atoi(this->ParseValueFromKStat("-s clock_MHz").c_str())); // Chip family this->ChipID.Family = 0; // Chip Model this->ChipID.ProcessorName = this->ParseValueFromKStat("-s cpu_type"); this->ChipID.Model = 0; // Chip Vendor if (this->ChipID.ProcessorName != "i386") { this->ChipID.Vendor = "Sun"; this->FindManufacturer(); } return true; } /** Querying for system information from Haiku OS */ bool SystemInformationImplementation::QueryHaikuInfo() { #if defined(__HAIKU__) // CPU count system_info info; get_system_info(&info); this->NumberOfPhysicalCPU = info.cpu_count; // CPU speed uint32 topologyNodeCount = 0; cpu_topology_node_info* topology = 0; get_cpu_topology_info(0, &topologyNodeCount); if (topologyNodeCount != 0) topology = new cpu_topology_node_info[topologyNodeCount]; get_cpu_topology_info(topology, &topologyNodeCount); for (uint32 i = 0; i < topologyNodeCount; i++) { if (topology[i].type == B_TOPOLOGY_CORE) { this->CPUSpeedInMHz = topology[i].data.core.default_frequency / 1000000.0f; break; } } delete[] topology; // Physical Memory this->TotalPhysicalMemory = (info.max_pages * B_PAGE_SIZE) / (1024 * 1024); this->AvailablePhysicalMemory = this->TotalPhysicalMemory - ((info.used_pages * B_PAGE_SIZE) / (1024 * 1024)); // NOTE: get_system_info_etc is currently a private call so just set to 0 // until it becomes public this->TotalVirtualMemory = 0; this->AvailableVirtualMemory = 0; // Retrieve cpuid_info union for cpu 0 cpuid_info cpu_info; get_cpuid(&cpu_info, 0, 0); // Chip Vendor // Use a temporary buffer so that we can add NULL termination to the string char vbuf[13]; strncpy(vbuf, cpu_info.eax_0.vendor_id, 12); vbuf[12] = '\0'; this->ChipID.Vendor = vbuf; this->FindManufacturer(); // Retrieve cpuid_info union for cpu 0 this time using a register value of 1 get_cpuid(&cpu_info, 1, 0); this->NumberOfLogicalCPU = cpu_info.eax_1.logical_cpus; // Chip type this->ChipID.Type = cpu_info.eax_1.type; // Chip family this->ChipID.Family = cpu_info.eax_1.family; // Chip Model this->ChipID.Model = cpu_info.eax_1.model; // Chip Revision this->ChipID.Revision = cpu_info.eax_1.stepping; // Chip Extended Family this->ChipID.ExtendedFamily = cpu_info.eax_1.extended_family; // Chip Extended Model this->ChipID.ExtendedModel = cpu_info.eax_1.extended_model; // Get ChipID.ProcessorName from other information already gathered this->RetrieveClassicalCPUIdentity(); // Cache size this->Features.L1CacheSize = 0; this->Features.L2CacheSize = 0; return true; #else return false; #endif } bool SystemInformationImplementation::QueryQNXMemory() { #if defined(__QNX__) std::string buffer; std::vector args; args.clear(); args.push_back("showmem"); args.push_back("-S"); args.push_back(0); buffer = this->RunProcess(args); args.clear(); size_t pos = buffer.find("System RAM:"); if (pos == std::string::npos) return false; pos = buffer.find(":", pos); size_t pos2 = buffer.find("M (", pos); if (pos2 == std::string::npos) return false; pos++; while (buffer[pos] == ' ') pos++; buffer.erase(0, pos); buffer.resize(pos2); this->TotalPhysicalMemory = atoi(buffer.c_str()); return true; #endif return false; } bool SystemInformationImplementation::QueryBSDMemory() { #if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \ defined(__DragonFly__) int ctrl[2] = { CTL_HW, HW_PHYSMEM }; # if defined(HW_PHYSMEM64) int64_t k; ctrl[1] = HW_PHYSMEM64; # else int k; # endif size_t sz = sizeof(k); if (sysctl(ctrl, 2, &k, &sz, nullptr, 0) != 0) { return false; } this->TotalPhysicalMemory = k >> 10 >> 10; return true; #else return false; #endif } bool SystemInformationImplementation::QueryQNXProcessor() { #if defined(__QNX__) // the output on my QNX 6.4.1 looks like this: // Processor1: 686 Pentium II Stepping 3 2175MHz FPU std::string buffer; std::vector