You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2662 lines
70 KiB
2662 lines
70 KiB
/*-
|
|
* Copyright (c) 2003-2009 Tim Kientzle
|
|
* Copyright (c) 2010-2012 Michihiro NAKAJIMA
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer
|
|
* in this position and unchanged.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* This is the tree-walking code for POSIX systems. */
|
|
#if !defined(_WIN32) || defined(__CYGWIN__)
|
|
|
|
#include "archive_platform.h"
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#ifdef HAVE_SYS_PARAM_H
|
|
#include <sys/param.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_MOUNT_H
|
|
#include <sys/mount.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_STAT_H
|
|
#include <sys/stat.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_STATFS_H
|
|
#include <sys/statfs.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_STATVFS_H
|
|
#include <sys/statvfs.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_TIME_H
|
|
#include <sys/time.h>
|
|
#endif
|
|
#ifdef HAVE_LINUX_MAGIC_H
|
|
#include <linux/magic.h>
|
|
#endif
|
|
#ifdef HAVE_LINUX_FS_H
|
|
#include <linux/fs.h>
|
|
#endif
|
|
/*
|
|
* Some Linux distributions have both linux/ext2_fs.h and ext2fs/ext2_fs.h.
|
|
* As the include guards don't agree, the order of include is important.
|
|
*/
|
|
#ifdef HAVE_LINUX_EXT2_FS_H
|
|
#include <linux/ext2_fs.h> /* for Linux file flags */
|
|
#endif
|
|
#if defined(HAVE_EXT2FS_EXT2_FS_H) && !defined(__CYGWIN__)
|
|
#include <ext2fs/ext2_fs.h> /* Linux file flags, broken on Cygwin */
|
|
#endif
|
|
#ifdef HAVE_DIRECT_H
|
|
#include <direct.h>
|
|
#endif
|
|
#ifdef HAVE_DIRENT_H
|
|
#include <dirent.h>
|
|
#endif
|
|
#ifdef HAVE_ERRNO_H
|
|
#include <errno.h>
|
|
#endif
|
|
#ifdef HAVE_FCNTL_H
|
|
#include <fcntl.h>
|
|
#endif
|
|
#ifdef HAVE_LIMITS_H
|
|
#include <limits.h>
|
|
#endif
|
|
#ifdef HAVE_STDLIB_H
|
|
#include <stdlib.h>
|
|
#endif
|
|
#ifdef HAVE_STRING_H
|
|
#include <string.h>
|
|
#endif
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_IOCTL_H
|
|
#include <sys/ioctl.h>
|
|
#endif
|
|
|
|
#include "archive.h"
|
|
#include "archive_string.h"
|
|
#include "archive_entry.h"
|
|
#include "archive_private.h"
|
|
#include "archive_read_disk_private.h"
|
|
|
|
#ifndef HAVE_FCHDIR
|
|
#error fchdir function required.
|
|
#endif
|
|
#ifndef O_BINARY
|
|
#define O_BINARY 0
|
|
#endif
|
|
#ifndef O_CLOEXEC
|
|
#define O_CLOEXEC 0
|
|
#endif
|
|
|
|
/*-
|
|
* This is a new directory-walking system that addresses a number
|
|
* of problems I've had with fts(3). In particular, it has no
|
|
* pathname-length limits (other than the size of 'int'), handles
|
|
* deep logical traversals, uses considerably less memory, and has
|
|
* an opaque interface (easier to modify in the future).
|
|
*
|
|
* Internally, it keeps a single list of "tree_entry" items that
|
|
* represent filesystem objects that require further attention.
|
|
* Non-directories are not kept in memory: they are pulled from
|
|
* readdir(), returned to the client, then freed as soon as possible.
|
|
* Any directory entry to be traversed gets pushed onto the stack.
|
|
*
|
|
* There is surprisingly little information that needs to be kept for
|
|
* each item on the stack. Just the name, depth (represented here as the
|
|
* string length of the parent directory's pathname), and some markers
|
|
* indicating how to get back to the parent (via chdir("..") for a
|
|
* regular dir or via fchdir(2) for a symlink).
|
|
*/
|
|
/*
|
|
* TODO:
|
|
* 1) Loop checking.
|
|
* 3) Arbitrary logical traversals by closing/reopening intermediate fds.
