1135 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1135 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) Yann Collet, Facebook, Inc.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This source code is licensed under both the BSD-style license (found in the
 | |
|  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 | |
|  * in the COPYING file in the root directory of this source tree).
 | |
|  * You may select, at your option, one of the above-listed licenses.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*-**************************************
 | |
| *  Tuning parameters
 | |
| ****************************************/
 | |
| #define MINRATIO 4   /* minimum nb of apparition to be selected in dictionary */
 | |
| #define ZDICT_MAX_SAMPLES_SIZE (2000U << 20)
 | |
| #define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO)
 | |
| 
 | |
| 
 | |
| /*-**************************************
 | |
| *  Compiler Options
 | |
| ****************************************/
 | |
| /* Unix Large Files support (>4GB) */
 | |
| #define _FILE_OFFSET_BITS 64
 | |
| #if (defined(__sun__) && (!defined(__LP64__)))   /* Sun Solaris 32-bits requires specific definitions */
 | |
| #  ifndef _LARGEFILE_SOURCE
 | |
| #  define _LARGEFILE_SOURCE
 | |
| #  endif
 | |
| #elif ! defined(__LP64__)                        /* No point defining Large file for 64 bit */
 | |
| #  ifndef _LARGEFILE64_SOURCE
 | |
| #  define _LARGEFILE64_SOURCE
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*-*************************************
 | |
| *  Dependencies
 | |
| ***************************************/
 | |
| #include <stdlib.h>        /* malloc, free */
 | |
| #include <string.h>        /* memset */
 | |
| #include <stdio.h>         /* fprintf, fopen, ftello64 */
 | |
| #include <time.h>          /* clock */
 | |
| 
 | |
| #ifndef ZDICT_STATIC_LINKING_ONLY
 | |
| #  define ZDICT_STATIC_LINKING_ONLY
 | |
| #endif
 | |
| #define HUF_STATIC_LINKING_ONLY
 | |
| 
 | |
| #include "../common/mem.h"           /* read */
 | |
| #include "../common/fse.h"           /* FSE_normalizeCount, FSE_writeNCount */
 | |
| #include "../common/huf.h"           /* HUF_buildCTable, HUF_writeCTable */
 | |
| #include "../common/zstd_internal.h" /* includes zstd.h */
 | |
| #include "../common/xxhash.h"        /* XXH64 */
 | |
| #include "../compress/zstd_compress_internal.h" /* ZSTD_loadCEntropy() */
 | |
| #include "../zdict.h"
 | |
| #include "divsufsort.h"
 | |
| 
 | |
| 
 | |
| /*-*************************************
 | |
| *  Constants
 | |
| ***************************************/
 | |
| #define KB *(1 <<10)
 | |
| #define MB *(1 <<20)
 | |
| #define GB *(1U<<30)
 | |
| 
 | |
| #define DICTLISTSIZE_DEFAULT 10000
 | |
| 
 | |
| #define NOISELENGTH 32
 | |
| 
 | |
| static const U32 g_selectivity_default = 9;
 | |
| 
 | |
| 
 | |
| /*-*************************************
 | |
| *  Console display
 | |
| ***************************************/
 | |
| #undef  DISPLAY
 | |
| #define DISPLAY(...)         { fprintf(stderr, __VA_ARGS__); fflush( stderr ); }
 | |
| #undef  DISPLAYLEVEL
 | |
| #define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); }    /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
 | |
| 
 | |
| static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; }
 | |
| 
 | |
| static void ZDICT_printHex(const void* ptr, size_t length)
 | |
| {
 | |
|     const BYTE* const b = (const BYTE*)ptr;
 | |
|     size_t u;
 | |
|     for (u=0; u<length; u++) {
 | |
|         BYTE c = b[u];
 | |
|         if (c<32 || c>126) c = '.';   /* non-printable char */
 | |
|         DISPLAY("%c", c);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*-********************************************************
 | |
| *  Helper functions
 | |
| **********************************************************/
 | |
| unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); }
 | |
| 
 | |
| const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
 | |
| 
 | |
| unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize)
 | |
| {
 | |
|     if (dictSize < 8) return 0;
 | |
|     if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0;
 | |
|     return MEM_readLE32((const char*)dictBuffer + 4);
 | |
| }
 | |
| 
 | |
| size_t ZDICT_getDictHeaderSize(const void* dictBuffer, size_t dictSize)
 | |
| {
 | |
|     size_t headerSize;
 | |
|     if (dictSize <= 8 || MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return ERROR(dictionary_corrupted);
 | |
| 
 | |
|     {   ZSTD_compressedBlockState_t* bs = (ZSTD_compressedBlockState_t*)malloc(sizeof(ZSTD_compressedBlockState_t));
 | |
|         U32* wksp = (U32*)malloc(HUF_WORKSPACE_SIZE);
 | |
|         if (!bs || !wksp) {
 | |
|             headerSize = ERROR(memory_allocation);
 | |
|         } else {
 | |
|             ZSTD_reset_compressedBlockState(bs);
 | |
|             headerSize = ZSTD_loadCEntropy(bs, wksp, dictBuffer, dictSize);
 | |
|         }
 | |
| 
 | |
|         free(bs);
 | |
|         free(wksp);
 | |
|     }
 | |
| 
 | |
|     return headerSize;
 | |
| }
 | |
| 
 | |
| /*-********************************************************
 | |
| *  Dictionary training functions
 | |
| **********************************************************/
 | |
| static unsigned ZDICT_NbCommonBytes (size_t val)
 | |
| {
 | |
|     if (MEM_isLittleEndian()) {
 | |
|         if (MEM_64bits()) {
 | |
| #       if defined(_MSC_VER) && defined(_WIN64)
 | |
|             unsigned long r = 0;
 | |
|             _BitScanForward64( &r, (U64)val );
 | |
|             return (unsigned)(r>>3);
 | |
| #       elif defined(__GNUC__) && (__GNUC__ >= 3)
 | |
|             return (__builtin_ctzll((U64)val) >> 3);
 | |
| #       else
 | |
|             static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
 | |