args; args.clear(); args.push_back("pidin"); args.push_back("info"); args.push_back(0); buffer = this->RunProcess(args); args.clear(); size_t pos = buffer.find("Processor1:"); if (pos == std::string::npos) return false; size_t pos2 = buffer.find("MHz", pos); if (pos2 == std::string::npos) return false; size_t pos3 = pos2; while (buffer[pos3] != ' ') --pos3; this->CPUSpeedInMHz = atoi(buffer.substr(pos3 + 1, pos2 - pos3 - 1).c_str()); pos2 = buffer.find(" Stepping", pos); if (pos2 != std::string::npos) { pos2 = buffer.find(" ", pos2 + 1); if (pos2 != std::string::npos && pos2 < pos3) { this->ChipID.Revision = atoi(buffer.substr(pos2 + 1, pos3 - pos2).c_str()); } } this->NumberOfPhysicalCPU = 0; do { pos = buffer.find("\nProcessor", pos + 1); ++this->NumberOfPhysicalCPU; } while (pos != std::string::npos); this->NumberOfLogicalCPU = 1; return true; #else return false; #endif } bool SystemInformationImplementation::QueryBSDProcessor() { #if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \ defined(__DragonFly__) int k; size_t sz = sizeof(k); int ctrl[2] = { CTL_HW, HW_NCPU }; if (sysctl(ctrl, 2, &k, &sz, nullptr, 0) != 0) { return false; } this->NumberOfPhysicalCPU = k; this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU; # if defined(HW_CPUSPEED) ctrl[1] = HW_CPUSPEED; if (sysctl(ctrl, 2, &k, &sz, nullptr, 0) != 0) { return false; } this->CPUSpeedInMHz = (float)k; # endif # if defined(CPU_SSE) ctrl[0] = CTL_MACHDEP; ctrl[1] = CPU_SSE; if (sysctl(ctrl, 2, &k, &sz, nullptr, 0) != 0) { return false; } this->Features.HasSSE = (k > 0); # endif # if defined(CPU_SSE2) ctrl[0] = CTL_MACHDEP; ctrl[1] = CPU_SSE2; if (sysctl(ctrl, 2, &k, &sz, nullptr, 0) != 0) { return false; } this->Features.HasSSE2 = (k > 0); # endif # if defined(CPU_CPUVENDOR) ctrl[0] = CTL_MACHDEP; ctrl[1] = CPU_CPUVENDOR; char vbuf[25]; ::memset(vbuf, 0, sizeof(vbuf)); sz = sizeof(vbuf) - 1; if (sysctl(ctrl, 2, vbuf, &sz, nullptr, 0) != 0) { return false; } this->ChipID.Vendor = vbuf; this->FindManufacturer(); # endif return true; #else return false; #endif } bool SystemInformationImplementation::QueryHPUXMemory() { #if defined(__hpux) unsigned long tv = 0; unsigned long tp = 0; unsigned long av = 0; unsigned long ap = 0; struct pst_static pst; struct pst_dynamic pdy; unsigned long ps = 0; if (pstat_getstatic(&pst, sizeof(pst), (size_t)1, 0) == -1) { return false; } ps = pst.page_size; tp = pst.physical_memory * ps; tv = (pst.physical_memory + pst.pst_maxmem) * ps; if (pstat_getdynamic(&pdy, sizeof(pdy), (size_t)1, 0) == -1) { return false; } ap = tp - pdy.psd_rm * ps; av = tv - pdy.psd_vm; this->TotalVirtualMemory = tv >> 10 >> 10; this->TotalPhysicalMemory = tp >> 10 >> 10; this->AvailableVirtualMemory = av >> 10 >> 10; this->AvailablePhysicalMemory = ap >> 10 >> 10; return true; #else return false; #endif } bool SystemInformationImplementation::QueryHPUXProcessor() { #if defined(__hpux) # if defined(KWSYS_SYS_HAS_MPCTL_H) int c = mpctl(MPC_GETNUMSPUS_SYS, 0, 0); if (c <= 0) { return false; } this->NumberOfPhysicalCPU = c; this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU; long t = sysconf(_SC_CPU_VERSION); if (t == -1) { return false; } switch (t) { case CPU_PA_RISC1_0: this->ChipID.Vendor = "Hewlett-Packard"; this->ChipID.Family = 0x100; break; case CPU_PA_RISC1_1: this->ChipID.Vendor = "Hewlett-Packard"; this->ChipID.Family = 0x110; break; case CPU_PA_RISC2_0: this->ChipID.Vendor = "Hewlett-Packard"; this->ChipID.Family = 0x200; break; # if defined(CPU_HP_INTEL_EM_1_0) || defined(CPU_IA64_ARCHREV_0) # ifdef CPU_HP_INTEL_EM_1_0 case CPU_HP_INTEL_EM_1_0: # endif # ifdef CPU_IA64_ARCHREV_0 case CPU_IA64_ARCHREV_0: # endif this->ChipID.Vendor = "GenuineIntel"; this->Features.HasIA64 = true; break; # endif default: return false; } this->FindManufacturer(); return