You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
463 lines
18 KiB
463 lines
18 KiB
.\" Copyright (c) 2003-2009 Tim Kientzle
|
|
.\" All rights reserved.
|
|
.\"
|
|
.\" Redistribution and use in source and binary forms, with or without
|
|
.\" modification, are permitted provided that the following conditions
|
|
.\" are met:
|
|
.\" 1. Redistributions of source code must retain the above copyright
|
|
.\" notice, this list of conditions and the following disclaimer.
|
|
.\" 2. Redistributions in binary form must reproduce the above copyright
|
|
.\" notice, this list of conditions and the following disclaimer in the
|
|
.\" documentation and/or other materials provided with the distribution.
|
|
.\"
|
|
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
.\" SUCH DAMAGE.
|
|
.\"
|
|
.Dd December 27, 2016
|
|
.Dt LIBARCHIVE-FORMATS 5
|
|
.Os
|
|
.Sh NAME
|
|
.Nm libarchive-formats
|
|
.Nd archive formats supported by the libarchive library
|
|
.Sh DESCRIPTION
|
|
The
|
|
.Xr libarchive 3
|
|
library reads and writes a variety of streaming archive formats.
|
|
Generally speaking, all of these archive formats consist of a series of
|
|
.Dq entries .
|
|
Each entry stores a single file system object, such as a file, directory,
|
|
or symbolic link.
|
|
.Pp
|
|
The following provides a brief description of each format supported
|
|
by libarchive, with some information about recognized extensions or
|
|
limitations of the current library support.
|
|
Note that just because a format is supported by libarchive does not
|
|
imply that a program that uses libarchive will support that format.
|
|
Applications that use libarchive specify which formats they wish
|
|
to support, though many programs do use libarchive convenience
|
|
functions to enable all supported formats.
|
|
.Ss Tar Formats
|
|
The
|
|
.Xr libarchive 3
|
|
library can read most tar archives.
|
|
It can write POSIX-standard
|
|
.Dq ustar
|
|
and
|
|
.Dq pax interchange
|
|
formats as well as v7 tar format and a subset of the legacy GNU tar format.
|
|
.Pp
|
|
All tar formats store each entry in one or more 512-byte records.
|
|
The first record is used for file metadata, including filename,
|
|
timestamp, and mode information, and the file data is stored in
|
|
subsequent records.
|
|
Later variants have extended this by either appropriating undefined
|
|
areas of the header record, extending the header to multiple records,
|
|
or by storing special entries that modify the interpretation of
|
|
subsequent entries.
|
|
.Bl -tag -width indent
|
|
.It Cm gnutar
|
|
The
|
|
.Xr libarchive 3
|
|
library can read most GNU-format tar archives.
|
|
It currently supports the most popular GNU extensions, including
|
|
modern long filename and linkname support, as well as atime and ctime data.
|
|
The libarchive library does not support multi-volume
|
|
archives, nor the old GNU long filename format.
|
|
It can read GNU sparse file entries, including the new POSIX-based
|
|
formats.
|
|
.Pp
|
|
The
|
|
.Xr libarchive 3
|
|
library can write GNU tar format, including long filename
|
|
and linkname support, as well as atime and ctime data.
|
|
.It Cm pax
|
|
The
|
|
.Xr libarchive 3
|
|
library can read and write POSIX-compliant pax interchange format
|
|
archives.
|
|
Pax interchange format archives are an extension of the older ustar
|
|
format that adds a separate entry with additional attributes stored
|
|
as key/value pairs immediately before each regular entry.
|
|
The presence of these additional entries is the only difference between
|
|
pax interchange format and the older ustar format.
|
|
The extended attributes are of unlimited length and are stored
|
|
as UTF-8 Unicode strings.
|
|
Keywords defined in the standard are in all lowercase; vendors are allowed
|
|
to define custom keys by preceding them with the vendor name in all uppercase.
|
|
When writing pax archives, libarchive uses many of the SCHILY keys
|
|
defined by Joerg Schilling's
|
|
.Dq star
|
|
archiver and a few LIBARCHIVE keys.