|             return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
 | |
| #       endif
 | |
|         } else { /* 32 bits */
 | |
| #       if defined(_MSC_VER)
 | |
|             unsigned long r=0;
 | |
|             _BitScanForward( &r, (U32)val );
 | |
|             return (unsigned)(r>>3);
 | |
| #       elif defined(__GNUC__) && (__GNUC__ >= 3)
 | |
|             return (__builtin_ctz((U32)val) >> 3);
 | |
| #       else
 | |
|             static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
 | |
|             return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
 | |
| #       endif
 | |
|         }
 | |
|     } else {  /* Big Endian CPU */
 | |
|         if (MEM_64bits()) {
 | |
| #       if defined(_MSC_VER) && defined(_WIN64)
 | |
|             unsigned long r = 0;
 | |
|             _BitScanReverse64( &r, val );
 | |
|             return (unsigned)(r>>3);
 | |
| #       elif defined(__GNUC__) && (__GNUC__ >= 3)
 | |
|             return (__builtin_clzll(val) >> 3);
 | |
| #       else
 | |
|             unsigned r;
 | |
|             const unsigned n32 = sizeof(size_t)*4;   /* calculate this way due to compiler complaining in 32-bits mode */
 | |
|             if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
 | |
|             if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
 | |
|             r += (!val);
 | |
|             return r;
 | |
| #       endif
 | |
|         } else { /* 32 bits */
 | |
| #       if defined(_MSC_VER)
 | |
|             unsigned long r = 0;
 | |
|             _BitScanReverse( &r, (unsigned long)val );
 | |
|             return (unsigned)(r>>3);
 | |
| #       elif defined(__GNUC__) && (__GNUC__ >= 3)
 | |
|             return (__builtin_clz((U32)val) >> 3);
 | |
| #       else
 | |
|             unsigned r;
 | |
|             if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
 | |
|             r += (!val);
 | |
|             return r;
 | |
| #       endif
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*! ZDICT_count() :
 | |
|     Count the nb of common bytes between 2 pointers.
 | |
|     Note : this function presumes end of buffer followed by noisy guard band.
 | |
| */
 | |
| static size_t ZDICT_count(const void* pIn, const void* pMatch)
 | |
| {
 | |
|     const char* const pStart = (const char*)pIn;
 | |
|     for (;;) {
 | |
|         size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
 | |
|         if (!diff) {
 | |
|             pIn = (const char*)pIn+sizeof(size_t);
 | |
|             pMatch = (const char*)pMatch+sizeof(size_t);
 | |
|             continue;
 | |
|         }
 | |
|         pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff);
 | |
|         return (size_t)((const char*)pIn - pStart);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| typedef struct {
 | |
|     U32 pos;
 | |
|     U32 length;
 | |
|     U32 savings;
 | |
| } dictItem;
 | |
| 
 | |
| static void ZDICT_initDictItem(dictItem* d)
 | |
| {
 | |
|     d->pos = 1;
 | |
|     d->length = 0;
 | |
|     d->savings = (U32)(-1);
 | |
| }
 | |
| 
 | |
| 
 | |
| #define LLIMIT 64          /* heuristic determined experimentally */
 | |
| #define MINMATCHLENGTH 7   /* heuristic determined experimentally */
 | |
| static dictItem ZDICT_analyzePos(
 | |
|                        BYTE* doneMarks,
 | |
|                        const int* suffix, U32 start,
 | |
|                        const void* buffer, U32 minRatio, U32 notificationLevel)
 | |
| {
 | |
|     U32 lengthList[LLIMIT] = {0};
 | |
|     U32 cumulLength[LLIMIT] = {0};
 | |
|     U32 savings[LLIMIT] = {0};
 | |
|     const BYTE* b = (const BYTE*)buffer;
 | |
|     size_t maxLength = LLIMIT;
 | |
|     size_t pos = suffix[start];
 | |
|     U32 end = start;
 | |
|     dictItem solution;
 | |
| 
 | |
|     /* init */
 | |
|     memset(&solution, 0, sizeof(solution));
 | |
|     doneMarks[pos] = 1;
 | |
| 
 | |
|     /* trivial repetition cases */
 | |
|     if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
 | |
|        ||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
 | |
|        ||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
 | |
|         /* skip and mark segment */
 | |
|         U16 const pattern16 = MEM_read16(b+pos+4);
 | |
|         U32 u, patternEnd = 6;
 | |
|         while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ;
 | |
|         if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++;
 | |
|         for (u=1; u<patternEnd; u++)
 | |
|             doneMarks[pos+u] = 1;
 | |
|         return solution;
 | |
|     }
 | |
| 
 | |
|     /* look forward */
 | |
|     {   size_t length;
 | |
|         do {
 | |
|             end++;
 | |
|             length = ZDICT_count(b + pos, b + suffix[end]);
 | |
|         } while (length >= MINMATCHLENGTH);
 | |
|     }
 | |
| 
 | |
|     /* look backward */
 | |
|     {   size_t length;
 | |
|         do {
 | |
|             length = ZDICT_count(b + pos, b + *(suffix+start-1));
 | |
|             if (length >=MINMATCHLENGTH) start--;
 | |
|         } while(length >= MINMATCHLENGTH);
 | |
|     }
 | |
| 
 | |
|     /* exit if not found a minimum nb of repetitions */
 | |
|     if (end-start < minRatio) {
 | |
|         U32 idx;
 | |
|         for(idx=start; idx<end; idx++)
 | |
|             doneMarks[suffix[idx]] = 1;
 | |
|         return solution;
 | |
|     }
 | |
| 
 | |
|     {   int i;
 | |
|         U32 mml;
 | |
|         U32 refinedStart = start;
 | |
|         U32 refinedEnd = end;
 | |
| 
 | |
|         DISPLAYLEVEL(4, "\n");
 | |
|         DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u  ", (unsigned)(end-start), MINMATCHLENGTH, (unsigned)pos);
 | |
|         DISPLAYLEVEL(4, "\n");
 | |
| 
 | |
|         for (mml = MINMATCHLENGTH ; ; mml++) {
 | |
|             BYTE currentChar = 0;
 | |
|             U32 currentCount = 0;