|
|
*/
|
|
|
|
struct restore_time {
|
|
const char *name;
|
|
time_t mtime;
|
|
long mtime_nsec;
|
|
time_t atime;
|
|
long atime_nsec;
|
|
mode_t filetype;
|
|
int noatime;
|
|
};
|
|
|
|
struct tree_entry {
|
|
int depth;
|
|
struct tree_entry *next;
|
|
struct tree_entry *parent;
|
|
struct archive_string name;
|
|
size_t dirname_length;
|
|
int64_t dev;
|
|
int64_t ino;
|
|
int flags;
|
|
int filesystem_id;
|
|
/* How to return back to the parent of a symlink. */
|
|
int symlink_parent_fd;
|
|
/* How to restore time of a directory. */
|
|
struct restore_time restore_time;
|
|
};
|
|
|
|
struct filesystem {
|
|
int64_t dev;
|
|
int synthetic;
|
|
int remote;
|
|
int noatime;
|
|
#if defined(USE_READDIR_R)
|
|
size_t name_max;
|
|
#endif
|
|
long incr_xfer_size;
|
|
long max_xfer_size;
|
|
long min_xfer_size;
|
|
long xfer_align;
|
|
|
|
/*
|
|
* Buffer used for reading file contents.
|
|
*/
|
|
/* Exactly allocated memory pointer. */
|
|
unsigned char *allocation_ptr;
|
|
/* Pointer adjusted to the filesystem alignment . */
|
|
unsigned char *buff;
|
|
size_t buff_size;
|
|
};
|
|
|
|
/* Definitions for tree_entry.flags bitmap. */
|
|
#define isDir 1 /* This entry is a regular directory. */
|
|
#define isDirLink 2 /* This entry is a symbolic link to a directory. */
|
|
#define needsFirstVisit 4 /* This is an initial entry. */
|
|
#define needsDescent 8 /* This entry needs to be previsited. */
|
|
#define needsOpen 16 /* This is a directory that needs to be opened. */
|
|
#define needsAscent 32 /* This entry needs to be postvisited. */
|
|
|
|
/*
|
|
* Local data for this package.
|
|
*/
|
|
struct tree {
|
|
struct tree_entry *stack;
|
|
struct tree_entry *current;
|
|
DIR *d;
|
|
#define INVALID_DIR_HANDLE NULL
|
|
struct dirent *de;
|
|
#if defined(USE_READDIR_R)
|
|
struct dirent *dirent;
|
|
size_t dirent_allocated;
|
|
#endif
|
|
int flags;
|
|
int visit_type;
|
|
/* Error code from last failed operation. */
|
|
int tree_errno;
|
|
|
|
/* Dynamically-sized buffer for holding path */
|
|
struct archive_string path;
|
|
|
|
/* Last path element */
|
|
const char *basename;
|
|
/* Leading dir length */
|
|
size_t dirname_length;
|
|
|
|
int depth;
|
|
int openCount;
|
|
int maxOpenCount;
|
|
int initial_dir_fd;
|
|
int working_dir_fd;
|
|
|
|
struct stat lst;
|
|
struct stat st;
|
|
int descend;
|
|
int nlink;
|
|
/* How to restore time of a file. */
|
|
struct restore_time restore_time;
|
|
|
|
struct entry_sparse {
|
|
int64_t length;
|
|
int64_t offset;
|
|
} *sparse_list, *current_sparse;
|
|
int sparse_count;
|
|
int sparse_list_size;
|
|
|
|
char initial_symlink_mode;
|
|
char symlink_mode;
|
|
struct filesystem *current_filesystem;
|
|
struct filesystem *filesystem_table;
|
|
int initial_filesystem_id;
|
|
int current_filesystem_id;
|
|
int max_filesystem_id;
|
|
int allocated_filesystem;
|
|
|
|
int entry_fd;
|
|
int entry_eof;
|
|
int64_t entry_remaining_bytes;
|
|
int64_t entry_total;
|
|
unsigned char *entry_buff;
|
|
size_t entry_buff_size;
|
|
};
|
|
|
|
/* Definitions for tree.flags bitmap. */
|
|
#define hasStat 16 /* The st entry is valid. */
|
|
#define hasLstat 32 /* The lst entry is valid. */
|
|
#define onWorkingDir 64 /* We are on the working dir where we are
|
|
* reading directory entry at this time. */
|
|
#define needsRestoreTimes 128
|
|
#define onInitialDir 256 /* We are on the initial dir. */
|
|
|
|
static int
|
|
tree_dir_next_posix(struct tree *t);
|
|
|
|
#ifdef HAVE_DIRENT_D_NAMLEN
|
|
/* BSD extension; avoids need for a strlen() call. */
|
|
#define D_NAMELEN(dp) (dp)->d_namlen
|
|
#else
|
|
#define D_NAMELEN(dp) (strlen((dp)->d_name))
|
|
#endif
|
|
|
|
/* Initiate/terminate a tree traversal. */
|
|
static struct tree *tree_open(const char *, int, int);
|
|
static struct tree *tree_reopen(struct tree *, const char *, int);
|
|
static void tree_close(struct tree *);
|
|
static void tree_free(struct tree *);
|
|
static void tree_push(struct tree *, const char *, int, int64_t, int64_t,
|
|
struct restore_time *);
|
|
static int tree_enter_initial_dir(struct tree *);
|
|
static int tree_enter_working_dir(struct tree *);
|
|
static int tree_current_dir_fd(struct tree *);
|
|
|
|
/*
|
|
* tree_next() returns Zero if there is no next entry, non-zero if
|
|
* there is. Note that directories are visited three times.