true; # else return false; # endif #else return false; #endif } /** Query the operating system information */ bool SystemInformationImplementation::QueryOSInformation() { #if defined(_WIN32) this->OSName = "Windows"; OSVERSIONINFOEXW osvi; BOOL bIsWindows64Bit; BOOL bOsVersionInfoEx; char operatingSystem[256]; // Try calling GetVersionEx using the OSVERSIONINFOEX structure. ZeroMemory(&osvi, sizeof(OSVERSIONINFOEXW)); osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEXW); # ifdef KWSYS_WINDOWS_DEPRECATED_GetVersionEx # pragma warning(push) # ifdef __INTEL_COMPILER # pragma warning(disable : 1478) # elif defined __clang__ # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wdeprecated-declarations" # else # pragma warning(disable : 4996) # endif # endif bOsVersionInfoEx = GetVersionExW((OSVERSIONINFOW*)&osvi); if (!bOsVersionInfoEx) { osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOW); if (!GetVersionExW((OSVERSIONINFOW*)&osvi)) { return false; } } # ifdef KWSYS_WINDOWS_DEPRECATED_GetVersionEx # ifdef __clang__ # pragma clang diagnostic pop # else # pragma warning(pop) # endif # endif switch (osvi.dwPlatformId) { case VER_PLATFORM_WIN32_NT: // Test for the product. if (osvi.dwMajorVersion <= 4) { this->OSRelease = "NT"; } if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 0) { this->OSRelease = "2000"; } if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { this->OSRelease = "XP"; } // XP Professional x64 if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 2) { this->OSRelease = "XP"; } # ifdef VER_NT_WORKSTATION // Test for product type. if (bOsVersionInfoEx) { if (osvi.wProductType == VER_NT_WORKSTATION) { if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 0) { this->OSRelease = "Vista"; } if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 1) { this->OSRelease = "7"; } // VER_SUITE_PERSONAL may not be defined # ifdef VER_SUITE_PERSONAL else { if (osvi.wSuiteMask & VER_SUITE_PERSONAL) { this->OSRelease += " Personal"; } else { this->OSRelease += " Professional"; } } # endif } else if (osvi.wProductType == VER_NT_SERVER) { // Check for .NET Server instead of Windows XP. if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { this->OSRelease = ".NET"; } // Continue with the type detection. if (osvi.wSuiteMask & VER_SUITE_DATACENTER) { this->OSRelease += " DataCenter Server"; } else if (osvi.wSuiteMask & VER_SUITE_ENTERPRISE) { this->OSRelease += " Advanced Server"; } else { this->OSRelease += " Server"; } } sprintf(operatingSystem, "%ls (Build %ld)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF); this->OSVersion = operatingSystem; } else # endif // VER_NT_WORKSTATION { HKEY hKey; wchar_t szProductType[80]; DWORD dwBufLen; // Query the registry to retrieve information. RegOpenKeyExW(HKEY_LOCAL_MACHINE, L"SYSTEM\\CurrentControlSet\\Control\\ProductOptions", 0, KEY_QUERY_VALUE, &hKey); RegQueryValueExW(hKey, L"ProductType", nullptr, nullptr, (LPBYTE)szProductType, &dwBufLen); RegCloseKey(hKey); if (lstrcmpiW(L"WINNT", szProductType) == 0) { this->OSRelease += " Professional"; } if (lstrcmpiW(L"LANMANNT", szProductType) == 0) { // Decide between Windows 2000 Advanced Server and Windows .NET // Enterprise Server. if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { this->OSRelease += " Standard Server"; } else { this->OSRelease += " Server"; } } if (lstrcmpiW(L"SERVERNT", szProductType) == 0) { // Decide between Windows 2000 Advanced Server and Windows .NET // Enterprise Server. if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { this->OSRelease += " Enterprise Server"; } else { this->OSRelease += " Advanced Server"; } } } // Display version, service pack (if any), and build number. if (osvi.dwMajorVersion <= 4) { // NB: NT 4.0 and earlier. sprintf(operatingSystem, "version %ld.