 | |
|             U32 currentID = refinedStart;
 | |
|             U32 id;
 | |
|             U32 selectedCount = 0;
 | |
|             U32 selectedID = currentID;
 | |
|             for (id =refinedStart; id < refinedEnd; id++) {
 | |
|                 if (b[suffix[id] + mml] != currentChar) {
 | |
|                     if (currentCount > selectedCount) {
 | |
|                         selectedCount = currentCount;
 | |
|                         selectedID = currentID;
 | |
|                     }
 | |
|                     currentID = id;
 | |
|                     currentChar = b[ suffix[id] + mml];
 | |
|                     currentCount = 0;
 | |
|                 }
 | |
|                 currentCount ++;
 | |
|             }
 | |
|             if (currentCount > selectedCount) {  /* for last */
 | |
|                 selectedCount = currentCount;
 | |
|                 selectedID = currentID;
 | |
|             }
 | |
| 
 | |
|             if (selectedCount < minRatio)
 | |
|                 break;
 | |
|             refinedStart = selectedID;
 | |
|             refinedEnd = refinedStart + selectedCount;
 | |
|         }
 | |
| 
 | |
|         /* evaluate gain based on new dict */
 | |
|         start = refinedStart;
 | |
|         pos = suffix[refinedStart];
 | |
|         end = start;
 | |
|         memset(lengthList, 0, sizeof(lengthList));
 | |
| 
 | |
|         /* look forward */
 | |
|         {   size_t length;
 | |
|             do {
 | |
|                 end++;
 | |
|                 length = ZDICT_count(b + pos, b + suffix[end]);
 | |
|                 if (length >= LLIMIT) length = LLIMIT-1;
 | |
|                 lengthList[length]++;
 | |
|             } while (length >=MINMATCHLENGTH);
 | |
|         }
 | |
| 
 | |
|         /* look backward */
 | |
|         {   size_t length = MINMATCHLENGTH;
 | |
|             while ((length >= MINMATCHLENGTH) & (start > 0)) {
 | |
|                 length = ZDICT_count(b + pos, b + suffix[start - 1]);
 | |
|                 if (length >= LLIMIT) length = LLIMIT - 1;
 | |
|                 lengthList[length]++;
 | |
|                 if (length >= MINMATCHLENGTH) start--;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* largest useful length */
 | |
|         memset(cumulLength, 0, sizeof(cumulLength));
 | |
|         cumulLength[maxLength-1] = lengthList[maxLength-1];
 | |
|         for (i=(int)(maxLength-2); i>=0; i--)
 | |
|             cumulLength[i] = cumulLength[i+1] + lengthList[i];
 | |
| 
 | |
|         for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
 | |
|         maxLength = i;
 | |
| 
 | |
|         /* reduce maxLength in case of final into repetitive data */
 | |
|         {   U32 l = (U32)maxLength;
 | |
|             BYTE const c = b[pos + maxLength-1];
 | |
|             while (b[pos+l-2]==c) l--;
 | |
|             maxLength = l;
 | |
|         }
 | |
|         if (maxLength < MINMATCHLENGTH) return solution;   /* skip : no long-enough solution */
 | |
| 
 | |
|         /* calculate savings */
 | |
|         savings[5] = 0;
 | |
|         for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
 | |
|             savings[i] = savings[i-1] + (lengthList[i] * (i-3));
 | |
| 
 | |
|         DISPLAYLEVEL(4, "Selected dict at position %u, of length %u : saves %u (ratio: %.2f)  \n",
 | |
|                      (unsigned)pos, (unsigned)maxLength, (unsigned)savings[maxLength], (double)savings[maxLength] / maxLength);
 | |
| 
 | |
|         solution.pos = (U32)pos;
 | |
|         solution.length = (U32)maxLength;
 | |
|         solution.savings = savings[maxLength];
 | |
| 
 | |
|         /* mark positions done */
 | |
|         {   U32 id;
 | |
|             for (id=start; id<end; id++) {
 | |
|                 U32 p, pEnd, length;
 | |
|                 U32 const testedPos = suffix[id];
 | |
|                 if (testedPos == pos)
 | |
|                     length = solution.length;
 | |
|                 else {
 | |
|                     length = (U32)ZDICT_count(b+pos, b+testedPos);
 | |
|                     if (length > solution.length) length = solution.length;
 | |
|                 }
 | |
|                 pEnd = (U32)(testedPos + length);
 | |
|                 for (p=testedPos; p<pEnd; p++)
 | |
|                     doneMarks[p] = 1;
 | |
|     }   }   }
 | |
| 
 | |
|     return solution;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int isIncluded(const void* in, const void* container, size_t length)
 | |
| {
 | |
|     const char* const ip = (const char*) in;
 | |
|     const char* const into = (const char*) container;
 | |
|     size_t u;
 | |
| 
 | |
|     for (u=0; u<length; u++) {  /* works because end of buffer is a noisy guard band */
 | |
|         if (ip[u] != into[u]) break;
 | |
|     }
 | |
| 
 | |
|     return u==length;
 | |
| }
 | |
| 
 | |
| /*! ZDICT_tryMerge() :
 | |
|     check if dictItem can be merged, do it if possible
 | |
|     @return : id of destination elt, 0 if not merged
 | |
| */
 | |
| static U32 ZDICT_tryMerge(dictItem* table, dictItem elt, U32 eltNbToSkip, const void* buffer)
 | |
| {
 | |
|     const U32 tableSize = table->pos;
 | |
|     const U32 eltEnd = elt.pos + elt.length;
 | |
|     const char* const buf = (const char*) buffer;
 | |
| 
 | |
|     /* tail overlap */
 | |
|     U32 u; for (u=1; u<tableSize; u++) {
 | |
|         if (u==eltNbToSkip) continue;
 | |
|         if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) {  /* overlap, existing > new */
 | |
|             /* append */
 | |
|             U32 const addedLength = table[u].pos - elt.pos;
 | |
|             table[u].length += addedLength;
 | |
|             table[u].pos = elt.pos;
 | |
|             table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
 | |
|             table[u].savings += elt.length / 8;    /* rough approx bonus */