|
|
* Directories are always visited first as part of enumerating their
|
|
* parent; that is a "regular" visit. If tree_descend() is invoked at
|
|
* that time, the directory is added to a work list and will
|
|
* subsequently be visited two more times: once just after descending
|
|
* into the directory ("postdescent") and again just after ascending
|
|
* back to the parent ("postascent").
|
|
*
|
|
* TREE_ERROR_DIR is returned if the descent failed (because the
|
|
* directory couldn't be opened, for instance). This is returned
|
|
* instead of TREE_POSTDESCENT/TREE_POSTASCENT. TREE_ERROR_DIR is not a
|
|
* fatal error, but it does imply that the relevant subtree won't be
|
|
* visited. TREE_ERROR_FATAL is returned for an error that left the
|
|
* traversal completely hosed. Right now, this is only returned for
|
|
* chdir() failures during ascent.
|
|
*/
|
|
#define TREE_REGULAR 1
|
|
#define TREE_POSTDESCENT 2
|
|
#define TREE_POSTASCENT 3
|
|
#define TREE_ERROR_DIR -1
|
|
#define TREE_ERROR_FATAL -2
|
|
|
|
static int tree_next(struct tree *);
|
|
|
|
/*
|
|
* Return information about the current entry.
|
|
*/
|
|
|
|
/*
|
|
* The current full pathname, length of the full pathname, and a name
|
|
* that can be used to access the file. Because tree does use chdir
|
|
* extensively, the access path is almost never the same as the full
|
|
* current path.
|
|
*
|
|
* TODO: On platforms that support it, use openat()-style operations
|
|
* to eliminate the chdir() operations entirely while still supporting
|
|
* arbitrarily deep traversals. This makes access_path troublesome to
|
|
* support, of course, which means we'll need a rich enough interface
|
|
* that clients can function without it. (In particular, we'll need
|
|
* tree_current_open() that returns an open file descriptor.)
|
|
*
|
|
*/
|
|
static const char *tree_current_path(struct tree *);
|
|
static const char *tree_current_access_path(struct tree *);
|
|
|
|
/*
|
|
* Request the lstat() or stat() data for the current path. Since the
|
|
* tree package needs to do some of this anyway, and caches the
|
|
* results, you should take advantage of it here if you need it rather
|
|
* than make a redundant stat() or lstat() call of your own.
