// -*-c++-*- // vim: set ft=cpp: /* Distributed under the OSI-approved BSD 3-Clause License. See accompanying file Copyright.txt or https://cmake.org/licensing for details. */ #ifndef cmext_algorithm #define cmext_algorithm #include #include #include #include #include #include #include #if defined(__SUNPRO_CC) && defined(__sparc) # include # include #endif namespace cm { #if defined(__SUNPRO_CC) && defined(__sparc) // Oracle DeveloperStudio C++ compiler on Solaris/Sparc fails to compile // templates with constraints. // So, on this platform, use only simple templates. # define APPEND_TWO(C1, C2) \ template \ void append(C1>& v, C2>&& r) \ { \ std::transform( \ r.begin(), r.end(), std::back_inserter(v), \ [](std::unique_ptr& item) { return std::move(item); }); \ r.clear(); \ } \ \ template \ void append(C1& v, C2> const& r) \ { \ std::transform( \ r.begin(), r.end(), std::back_inserter(v), \ [](const std::unique_ptr& item) { return item.get(); }); \ } # define APPEND_ONE(C) \ template ::value, int> = \ 0> \ void append(C& v, InputIt first, InputIt last) \ { \ v.insert(v.end(), first, last); \ } \ \ template ::value, int> = 0> \ void append(C& v, Range const& r) \ { \ v.insert(v.end(), r.begin(), r.end()); \ } # define APPEND(C) \ APPEND_TWO(C, C) \ APPEND_ONE(C) # define APPEND_MIX(C1, C2) \ APPEND_TWO(C1, C2) \ APPEND_TWO(C2, C1) // For now, manage only support for std::vector and std::list. // Other sequential container support can be added if needed. APPEND(std::vector) APPEND(std::list) APPEND_MIX(std::vector, std::list) # undef APPEND # undef APPEND_MIX # undef APPEND_TWO # undef APPEND_ONE #else template < typename Container1, typename Container2, cm::enable_if_t< cm::is_sequence_container::value && cm::is_unique_ptr::value && cm::is_unique_ptr::value && std::is_convertible::value, int> = 0> void append(Container1& v, Container2&& r) { std::transform( r.begin(), r.end(), std::back_inserter(v), [](typename Container2::value_type& item) { return std::move(item); }); r.clear(); } template ::value && std::is_pointer::value && cm::is_unique_ptr::value && std::is_convertible::value, int> = 0> # if defined(__SUNPRO_CC) void append(Container1& v, Container2 const& r, detail::overload_selector<0>) # else void append(Container1& v, Container2 const& r) # endif { std::transform( r.begin(), r.end(), std::back_inserter(v), [](const typename Container2::value_type& item) { return item.get(); }); } template < typename Container, typename InputIt, cm::enable_if_t< cm::is_sequence_container::value && cm::is_input_iterator::value && std::is_convertible::value_type, typename Container::value_type>::value, int> = 0> void append(Container& v, InputIt first, InputIt last) { v.insert(v.end(), first, last); } template ::value && cm::is_input_range::value && !cm::is_unique_ptr::value && !cm::is_unique_ptr::value && std::is_convertible::value, int> = 0> # if defined(__SUNPRO_CC) void append(Container& v, Range const& r, detail::overload_selector<1>) # else void append(Container& v, Range const& r) # endif { v.insert(v.end(), r.begin(), r.end()); } # if defined(__SUNPRO_CC) template void append(T& v, U const& r) { cm::append(v, r, detail::overload_selector<1>{}); } # endif #endif #if defined(__SUNPRO_CC) template auto contains(Iterator first, Iterator last, Key const& key, detail::overload_selector<1>) -> decltype(first->first == key) #else template ::value && std::is_convertible::value_type::first_type>::value, int> = 0> bool contains(Iterator first, Iterator last, Key const& key) #endif { return std::find_if( first, last, [&key]( typename std::iterator_traits::value_type const& item) { return item.first == key; }) != last; } #if defined(__SUNPRO_CC) template bool contains(Iterator first, Iterator last, Key const& key, detail::overload_selector<0>) #else template < typename Iterator, typename Key, cm::enable_if_t< cm::is_input_iterator::value && std::is_convertible< Key, typename std::iterator_traits::value_type>::value, int> = 0> bool contains(Iterator first, Iterator last, Key const& key) #endif { return std::find(first, last, key) != last; } #if defined(__SUNPRO_CC) template bool contains(Iterator first, Iterator last, Key const& key) { return contains(first, last, key, detail::overload_selector<1>{}); } #endif #if defined(__SUNPRO_CC) template auto contains(Range const& range, Key const& key, detail::overload_selector<1>) -> decltype(range.find(key) != range.end()) #else template < typename Range, typename Key, cm::enable_if_t::value || cm::is_unordered_associative_container::value, int> = 0> bool contains(Range const& range, Key const& key) #endif { return range.find(key) != range.end(); } #if defined(__SUNPRO_CC) template bool contains(Range const& range, Key const& key, detail::overload_selector<0>) #else template < typename Range, typename Key, cm::enable_if_t::value && !(cm::is_associative_container::value || cm::is_unordered_associative_container::value), int> = 0> bool contains(Range const& range, Key const& key) #endif { return std::find(std::begin(range), std::end(range), key) != std::end(range); } #if defined(__SUNPRO_CC) template bool contains(Range const& range, Key const& key) { return contains(range, key, detail::overload_selector<1>{}); } #endif } // namespace cm #endif