 | |
|             elt = table[u];
 | |
|             /* sort : improve rank */
 | |
|             while ((u>1) && (table[u-1].savings < elt.savings))
 | |
|             table[u] = table[u-1], u--;
 | |
|             table[u] = elt;
 | |
|             return u;
 | |
|     }   }
 | |
| 
 | |
|     /* front overlap */
 | |
|     for (u=1; u<tableSize; u++) {
 | |
|         if (u==eltNbToSkip) continue;
 | |
| 
 | |
|         if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) {  /* overlap, existing < new */
 | |
|             /* append */
 | |
|             int const addedLength = (int)eltEnd - (table[u].pos + table[u].length);
 | |
|             table[u].savings += elt.length / 8;    /* rough approx bonus */
 | |
|             if (addedLength > 0) {   /* otherwise, elt fully included into existing */
 | |
|                 table[u].length += addedLength;
 | |
|                 table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
 | |
|             }
 | |
|             /* sort : improve rank */
 | |
|             elt = table[u];
 | |
|             while ((u>1) && (table[u-1].savings < elt.savings))
 | |
|                 table[u] = table[u-1], u--;
 | |
|             table[u] = elt;
 | |
|             return u;
 | |
|         }
 | |
| 
 | |
|         if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) {
 | |
|             if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) {
 | |
|                 size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 );
 | |
|                 table[u].pos = elt.pos;
 | |
|                 table[u].savings += (U32)(elt.savings * addedLength / elt.length);
 | |
|                 table[u].length = MIN(elt.length, table[u].length + 1);
 | |
|                 return u;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ZDICT_removeDictItem(dictItem* table, U32 id)
 | |
| {
 | |
|     /* convention : table[0].pos stores nb of elts */
 | |
|     U32 const max = table[0].pos;
 | |
|     U32 u;
 | |
|     if (!id) return;   /* protection, should never happen */
 | |
|     for (u=id; u<max-1; u++)
 | |
|         table[u] = table[u+1];
 | |
|     table->pos--;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer)
 | |
| {
 | |
|     /* merge if possible */
 | |
|     U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer);
 | |
|     if (mergeId) {
 | |
|         U32 newMerge = 1;
 | |
|         while (newMerge) {
 | |
|             newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer);
 | |
|             if (newMerge) ZDICT_removeDictItem(table, mergeId);
 | |
|             mergeId = newMerge;
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* insert */
 | |
|     {   U32 current;
 | |
|         U32 nextElt = table->pos;
 | |
|         if (nextElt >= maxSize) nextElt = maxSize-1;
 | |
|         current = nextElt-1;
 | |
|         while (table[current].savings < elt.savings) {
 | |
|             table[current+1] = table[current];
 | |
|             current--;
 | |
|         }
 | |
|         table[current+1] = elt;
 | |
|         table->pos = nextElt+1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static U32 ZDICT_dictSize(const dictItem* dictList)
 | |
| {
 | |
|     U32 u, dictSize = 0;
 | |
|     for (u=1; u<dictList[0].pos; u++)
 | |
|         dictSize += dictList[u].length;
 | |
|     return dictSize;
 | |
| }
 | |
| 
 | |
| 
 | |
| static size_t ZDICT_trainBuffer_legacy(dictItem* dictList, U32 dictListSize,
 | |
|                             const void* const buffer, size_t bufferSize,   /* buffer must end with noisy guard band */
 | |
|                             const size_t* fileSizes, unsigned nbFiles,
 | |
|                             unsigned minRatio, U32 notificationLevel)
 | |
| {
 | |
|     int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0));
 | |
|     int* const suffix = suffix0+1;
 | |
|     U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
 | |
|     BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks));   /* +16 for overflow security */
 | |
|     U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
 | |
|     size_t result = 0;
 | |
|     clock_t displayClock = 0;
 | |
|     clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10;
 | |
| 
 | |
| #   undef  DISPLAYUPDATE
 | |
| #   define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \
 | |
|             if (ZDICT_clockSpan(displayClock) > refreshRate)  \
 | |
|             { displayClock = clock(); DISPLAY(__VA_ARGS__); \
 | |
|             if (notificationLevel>=4) fflush(stderr); } }
 | |
| 
 | |
|     /* init */
 | |
|     DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
 | |
|     if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) {
 | |
|         result = ERROR(memory_allocation);
 | |
|         goto _cleanup;
 | |
|     }
 | |
|     if (minRatio < MINRATIO) minRatio = MINRATIO;
 | |
|     memset(doneMarks, 0, bufferSize+16);
 | |
| 
 | |
|     /* limit sample set size (divsufsort limitation)*/
 | |
|     if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (unsigned)(ZDICT_MAX_SAMPLES_SIZE>>20));
 | |
|     while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles];
 | |
| 
 | |
|     /* sort */
 | |
|     DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (unsigned)(bufferSize>>20));
 | |
|     {   int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0);
 | |
|         if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; }
 | |
|     }
 | |
|     suffix[bufferSize] = (int)bufferSize;   /* leads into noise */
 | |
|     suffix0[0] = (int)bufferSize;           /* leads into noise */
 | |
|     /* build reverse suffix sort */
 | |
|     {   size_t pos;
 | |
|         for (pos=0; pos < bufferSize; pos++)
 | |
|             reverseSuffix[suffix[pos]] = (U32)pos;
 | |
|         /* note filePos tracks borders between samples.