|
|
The libarchive library can read most of the SCHILY keys
|
|
and most of the GNU keys introduced by GNU tar.
|
|
It silently ignores any keywords that it does not understand.
|
|
.Pp
|
|
The pax interchange format converts filenames to Unicode
|
|
and stores them using the UTF-8 encoding.
|
|
Prior to libarchive 3.0, libarchive erroneously assumed
|
|
that the system wide-character routines natively supported
|
|
Unicode.
|
|
This caused it to mis-handle non-ASCII filenames on systems
|
|
that did not satisfy this assumption.
|
|
.It Cm restricted pax
|
|
The libarchive library can also write pax archives in which it
|
|
attempts to suppress the extended attributes entry whenever
|
|
possible.
|
|
The result will be identical to a ustar archive unless the
|
|
extended attributes entry is required to store a long file
|
|
name, long linkname, extended ACL, file flags, or if any of the standard
|
|
ustar data (user name, group name, UID, GID, etc) cannot be fully
|
|
represented in the ustar header.
|
|
In all cases, the result can be dearchived by any program that
|
|
can read POSIX-compliant pax interchange format archives.
|
|
Programs that correctly read ustar format (see below) will also be
|
|
able to read this format; any extended attributes will be extracted as
|
|
separate files stored in
|
|
.Pa PaxHeader
|
|
directories.
|
|
.It Cm ustar
|
|
The libarchive library can both read and write this format.
|
|
This format has the following limitations:
|
|
.Bl -bullet -compact
|
|
.It
|
|
Device major and minor numbers are limited to 21 bits.
|
|
Nodes with larger numbers will not be added to the archive.
|
|
.It
|
|
Path names in the archive are limited to 255 bytes.
|
|
(Shorter if there is no / character in exactly the right place.)
|
|
.It
|
|
Symbolic links and hard links are stored in the archive with
|
|
the name of the referenced file.
|
|
This name is limited to 100 bytes.
|
|
.It
|
|
Extended attributes, file flags, and other extended
|
|
security information cannot be stored.
|
|
.It
|
|
Archive entries are limited to 8 gigabytes in size.
|
|
.El
|
|
Note that the pax interchange format has none of these restrictions.
|
|
The ustar format is old and widely supported.
|
|
It is recommended when compatibility is the primary concern.
|
|
.It Cm v7
|
|
The libarchive library can read and write the legacy v7 tar format.
|
|
This format has the following limitations:
|
|
.Bl -bullet -compact
|
|
.It
|
|
Only regular files, directories, and symbolic links can be archived.
|
|
Block and character device nodes, FIFOs, and sockets cannot be archived.
|
|
.It
|
|
Path names in the archive are limited to 100 bytes.
|
|
.It
|
|
Symbolic links and hard links are stored in the archive with
|
|
the name of the referenced file.
|
|
This name is limited to 100 bytes.
|
|
.It
|
|
User and group information are stored as numeric IDs; there
|
|
is no provision for storing user or group names.
|
|
.It
|
|
Extended attributes, file flags, and other extended
|
|
security information cannot be stored.
|
|
.It
|
|
Archive entries are limited to 8 gigabytes in size.
|
|
.El
|
|
Generally, users should prefer the ustar format for portability
|
|
as the v7 tar format is both less useful and less portable.
|
|
.El
|
|
.Pp
|
|
The libarchive library also reads a variety of commonly-used extensions to
|
|
the basic tar format.
|
|
These extensions are recognized automatically whenever they appear.
|
|
.Bl -tag -width indent
|
|
.It Numeric extensions.
|
|
The POSIX standards require fixed-length numeric fields to be written with
|
|
some character position reserved for terminators.
|
|
Libarchive allows these fields to be written without terminator characters.
|
|
This extends the allowable range; in particular, ustar archives with this
|
|
extension can support entries up to 64 gigabytes in size.
|
|
Libarchive also recognizes base-256 values in most numeric fields.
|
|
This essentially removes all limitations on file size, modification time,
|
|
and device numbers.
|
|
.It Solaris extensions
|
|
Libarchive recognizes ACL and extended attribute records written
|
|
by Solaris tar.