|
|
*/
|
|
static const struct stat *tree_current_stat(struct tree *);
|
|
static const struct stat *tree_current_lstat(struct tree *);
|
|
static int tree_current_is_symblic_link_target(struct tree *);
|
|
|
|
/* The following functions use tricks to avoid a certain number of
|
|
* stat()/lstat() calls. */
|
|
/* "is_physical_dir" is equivalent to S_ISDIR(tree_current_lstat()->st_mode) */
|
|
static int tree_current_is_physical_dir(struct tree *);
|
|
/* "is_dir" is equivalent to S_ISDIR(tree_current_stat()->st_mode) */
|
|
static int tree_current_is_dir(struct tree *);
|
|
static int update_current_filesystem(struct archive_read_disk *a,
|
|
int64_t dev);
|
|
static int setup_current_filesystem(struct archive_read_disk *);
|
|
static int tree_target_is_same_as_parent(struct tree *, const struct stat *);
|
|
|
|
static int _archive_read_disk_open(struct archive *, const char *);
|
|
static int _archive_read_free(struct archive *);
|
|
static int _archive_read_close(struct archive *);
|
|
static int _archive_read_data_block(struct archive *,
|
|
const void **, size_t *, int64_t *);
|
|
static int _archive_read_next_header(struct archive *,
|
|
struct archive_entry **);
|
|
static int _archive_read_next_header2(struct archive *,
|
|
struct archive_entry *);
|
|
static const char *trivial_lookup_gname(void *, int64_t gid);
|
|
static const char *trivial_lookup_uname(void *, int64_t uid);
|
|
static int setup_sparse(struct archive_read_disk *, struct archive_entry *);
|
|
static int close_and_restore_time(int fd, struct tree *,
|
|
struct restore_time *);
|
|
static int open_on_current_dir(struct tree *, const char *, int);
|
|
static int tree_dup(int);
|
|
|
|
|
|
static struct archive_vtable *
|
|
archive_read_disk_vtable(void)
|
|
{
|
|
static struct archive_vtable av;
|
|
static int inited = 0;
|
|
|
|
if (!inited) {
|
|
av.archive_free = _archive_read_free;
|
|
av.archive_close = _archive_read_close;
|
|
av.archive_read_data_block = _archive_read_data_block;
|
|
av.archive_read_next_header = _archive_read_next_header;
|
|
av.archive_read_next_header2 = _archive_read_next_header2;
|
|
inited = 1;
|
|
}
|
|
return (&av);
|
|
}
|
|
|
|
const char *
|
|
archive_read_disk_gname(struct archive *_a, la_int64_t gid)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY, "archive_read_disk_gname"))
|
|
return (NULL);
|
|
if (a->lookup_gname == NULL)
|
|
return (NULL);
|
|
return ((*a->lookup_gname)(a->lookup_gname_data, gid));
|
|
}
|
|
|
|
const char *
|
|
archive_read_disk_uname(struct archive *_a, la_int64_t uid)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY, "archive_read_disk_uname"))
|
|
return (NULL);
|
|
if (a->lookup_uname == NULL)
|
|
return (NULL);
|
|
return ((*a->lookup_uname)(a->lookup_uname_data, uid));
|
|
}
|
|
|
|
int
|
|
archive_read_disk_set_gname_lookup(struct archive *_a,
|
|
void *private_data,
|
|
const char * (*lookup_gname)(void *private, la_int64_t gid),
|
|
void (*cleanup_gname)(void *private))
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY, "archive_read_disk_set_gname_lookup");
|
|
|
|
if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
|
|
(a->cleanup_gname)(a->lookup_gname_data);
|
|
|
|
a->lookup_gname = lookup_gname;
|
|
a->cleanup_gname = cleanup_gname;
|
|
a->lookup_gname_data = private_data;
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
int
|
|
archive_read_disk_set_uname_lookup(struct archive *_a,
|
|
void *private_data,
|
|
const char * (*lookup_uname)(void *private, la_int64_t uid),
|
|
void (*cleanup_uname)(void *private))
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY, "archive_read_disk_set_uname_lookup");
|
|
|
|
if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
|
|
(a->cleanup_uname)(a->lookup_uname_data);
|
|
|
|
a->lookup_uname = lookup_uname;
|
|
a->cleanup_uname = cleanup_uname;
|
|
a->lookup_uname_data = private_data;
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
/*
|
|
* Create a new archive_read_disk object and initialize it with global state.