 | |
|            It's not used at this stage, but planned to become useful in a later update */
 | |
|         filePos[0] = 0;
 | |
|         for (pos=1; pos<nbFiles; pos++)
 | |
|             filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
 | |
|     }
 | |
| 
 | |
|     DISPLAYLEVEL(2, "finding patterns ... \n");
 | |
|     DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);
 | |
| 
 | |
|     {   U32 cursor; for (cursor=0; cursor < bufferSize; ) {
 | |
|             dictItem solution;
 | |
|             if (doneMarks[cursor]) { cursor++; continue; }
 | |
|             solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel);
 | |
|             if (solution.length==0) { cursor++; continue; }
 | |
|             ZDICT_insertDictItem(dictList, dictListSize, solution, buffer);
 | |
|             cursor += solution.length;
 | |
|             DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100);
 | |
|     }   }
 | |
| 
 | |
| _cleanup:
 | |
|     free(suffix0);
 | |
|     free(reverseSuffix);
 | |
|     free(doneMarks);
 | |
|     free(filePos);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ZDICT_fillNoise(void* buffer, size_t length)
 | |
| {
 | |
|     unsigned const prime1 = 2654435761U;
 | |
|     unsigned const prime2 = 2246822519U;
 | |
|     unsigned acc = prime1;
 | |
|     size_t p=0;
 | |
|     for (p=0; p<length; p++) {
 | |
|         acc *= prime2;
 | |
|         ((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|     ZSTD_CDict* dict;    /* dictionary */
 | |
|     ZSTD_CCtx* zc;     /* working context */
 | |
|     void* workPlace;   /* must be ZSTD_BLOCKSIZE_MAX allocated */
 | |
| } EStats_ress_t;
 | |
| 
 | |
| #define MAXREPOFFSET 1024
 | |
| 
 | |
| static void ZDICT_countEStats(EStats_ress_t esr, const ZSTD_parameters* params,
 | |
|                               unsigned* countLit, unsigned* offsetcodeCount, unsigned* matchlengthCount, unsigned* litlengthCount, U32* repOffsets,
 | |
|                               const void* src, size_t srcSize,
 | |
|                               U32 notificationLevel)
 | |
| {
 | |
|     size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params->cParams.windowLog);
 | |
|     size_t cSize;
 | |
| 
 | |
|     if (srcSize > blockSizeMax) srcSize = blockSizeMax;   /* protection vs large samples */
 | |
|     {   size_t const errorCode = ZSTD_compressBegin_usingCDict(esr.zc, esr.dict);
 | |
|         if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_compressBegin_usingCDict failed \n"); return; }
 | |
| 
 | |
|     }
 | |
|     cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize);
 | |
|     if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (unsigned)srcSize); return; }
 | |
| 
 | |
|     if (cSize) {  /* if == 0; block is not compressible */
 | |
|         const seqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc);
 | |
| 
 | |
|         /* literals stats */
 | |
|         {   const BYTE* bytePtr;
 | |
|             for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++)
 | |
|                 countLit[*bytePtr]++;
 | |
|         }
 | |
| 
 | |
|         /* seqStats */
 | |
|         {   U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
 | |
|             ZSTD_seqToCodes(seqStorePtr);
 | |
| 
 | |
|             {   const BYTE* codePtr = seqStorePtr->ofCode;
 | |
|                 U32 u;
 | |
|                 for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++;
 | |
|             }
 | |
| 
 | |
|             {   const BYTE* codePtr = seqStorePtr->mlCode;
 | |
|                 U32 u;
 | |
|                 for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++;
 | |
|             }
 | |
| 
 | |
|             {   const BYTE* codePtr = seqStorePtr->llCode;
 | |
|                 U32 u;
 | |
|                 for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++;
 | |
|             }
 | |
| 
 | |
|             if (nbSeq >= 2) { /* rep offsets */
 | |
|                 const seqDef* const seq = seqStorePtr->sequencesStart;
 | |
|                 U32 offset1 = seq[0].offset - 3;
 | |
|                 U32 offset2 = seq[1].offset - 3;
 | |
|                 if (offset1 >= MAXREPOFFSET) offset1 = 0;
 | |
|                 if (offset2 >= MAXREPOFFSET) offset2 = 0;
 | |
|                 repOffsets[offset1] += 3;
 | |
|                 repOffsets[offset2] += 1;
 | |
|     }   }   }
 | |
| }
 | |
| 
 | |
| static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles)
 | |
| {
 | |
|     size_t total=0;
 | |
|     unsigned u;
 | |
|     for (u=0; u<nbFiles; u++) total += fileSizes[u];
 | |
|     return total;
 | |
| }
 | |
| 
 | |
| typedef struct { U32 offset; U32 count; } offsetCount_t;
 | |
| 
 | |
| static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count)
 | |
| {
 | |
|     U32 u;
 | |
|     table[ZSTD_REP_NUM].offset = val;
 | |
|     table[ZSTD_REP_NUM].count = count;
 | |
|     for (u=ZSTD_REP_NUM; u>0; u--) {
 | |
|         offsetCount_t tmp;
 | |
|         if (table[u-1].count >= table[u].count) break;
 | |
|         tmp = table[u-1];
 | |
|         table[u-1] = table[u];
 | |
|         table[u] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ZDICT_flatLit() :
 | |
|  * rewrite `countLit` to contain a mostly flat but still compressible distribution of literals.
 | |
|  * necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode.