|
|
.El
|
|
.Pp
|
|
The first tar program appeared in Seventh Edition Unix in 1979.
|
|
The first official standard for the tar file format was the
|
|
.Dq ustar
|
|
(Unix Standard Tar) format defined by POSIX in 1988.
|
|
POSIX.1-2001 extended the ustar format to create the
|
|
.Dq pax interchange
|
|
format.
|
|
.Ss Cpio Formats
|
|
The libarchive library can read and write a number of common cpio
|
|
variants. A cpio archive stores each entry as a fixed-size header
|
|
followed by a variable-length filename and variable-length data.
|
|
Unlike the tar format, the cpio format does only minimal padding of
|
|
the header or file data. There are several cpio variants, which
|
|
differ primarily in how they store the initial header: some store the
|
|
values as octal or hexadecimal numbers in ASCII, others as binary
|
|
values of varying byte order and length.
|
|
.Bl -tag -width indent
|
|
.It Cm binary
|
|
The libarchive library transparently reads both big-endian and
|
|
little-endian variants of the the two binary cpio formats; the
|
|
original one from PWB/UNIX, and the later, more widely used, variant.
|
|
This format used 32-bit binary values for file size and mtime, and
|
|
16-bit binary values for the other fields. The formats support only
|
|
the file types present in UNIX at the time of their creation. File
|
|
sizes are limited to 24 bits in the PWB format, because of the limits
|
|
of the file system, and to 31 bits in the newer binary format, where
|
|
signed 32 bit longs were used.
|
|
.It Cm odc
|
|
This is the POSIX standardized format, which is officially known as the
|
|
.Dq cpio interchange format
|
|
or the
|
|
.Dq octet-oriented cpio archive format
|
|
and sometimes unofficially referred to as the
|
|
.Dq old character format .
|
|
This format stores the header contents as octal values in ASCII.
|
|
It is standard, portable, and immune from byte-order confusion.
|
|
File sizes and mtime are limited to 33 bits (8GB file size),
|
|
other fields are limited to 18 bits.
|
|
.It Cm SVR4/newc
|
|
The libarchive library can read both CRC and non-CRC variants of
|
|
this format.
|
|
The SVR4 format uses eight-digit hexadecimal values for
|
|
all header fields.
|
|
This limits file size to 4GB, and also limits the mtime and
|
|
other fields to 32 bits.
|
|
The SVR4 format can optionally include a CRC of the file
|
|
contents, although libarchive does not currently verify this CRC.
|
|
.El
|
|
.Pp
|
|
Cpio first appeared in PWB/UNIX 1.0, which was released within
|
|
AT&T in 1977.
|
|
PWB/UNIX 1.0 formed the basis of System III Unix, released outside
|
|
of AT&T in 1981.
|
|
This makes cpio older than tar, although cpio was not included
|
|
in Version 7 AT&T Unix.
|
|
As a result, the tar command became much better known in universities
|
|
and research groups that used Version 7.
|
|
The combination of the
|
|
.Nm find
|
|
and
|
|
.Nm cpio
|
|
utilities provided very precise control over file selection.
|
|
Unfortunately, the format has many limitations that make it unsuitable
|
|
for widespread use.
|
|
Only the POSIX format permits files over 4GB, and its 18-bit
|
|
limit for most other fields makes it unsuitable for modern systems.
|
|
In addition, cpio formats only store numeric UID/GID values (not
|
|
usernames and group names), which can make it very difficult to correctly
|
|
transfer archives across systems with dissimilar user numbering.
|
|
.Ss Shar Formats
|
|
A
|
|
.Dq shell archive
|
|
is a shell script that, when executed on a POSIX-compliant
|
|
system, will recreate a collection of file system objects.
|
|
The libarchive library can write two different kinds of shar archives:
|
|
.Bl -tag -width indent
|
|
.It Cm shar
|
|
The traditional shar format uses a limited set of POSIX
|
|
commands, including
|
|
.Xr echo 1 ,
|
|
.Xr mkdir 1 ,
|
|
and
|
|
.Xr sed 1 .
|
|
It is suitable for portably archiving small collections of plain text files.