%ld %ls (Build %ld)", osvi.dwMajorVersion, osvi.dwMinorVersion, osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF); this->OSVersion = operatingSystem; } else if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { // Windows XP and .NET server. typedef BOOL(CALLBACK * LPFNPROC)(HANDLE, BOOL*); HINSTANCE hKernelDLL; LPFNPROC DLLProc; // Load the Kernel32 DLL. hKernelDLL = LoadLibraryW(L"kernel32"); if (hKernelDLL != nullptr) { // Only XP and .NET Server support IsWOW64Process so... Load // dynamically! DLLProc = (LPFNPROC)GetProcAddress(hKernelDLL, "IsWow64Process"); // If the function address is valid, call the function. if (DLLProc != nullptr) (DLLProc)(GetCurrentProcess(), &bIsWindows64Bit); else bIsWindows64Bit = false; // Free the DLL module. FreeLibrary(hKernelDLL); } } else { // Windows 2000 and everything else. sprintf(operatingSystem, "%ls (Build %ld)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF); this->OSVersion = operatingSystem; } break; case VER_PLATFORM_WIN32_WINDOWS: // Test for the product. if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 0) { this->OSRelease = "95"; if (osvi.szCSDVersion[1] == 'C') { this->OSRelease += "OSR 2.5"; } else if (osvi.szCSDVersion[1] == 'B') { this->OSRelease += "OSR 2"; } } if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 10) { this->OSRelease = "98"; if (osvi.szCSDVersion[1] == 'A') { this->OSRelease += "SE"; } } if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 90) { this->OSRelease = "Me"; } break; case VER_PLATFORM_WIN32s: this->OSRelease = "Win32s"; break; default: this->OSRelease = "Unknown"; break; } // Get the hostname WORD wVersionRequested; WSADATA wsaData; char name[255]; wVersionRequested = MAKEWORD(2, 0); if (WSAStartup(wVersionRequested, &wsaData) == 0) { gethostname(name, sizeof(name)); WSACleanup(); } this->Hostname = name; const char* arch = getenv("PROCESSOR_ARCHITECTURE"); const char* wow64 = getenv("PROCESSOR_ARCHITEW6432"); if (arch) { this->OSPlatform = arch; } if (wow64) { // the PROCESSOR_ARCHITEW6432 is only defined when running 32bit programs // on 64bit OS this->OSIs64Bit = true; } else if (arch) { // all values other than x86 map to 64bit architectures this->OSIs64Bit = (strncmp(arch, "x86", 3) != 0); } #else struct utsname unameInfo; int errorFlag = uname(&unameInfo); if (errorFlag == 0) { this->OSName = unameInfo.sysname; this->Hostname = unameInfo.nodename; this->OSRelease = unameInfo.release; this->OSVersion = unameInfo.version; this->OSPlatform = unameInfo.machine; // This is still insufficient to capture 64bit architecture such // powerpc and possible mips and sparc if (this->OSPlatform.find_first_of("64") != std::string::npos) { this->OSIs64Bit = true; } } # ifdef __APPLE__ this->OSName = "Unknown Apple OS"; this->OSRelease = "Unknown product version"; this->OSVersion = "Unknown build version"; this->CallSwVers("-productName", this->OSName); this->CallSwVers("-productVersion", this->OSRelease); this->CallSwVers("-buildVersion", this->OSVersion); # endif #endif return true; } int SystemInformationImplementation::CallSwVers(const char* arg, std::string& ver) { #ifdef __APPLE__ std::vector args; args.push_back("sw_vers"); args.push_back(arg); args.push_back(nullptr); ver = this->RunProcess(args); this->TrimNewline(ver); #else // avoid C4100 (void)arg; (void)ver; #endif return 0; } void SystemInformationImplementation::TrimNewline(std::string& output) { // remove \r std::string::size_type pos = 0; while ((pos = output.find('\r', pos)) != std::string::npos) { output.erase(pos); } // remove \n pos = 0; while ((pos = output.find('\n', pos)) != std::string::npos) { output.erase(pos); } } /** Return true if the machine is 64 bits */ bool SystemInformationImplementation::Is64Bits() const { return this->OSIs64Bit; } }