 | |
|  */
 | |
| static void ZDICT_flatLit(unsigned* countLit)
 | |
| {
 | |
|     int u;
 | |
|     for (u=1; u<256; u++) countLit[u] = 2;
 | |
|     countLit[0]   = 4;
 | |
|     countLit[253] = 1;
 | |
|     countLit[254] = 1;
 | |
| }
 | |
| 
 | |
| #define OFFCODE_MAX 30  /* only applicable to first block */
 | |
| static size_t ZDICT_analyzeEntropy(void*  dstBuffer, size_t maxDstSize,
 | |
|                                    int compressionLevel,
 | |
|                              const void*  srcBuffer, const size_t* fileSizes, unsigned nbFiles,
 | |
|                              const void* dictBuffer, size_t  dictBufferSize,
 | |
|                                    unsigned notificationLevel)
 | |
| {
 | |
|     unsigned countLit[256];
 | |
|     HUF_CREATE_STATIC_CTABLE(hufTable, 255);
 | |
|     unsigned offcodeCount[OFFCODE_MAX+1];
 | |
|     short offcodeNCount[OFFCODE_MAX+1];
 | |
|     U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB));
 | |
|     unsigned matchLengthCount[MaxML+1];
 | |
|     short matchLengthNCount[MaxML+1];
 | |
|     unsigned litLengthCount[MaxLL+1];
 | |
|     short litLengthNCount[MaxLL+1];
 | |
|     U32 repOffset[MAXREPOFFSET];
 | |
|     offsetCount_t bestRepOffset[ZSTD_REP_NUM+1];
 | |
|     EStats_ress_t esr = { NULL, NULL, NULL };
 | |
|     ZSTD_parameters params;
 | |
|     U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
 | |
|     size_t pos = 0, errorCode;
 | |
|     size_t eSize = 0;
 | |
|     size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles);
 | |
|     size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles);
 | |
|     BYTE* dstPtr = (BYTE*)dstBuffer;
 | |
| 
 | |
|     /* init */
 | |
|     DEBUGLOG(4, "ZDICT_analyzeEntropy");
 | |
|     if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; }   /* too large dictionary */
 | |
|     for (u=0; u<256; u++) countLit[u] = 1;   /* any character must be described */
 | |
|     for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1;
 | |
|     for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1;
 | |
|     for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1;
 | |
|     memset(repOffset, 0, sizeof(repOffset));
 | |
|     repOffset[1] = repOffset[4] = repOffset[8] = 1;
 | |
|     memset(bestRepOffset, 0, sizeof(bestRepOffset));
 | |
|     if (compressionLevel==0) compressionLevel = ZSTD_CLEVEL_DEFAULT;
 | |
|     params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize);
 | |
| 
 | |
|     esr.dict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, ZSTD_dlm_byRef, ZSTD_dct_rawContent, params.cParams, ZSTD_defaultCMem);
 | |
|     esr.zc = ZSTD_createCCtx();
 | |
|     esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX);
 | |
|     if (!esr.dict || !esr.zc || !esr.workPlace) {
 | |
|         eSize = ERROR(memory_allocation);
 | |
|         DISPLAYLEVEL(1, "Not enough memory \n");
 | |
|         goto _cleanup;
 | |
|     }
 | |
| 
 | |
|     /* collect stats on all samples */
 | |
|     for (u=0; u<nbFiles; u++) {
 | |
|         ZDICT_countEStats(esr, ¶ms,
 | |
|                           countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset,
 | |
|                          (const char*)srcBuffer + pos, fileSizes[u],
 | |
|                           notificationLevel);
 | |
|         pos += fileSizes[u];
 | |
|     }
 | |
| 
 | |
|     /* analyze, build stats, starting with literals */
 | |
|     {   size_t maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
 | |
|         if (HUF_isError(maxNbBits)) {
 | |
|             eSize = maxNbBits;
 | |
|             DISPLAYLEVEL(1, " HUF_buildCTable error \n");
 | |
|             goto _cleanup;
 | |
|         }
 | |
|         if (maxNbBits==8) {  /* not compressible : will fail on HUF_writeCTable() */
 | |
|             DISPLAYLEVEL(2, "warning : pathological dataset : literals are not compressible : samples are noisy or too regular \n");
 | |
|             ZDICT_flatLit(countLit);  /* replace distribution by a fake "mostly flat but still compressible" distribution, that HUF_writeCTable() can encode */
 | |
|             maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
 | |
|             assert(maxNbBits==9);
 | |
|         }
 | |
|         huffLog = (U32)maxNbBits;
 | |
|     }
 | |
| 
 | |
|     /* looking for most common first offsets */
 | |
|     {   U32 offset;
 | |
|         for (offset=1; offset<MAXREPOFFSET; offset++)
 | |
|             ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]);
 | |
|     }
 | |
|     /* note : the result of this phase should be used to better appreciate the impact on statistics */
 | |
| 
 | |
|     total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u];
 | |
|     errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax, /* useLowProbCount */ 1);
 | |
|     if (FSE_isError(errorCode)) {
 | |
|         eSize = errorCode;
 | |
|         DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n");
 | |
|         goto _cleanup;
 | |
|     }
 | |
|     Offlog = (U32)errorCode;
 | |
| 
 | |
|     total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
 | |
|     errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML, /* useLowProbCount */ 1);
 | |
|     if (FSE_isError(errorCode)) {
 | |
|         eSize = errorCode;
 | |
|         DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n");
 | |
|         goto _cleanup;
 | |
|     }
 | |
|     mlLog = (U32)errorCode;
 | |
| 
 | |
|     total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u];
 | |
|     errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL, /* useLowProbCount */ 1);
 | |
|     if (FSE_isError(errorCode)) {
 | |
|         eSize = errorCode;
 | |
|         DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n");
 | |
|         goto _cleanup;
 | |
|     }
 | |
|     llLog = (U32)errorCode;
 | |
| 
 | |
|     /* write result to buffer */
 | |
|     {   size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog);
 | |
|         if (HUF_isError(hhSize)) {
 | |
|             eSize = hhSize;
 | |
|             DISPLAYLEVEL(1, "HUF_writeCTable error \n");
 | |
|             goto _cleanup;
 | |
|         }
 | |
|         dstPtr += hhSize;
 | |
|         maxDstSize -= hhSize;
 | |
|         eSize += hhSize;
 | |
|     }
 | |
| 
 | |
|     {   size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
 | |
|         if (FSE_isError(ohSize)) {