|
|
*/
|
|
struct archive *
|
|
archive_read_disk_new(void)
|
|
{
|
|
struct archive_read_disk *a;
|
|
|
|
a = (struct archive_read_disk *)calloc(1, sizeof(*a));
|
|
if (a == NULL)
|
|
return (NULL);
|
|
a->archive.magic = ARCHIVE_READ_DISK_MAGIC;
|
|
a->archive.state = ARCHIVE_STATE_NEW;
|
|
a->archive.vtable = archive_read_disk_vtable();
|
|
a->entry = archive_entry_new2(&a->archive);
|
|
a->lookup_uname = trivial_lookup_uname;
|
|
a->lookup_gname = trivial_lookup_gname;
|
|
a->flags = ARCHIVE_READDISK_MAC_COPYFILE;
|
|
a->open_on_current_dir = open_on_current_dir;
|
|
a->tree_current_dir_fd = tree_current_dir_fd;
|
|
a->tree_enter_working_dir = tree_enter_working_dir;
|
|
return (&a->archive);
|
|
}
|
|
|
|
static int
|
|
_archive_read_free(struct archive *_a)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
int r;
|
|
|
|
if (_a == NULL)
|
|
return (ARCHIVE_OK);
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_free");
|
|
|
|
if (a->archive.state != ARCHIVE_STATE_CLOSED)
|
|
r = _archive_read_close(&a->archive);
|
|
else
|
|
r = ARCHIVE_OK;
|
|
|
|
tree_free(a->tree);
|
|
if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
|
|
(a->cleanup_gname)(a->lookup_gname_data);
|
|
if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
|
|
(a->cleanup_uname)(a->lookup_uname_data);
|
|
archive_string_free(&a->archive.error_string);
|
|
archive_entry_free(a->entry);
|
|
a->archive.magic = 0;
|
|
__archive_clean(&a->archive);
|
|
free(a);
|
|
return (r);
|
|
}
|
|
|
|
static int
|
|
_archive_read_close(struct archive *_a)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_close");
|
|
|
|
if (a->archive.state != ARCHIVE_STATE_FATAL)
|
|
a->archive.state = ARCHIVE_STATE_CLOSED;
|
|
|
|
tree_close(a->tree);
|
|
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
static void
|
|
setup_symlink_mode(struct archive_read_disk *a, char symlink_mode,
|
|
int follow_symlinks)
|
|
{
|
|
a->symlink_mode = symlink_mode;
|
|
a->follow_symlinks = follow_symlinks;
|
|
if (a->tree != NULL) {
|
|
a->tree->initial_symlink_mode = a->symlink_mode;
|
|
a->tree->symlink_mode = a->symlink_mode;
|
|
}
|
|
}
|
|
|
|
int
|
|
archive_read_disk_set_symlink_logical(struct archive *_a)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_logical");
|
|
setup_symlink_mode(a, 'L', 1);
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
int
|
|
archive_read_disk_set_symlink_physical(struct archive *_a)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_physical");
|
|
setup_symlink_mode(a, 'P', 0);
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
int
|
|
archive_read_disk_set_symlink_hybrid(struct archive *_a)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_hybrid");
|
|
setup_symlink_mode(a, 'H', 1);/* Follow symlinks initially. */
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
int
|
|
archive_read_disk_set_atime_restored(struct archive *_a)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY, "archive_read_disk_restore_atime");
|
|
#ifdef HAVE_UTIMES
|
|
a->flags |= ARCHIVE_READDISK_RESTORE_ATIME;
|
|
if (a->tree != NULL)
|
|
a->tree->flags |= needsRestoreTimes;
|
|
return (ARCHIVE_OK);
|
|
#else
|
|
/* Display warning and unset flag */
|
|
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
|
|
"Cannot restore access time on this system");
|
|
a->flags &= ~ARCHIVE_READDISK_RESTORE_ATIME;
|
|
return (ARCHIVE_WARN);
|
|
#endif
|
|
}
|
|
|
|
int
|
|
archive_read_disk_set_behavior(struct archive *_a, int flags)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
int r = ARCHIVE_OK;
|
|
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY, "archive_read_disk_honor_nodump");
|
|
|
|
a->flags = flags;
|
|
|
|
if (flags & ARCHIVE_READDISK_RESTORE_ATIME)
|
|
r = archive_read_disk_set_atime_restored(_a);
|
|
else {
|
|
if (a->tree != NULL)
|
|
a->tree->flags &= ~needsRestoreTimes;
|
|
}
|
|
return (r);
|
|
}
|
|
|
|
/*
|
|
* Trivial implementations of gname/uname lookup functions.
|
|
* These are normally overridden by the client, but these stub
|
|
* versions ensure that we always have something that works.
|
|
*/
|
|
static const char *
|
|
trivial_lookup_gname(void *private_data, int64_t gid)
|
|
{
|
|
(void)private_data; /* UNUSED */
|
|
(void)gid; /* UNUSED */
|
|
return (NULL);
|
|
}
|
|
|
|
static const char *
|
|
trivial_lookup_uname(void *private_data, int64_t uid)
|
|
{
|
|
(void)private_data; /* UNUSED */
|
|
(void)uid; /* UNUSED */
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Allocate memory for the reading buffer adjusted to the filesystem
|
|
* alignment.