|
|
However, it is not generally well-suited for large archives
|
|
(many implementations of
|
|
.Xr sh 1
|
|
have limits on the size of a script) nor should it be used with non-text files.
|
|
.It Cm shardump
|
|
This format is similar to shar but encodes files using
|
|
.Xr uuencode 1
|
|
so that the result will be a plain text file regardless of the file contents.
|
|
It also includes additional shell commands that attempt to reproduce as
|
|
many file attributes as possible, including owner, mode, and flags.
|
|
The additional commands used to restore file attributes make
|
|
shardump archives less portable than plain shar archives.
|
|
.El
|
|
.Ss ISO9660 format
|
|
Libarchive can read and extract from files containing ISO9660-compliant
|
|
CDROM images.
|
|
In many cases, this can remove the need to burn a physical CDROM
|
|
just in order to read the files contained in an ISO9660 image.
|
|
It also avoids security and complexity issues that come with
|
|
virtual mounts and loopback devices.
|
|
Libarchive supports the most common Rockridge extensions and has partial
|
|
support for Joliet extensions.
|
|
If both extensions are present, the Joliet extensions will be
|
|
used and the Rockridge extensions will be ignored.
|
|
In particular, this can create problems with hardlinks and symlinks,
|
|
which are supported by Rockridge but not by Joliet.
|
|
.Pp
|
|
Libarchive reads ISO9660 images using a streaming strategy.
|
|
This allows it to read compressed images directly
|
|
(decompressing on the fly) and allows it to read images
|
|
directly from network sockets, pipes, and other non-seekable
|
|
data sources.
|
|
This strategy works well for optimized ISO9660 images created
|
|
by many popular programs.
|
|
Such programs collect all directory information at the beginning
|
|
of the ISO9660 image so it can be read from a physical disk
|
|
with a minimum of seeking.
|
|
However, not all ISO9660 images can be read in this fashion.
|
|
.Pp
|
|
Libarchive can also write ISO9660 images.
|
|
Such images are fully optimized with the directory information
|
|
preceding all file data.
|
|
This is done by storing all file data to a temporary file
|
|
while collecting directory information in memory.
|
|
When the image is finished, libarchive writes out the
|
|
directory structure followed by the file data.
|
|
The location used for the temporary file can be changed
|
|
by the usual environment variables.
|
|
.Ss Zip format
|
|
Libarchive can read and write zip format archives that have
|
|
uncompressed entries and entries compressed with the
|
|
.Dq deflate
|
|
algorithm.
|
|
Other zip compression algorithms are not supported.
|
|
It can extract jar archives, archives that use Zip64 extensions and
|
|
self-extracting zip archives.
|
|
Libarchive can use either of two different strategies for
|
|
reading Zip archives:
|
|
a streaming strategy which is fast and can handle extremely
|
|
large archives, and a seeking strategy which can correctly
|
|
process self-extracting Zip archives and archives with
|
|
deleted members or other in-place modifications.
|
|
.Pp
|
|
The streaming reader processes Zip archives as they are read.
|
|
It can read archives of arbitrary size from tape or
|
|
network sockets, and can decode Zip archives that have
|
|
been separately compressed or encoded.
|
|
However, self-extracting Zip archives and archives with
|
|
certain types of modifications cannot be correctly
|
|
handled.
|
|
Such archives require that the reader first process the
|
|
Central Directory, which is ordinarily located
|
|
at the end of a Zip archive and is thus inaccessible
|
|
to the streaming reader.
|
|
If the program using libarchive has enabled seek support, then
|
|
libarchive will use this to processes the central directory first.
|
|
.Pp
|
|
In particular, the seeking reader must be used to
|
|
correctly handle self-extracting archives.
|
|
Such archives consist of a program followed by a regular
|
|
Zip archive.
|
|
The streaming reader cannot parse the initial program
|
|
portion, but the seeking reader starts by reading the
|
|
Central Directory from the end of the archive.
|
|
Similarly, Zip archives that have been modified in-place
|
|
can have deleted entries or other garbage data that
|
|
can only be accurately detected by first reading the
|
|
Central Directory.