 | |
|             eSize = ohSize;
 | |
|             DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n");
 | |
|             goto _cleanup;
 | |
|         }
 | |
|         dstPtr += ohSize;
 | |
|         maxDstSize -= ohSize;
 | |
|         eSize += ohSize;
 | |
|     }
 | |
| 
 | |
|     {   size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog);
 | |
|         if (FSE_isError(mhSize)) {
 | |
|             eSize = mhSize;
 | |
|             DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n");
 | |
|             goto _cleanup;
 | |
|         }
 | |
|         dstPtr += mhSize;
 | |
|         maxDstSize -= mhSize;
 | |
|         eSize += mhSize;
 | |
|     }
 | |
| 
 | |
|     {   size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog);
 | |
|         if (FSE_isError(lhSize)) {
 | |
|             eSize = lhSize;
 | |
|             DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n");
 | |
|             goto _cleanup;
 | |
|         }
 | |
|         dstPtr += lhSize;
 | |
|         maxDstSize -= lhSize;
 | |
|         eSize += lhSize;
 | |
|     }
 | |
| 
 | |
|     if (maxDstSize<12) {
 | |
|         eSize = ERROR(dstSize_tooSmall);
 | |
|         DISPLAYLEVEL(1, "not enough space to write RepOffsets \n");
 | |
|         goto _cleanup;
 | |
|     }
 | |
| # if 0
 | |
|     MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset);
 | |
|     MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset);
 | |
|     MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset);
 | |
| #else
 | |
|     /* at this stage, we don't use the result of "most common first offset",
 | |
|        as the impact of statistics is not properly evaluated */
 | |
|     MEM_writeLE32(dstPtr+0, repStartValue[0]);
 | |
|     MEM_writeLE32(dstPtr+4, repStartValue[1]);
 | |
|     MEM_writeLE32(dstPtr+8, repStartValue[2]);
 | |
| #endif
 | |
|     eSize += 12;
 | |
| 
 | |
| _cleanup:
 | |
|     ZSTD_freeCDict(esr.dict);
 | |
|     ZSTD_freeCCtx(esr.zc);
 | |
|     free(esr.workPlace);
 | |
| 
 | |
|     return eSize;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity,
 | |
|                           const void* customDictContent, size_t dictContentSize,
 | |
|                           const void* samplesBuffer, const size_t* samplesSizes,
 | |
|                           unsigned nbSamples, ZDICT_params_t params)
 | |
| {
 | |
|     size_t hSize;
 | |
| #define HBUFFSIZE 256   /* should prove large enough for all entropy headers */
 | |
|     BYTE header[HBUFFSIZE];
 | |
|     int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
 | |
|     U32 const notificationLevel = params.notificationLevel;
 | |
| 
 | |
|     /* check conditions */
 | |
|     DEBUGLOG(4, "ZDICT_finalizeDictionary");
 | |
|     if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall);
 | |
|     if (dictContentSize < ZDICT_CONTENTSIZE_MIN) return ERROR(srcSize_wrong);
 | |
|     if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall);
 | |
| 
 | |
|     /* dictionary header */
 | |
|     MEM_writeLE32(header, ZSTD_MAGIC_DICTIONARY);
 | |
|     {   U64 const randomID = XXH64(customDictContent, dictContentSize, 0);
 | |
|         U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
 | |
|         U32 const dictID = params.dictID ? params.dictID : compliantID;
 | |
|         MEM_writeLE32(header+4, dictID);
 | |
|     }
 | |
|     hSize = 8;
 | |
| 
 | |
|     /* entropy tables */
 | |
|     DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
 | |
|     DISPLAYLEVEL(2, "statistics ... \n");
 | |
|     {   size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize,
 | |
|                                   compressionLevel,
 | |
|                                   samplesBuffer, samplesSizes, nbSamples,
 | |
|                                   customDictContent, dictContentSize,
 | |
|                                   notificationLevel);
 | |
|         if (ZDICT_isError(eSize)) return eSize;
 | |
|         hSize += eSize;
 | |
|     }
 | |
| 
 | |
|     /* copy elements in final buffer ; note : src and dst buffer can overlap */
 | |
|     if (hSize + dictContentSize > dictBufferCapacity) dictContentSize = dictBufferCapacity - hSize;
 | |
|     {   size_t const dictSize = hSize + dictContentSize;
 | |
|         char* dictEnd = (char*)dictBuffer + dictSize;
 | |
|         memmove(dictEnd - dictContentSize, customDictContent, dictContentSize);
 | |
|         memcpy(dictBuffer, header, hSize);
 | |
|         return dictSize;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static size_t ZDICT_addEntropyTablesFromBuffer_advanced(
 | |
|         void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
 | |
|         const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
 | |
|         ZDICT_params_t params)
 | |
| {
 | |
|     int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
 | |
|     U32 const notificationLevel = params.notificationLevel;
 | |
|     size_t hSize = 8;
 | |
| 
 | |
|     /* calculate entropy tables */
 | |
|     DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
 | |
|     DISPLAYLEVEL(2, "statistics ... \n");
 | |
|     {   size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize,
 | |
|                                   compressionLevel,
 | |
|                                   samplesBuffer, samplesSizes, nbSamples,
 | |
|                                   (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize,
 | |
|                                   notificationLevel);
 | |
|         if (ZDICT_isError(eSize)) return eSize;
 | |
|         hSize += eSize;
 | |
|     }
 | |
| 
 | |
|     /* add dictionary header (after entropy tables) */
 | |
|     MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY);
 | |
|     {   U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0);
 | |
|         U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
 | |
|         U32 const dictID = params.dictID ? params.dictID : compliantID;
 | |
|         MEM_writeLE32((char*)dictBuffer+4, dictID);
 | |
|     }
 | |
| 
 | |
|     if (hSize + dictContentSize < dictBufferCapacity)
 | |
|         memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize);
 | |
|     return MIN(dictBufferCapacity, hSize+dictContentSize);
 | |
| }
 | |
| 
 | |
| /*! ZDICT_trainFromBuffer_unsafe_legacy() :
 | |
| *   Warning : `samplesBuffer` must be followed by noisy guard band !!!
 | |
| *   @return : size of dictionary, or an error code which can be tested with ZDICT_isError()
 | |
| */
 | |
| static size_t ZDICT_trainFromBuffer_unsafe_legacy(
 | |
|                             void* dictBuffer, size_t maxDictSize,
 | |
|                             const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
 | |
|                             ZDICT_legacy_params_t params)
 | |
| {
 | |
|     U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16));
 | |
|     dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
 | |
|     unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel;
 | |
|     unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity;
 | |
|     size_t const targetDictSize = maxDictSize;
 | |
|     size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
 | |
|     size_t dictSize = 0;
 | |
|     U32 const notificationLevel = params.zParams.notificationLevel;
 | |
| 
 | |
|     /* checks */
 | |
|     if (!dictList) return ERROR(memory_allocation);
 | |
|     if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); }   /* requested dictionary size is too small */
 | |
|     if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); }   /* not enough source to create dictionary */
 | |
| 
 | |
|     /* init */
 | |
|     ZDICT_initDictItem(dictList);
 | |
| 
 | |
|     /* build dictionary */
 | |
|     ZDICT_trainBuffer_legacy(dictList, dictListSize,
 | |
|                        samplesBuffer, samplesBuffSize,
 | |
|                        samplesSizes, nbSamples,
 | |
|                        minRep, notificationLevel);
 | |
| 
 | |
|     /* display best matches */
 | |
|     if (params.zParams.notificationLevel>= 3) {
 | |
|         unsigned const nb = MIN(25, dictList[0].pos);
 | |
|         unsigned const dictContentSize = ZDICT_dictSize(dictList);
 | |
|         unsigned u;
 | |
|         DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", (unsigned)dictList[0].pos-1, dictContentSize);
 | |
|         DISPLAYLEVEL(3, "list %u best segments \n", nb-1);
 | |
|         for (u=1; u<nb; u++) {
 | |
|             unsigned const pos = dictList[u].pos;
 | |
|             unsigned const length = dictList[u].length;
 | |
|             U32 const printedLength = MIN(40, length);
 | |
|             if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize)) {
 | |
|                 free(dictList);
 | |
|                 return ERROR(GENERIC);   /* should never happen */
 | |
|             }
 | |
|             DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
 | |
|                          u, length, pos, (unsigned)dictList[u].savings);
 | |
|             ZDICT_printHex((const char*)samplesBuffer+pos, printedLength);
 | |
|             DISPLAYLEVEL(3, "| \n");
 | |
|     }   }
 | |
| 
 | |
| 
 | |
|     /* create dictionary */
 | |
|     {   unsigned dictContentSize = ZDICT_dictSize(dictList);
 | |
|         if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); }   /* dictionary content too small */
 | |
|         if (dictContentSize < targetDictSize/4) {
 | |
|             DISPLAYLEVEL(2, "!  warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (unsigned)maxDictSize);
 | |
|             if (samplesBuffSize < 10 * targetDictSize)
 | |
|                 DISPLAYLEVEL(2, "!  consider increasing the number of samples (total size : %u MB)\n", (unsigned)(samplesBuffSize>>20));
 | |
|             if (minRep > MINRATIO) {
 | |
|                 DISPLAYLEVEL(2, "!  consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1);
 | |
|                 DISPLAYLEVEL(2, "!  note : larger dictionaries are not necessarily better, test its efficiency on samples \n");
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) {
 | |
|             unsigned proposedSelectivity = selectivity-1;
 | |
|             while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; }
 | |
|             DISPLAYLEVEL(2, "!  note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (unsigned)maxDictSize);
 | |
|             DISPLAYLEVEL(2, "!  consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity);
 | |
|             DISPLAYLEVEL(2, "!  always test dictionary efficiency on real samples \n");
 | |
|         }
 | |
| 
 | |
|         /* limit dictionary size */
 | |
|         {   U32 const max = dictList->pos;   /* convention : nb of useful elts within dictList */
 | |
|             U32 currentSize = 0;
 | |
|             U32 n; for (n=1; n<max; n++) {
 | |
|                 currentSize += dictList[n].length;
 | |
|                 if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; }
 | |
|             }
 | |
|             dictList->pos = n;
 | |
|             dictContentSize = currentSize;
 | |
|         }
 | |
| 
 | |
|         /* build dict content */
 | |
|         {   U32 u;
 | |
|             BYTE* ptr = (BYTE*)dictBuffer + maxDictSize;
 | |
|             for (u=1; u<dictList->pos; u++) {
 | |
|                 U32 l = dictList[u].length;
 | |
|                 ptr -= l;
 | |
|                 if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); }   /* should not happen */
 | |
|                 memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l);
 | |
|         }   }
 | |
| 
 | |
|         dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize,
 | |
|                                                              samplesBuffer, samplesSizes, nbSamples,
 | |
|                                                              params.zParams);
 | |
|     }
 | |
| 
 | |
|     /* clean up */
 | |
|     free(dictList);
 | |
|     return dictSize;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ZDICT_trainFromBuffer_legacy() :
 | |
|  * issue : samplesBuffer need to be followed by a noisy guard band.
 | |
|  * work around : duplicate the buffer, and add the noise */
 | |
| size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity,
 | |
|                               const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
 | |
|                               ZDICT_legacy_params_t params)
 | |
| {
 | |
|     size_t result;
 | |
|     void* newBuff;
 | |
|     size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
 | |
|     if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0;   /* not enough content => no dictionary */
 | |
| 
 | |
|     newBuff = malloc(sBuffSize + NOISELENGTH);
 | |
|     if (!newBuff) return ERROR(memory_allocation);
 | |
| 
 | |
|     memcpy(newBuff, samplesBuffer, sBuffSize);
 | |
|     ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH);   /* guard band, for end of buffer condition */
 | |
| 
 | |
|     result =
 | |
|         ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff,
 | |
|                                             samplesSizes, nbSamples, params);
 | |
|     free(newBuff);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
 | |
|                              const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
 | |
| {
 | |
|     ZDICT_fastCover_params_t params;
 | |
|     DEBUGLOG(3, "ZDICT_trainFromBuffer");
 | |
|     memset(¶ms, 0, sizeof(params));
 | |
|     params.d = 8;
 | |
|     params.steps = 4;
 | |
|     /* Use default level since no compression level information is available */
 | |
|     params.zParams.compressionLevel = ZSTD_CLEVEL_DEFAULT;
 | |
| #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=1)
 | |
|     params.zParams.notificationLevel = DEBUGLEVEL;
 | |
| #endif
 | |
|     return ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, dictBufferCapacity,
 | |
|                                                samplesBuffer, samplesSizes, nbSamples,
 | |
|                                                ¶ms);
 | |
| }
 | |
| 
 | |
| size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
 | |
|                                   const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
 | |
| {
 | |
|     ZDICT_params_t params;
 | |
|     memset(¶ms, 0, sizeof(params));
 | |
|     return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity,
 | |
|                                                      samplesBuffer, samplesSizes, nbSamples,
 | |
|                                                      params);
 | |
| }
 |