|
|
.Ss Archive (library) file format
|
|
The Unix archive format (commonly created by the
|
|
.Xr ar 1
|
|
archiver) is a general-purpose format which is
|
|
used almost exclusively for object files to be
|
|
read by the link editor
|
|
.Xr ld 1 .
|
|
The ar format has never been standardised.
|
|
There are two common variants:
|
|
the GNU format derived from SVR4,
|
|
and the BSD format, which first appeared in 4.4BSD.
|
|
The two differ primarily in their handling of filenames
|
|
longer than 15 characters:
|
|
the GNU/SVR4 variant writes a filename table at the beginning of the archive;
|
|
the BSD format stores each long filename in an extension
|
|
area adjacent to the entry.
|
|
Libarchive can read both extensions,
|
|
including archives that may include both types of long filenames.
|
|
Programs using libarchive can write GNU/SVR4 format
|
|
if they provide an entry called
|
|
.Pa //
|
|
containing a filename table to be written into the archive
|
|
before any of the entries.
|
|
Any entries whose names are not in the filename table
|
|
will be written using BSD-style long filenames.
|
|
This can cause problems for programs such as
|
|
GNU ld that do not support the BSD-style long filenames.
|
|
.Ss mtree
|
|
Libarchive can read and write files in
|
|
.Xr mtree 5
|
|
format.
|
|
This format is not a true archive format, but rather a textual description
|
|
of a file hierarchy in which each line specifies the name of a file and
|
|
provides specific metadata about that file.
|
|
Libarchive can read all of the keywords supported by both
|
|
the NetBSD and FreeBSD versions of
|
|
.Xr mtree 8 ,
|
|
although many of the keywords cannot currently be stored in an
|
|
.Tn archive_entry
|
|
object.
|
|
When writing, libarchive supports use of the
|
|
.Xr archive_write_set_options 3
|
|
interface to specify which keywords should be included in the
|
|
output.
|
|
If libarchive was compiled with access to suitable
|
|
cryptographic libraries (such as the OpenSSL libraries),
|
|
it can compute hash entries such as
|
|
.Cm sha512
|
|
or
|
|
.Cm md5
|
|
from file data being written to the mtree writer.
|
|
.Pp
|
|
When reading an mtree file, libarchive will locate the corresponding
|
|
files on disk using the
|
|
.Cm contents
|
|
keyword if present or the regular filename.
|
|
If it can locate and open the file on disk, it will use that
|
|
to fill in any metadata that is missing from the mtree file
|
|
and will read the file contents and return those to the program
|
|
using libarchive.
|
|
If it cannot locate and open the file on disk, libarchive
|
|
will return an error for any attempt to read the entry
|
|
body.
|
|
.Ss 7-Zip
|
|
Libarchive can read and write 7-Zip format archives.
|
|
TODO: Need more information
|
|
.Ss CAB
|
|
Libarchive can read Microsoft Cabinet (
|
|
.Dq CAB )
|
|
format archives.
|
|
TODO: Need more information.
|
|
.Ss LHA
|
|
TODO: Information about libarchive's LHA support
|
|
.Ss RAR
|
|
Libarchive has limited support for reading RAR format archives.
|
|
Currently, libarchive can read RARv3 format archives
|
|
which have been either created uncompressed, or compressed using
|
|
any of the compression methods supported by the RARv3 format.
|
|
Libarchive can also read self-extracting RAR archives.
|
|
.Ss Warc
|
|
Libarchive can read and write
|
|
.Dq web archives .
|
|
TODO: Need more information
|
|
.Ss XAR
|
|
Libarchive can read and write the XAR format used by many Apple tools.
|
|
TODO: Need more information
|
|
.Sh SEE ALSO
|
|
.Xr ar 1 ,
|
|
.Xr cpio 1 ,
|
|
.Xr mkisofs 1 ,
|
|
.Xr shar 1 ,
|
|
.Xr tar 1 ,
|
|
.Xr zip 1 ,
|
|
.Xr zlib 3 ,
|
|
.Xr cpio 5 ,
|
|
.Xr mtree 5 ,
|
|
.Xr tar 5
|