|
|
*/
|
|
static int
|
|
setup_suitable_read_buffer(struct archive_read_disk *a)
|
|
{
|
|
struct tree *t = a->tree;
|
|
struct filesystem *cf = t->current_filesystem;
|
|
size_t asize;
|
|
size_t s;
|
|
|
|
if (cf->allocation_ptr == NULL) {
|
|
/* If we couldn't get a filesystem alignment,
|
|
* we use 4096 as default value but we won't use
|
|
* O_DIRECT to open() and openat() operations. */
|
|
long xfer_align = (cf->xfer_align == -1)?4096:cf->xfer_align;
|
|
|
|
if (cf->max_xfer_size != -1)
|
|
asize = cf->max_xfer_size + xfer_align;
|
|
else {
|
|
long incr = cf->incr_xfer_size;
|
|
/* Some platform does not set a proper value to
|
|
* incr_xfer_size.*/
|
|
if (incr < 0)
|
|
incr = cf->min_xfer_size;
|
|
if (cf->min_xfer_size < 0) {
|
|
incr = xfer_align;
|
|
asize = xfer_align;
|
|
} else
|
|
asize = cf->min_xfer_size;
|
|
|
|
/* Increase a buffer size up to 64K bytes in
|
|
* a proper increment size. */
|
|
while (asize < 1024*64)
|
|
asize += incr;
|
|
/* Take a margin to adjust to the filesystem
|
|
* alignment. */
|
|
asize += xfer_align;
|
|
}
|
|
cf->allocation_ptr = malloc(asize);
|
|
if (cf->allocation_ptr == NULL) {
|
|
archive_set_error(&a->archive, ENOMEM,
|
|
"Couldn't allocate memory");
|
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
|
return (ARCHIVE_FATAL);
|
|
}
|
|
|
|
/*
|
|
* Calculate proper address for the filesystem.
|
|
*/
|
|
s = (uintptr_t)cf->allocation_ptr;
|
|
s %= xfer_align;
|
|
if (s > 0)
|
|
s = xfer_align - s;
|
|
|
|
/*
|
|
* Set a read buffer pointer in the proper alignment of
|
|
* the current filesystem.
|
|
*/
|
|
cf->buff = cf->allocation_ptr + s;
|
|
cf->buff_size = asize - xfer_align;
|
|
}
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
static int
|
|
_archive_read_data_block(struct archive *_a, const void **buff,
|
|
size_t *size, int64_t *offset)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
struct tree *t = a->tree;
|
|
int r;
|
|
ssize_t bytes;
|
|
size_t buffbytes;
|
|
int empty_sparse_region = 0;
|
|
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
|
|
"archive_read_data_block");
|
|
|
|
if (t->entry_eof || t->entry_remaining_bytes <= 0) {
|
|
r = ARCHIVE_EOF;
|
|
goto abort_read_data;
|
|
}
|
|
|
|
/*
|
|
* Open the current file.
|
|
*/
|
|
if (t->entry_fd < 0) {
|
|
int flags = O_RDONLY | O_BINARY | O_CLOEXEC;
|
|
|
|
/*
|
|
* Eliminate or reduce cache effects if we can.
|
|
*
|
|
* Carefully consider this to be enabled.
|
|
*/
|
|
#if defined(O_DIRECT) && 0/* Disabled for now */
|
|
if (t->current_filesystem->xfer_align != -1 &&
|
|
t->nlink == 1)
|
|
flags |= O_DIRECT;
|
|
#endif
|
|
#if defined(O_NOATIME)
|
|
/*
|
|
* Linux has O_NOATIME flag; use it if we need.
|
|
*/
|
|
if ((t->flags & needsRestoreTimes) != 0 &&
|
|
t->restore_time.noatime == 0)
|
|
flags |= O_NOATIME;
|
|
do {
|
|
#endif
|
|
t->entry_fd = open_on_current_dir(t,
|
|
tree_current_access_path(t), flags);
|
|
__archive_ensure_cloexec_flag(t->entry_fd);
|
|
#if defined(O_NOATIME)
|
|
/*
|
|
* When we did open the file with O_NOATIME flag,
|
|
* if successful, set 1 to t->restore_time.noatime
|
|
* not to restore an atime of the file later.
|
|
* if failed by EPERM, retry it without O_NOATIME flag.
|
|
*/
|
|
if (flags & O_NOATIME) {
|
|
if (t->entry_fd >= 0)
|
|
t->restore_time.noatime = 1;
|
|
else if (errno == EPERM) {
|
|
flags &= ~O_NOATIME;
|
|
continue;
|
|
}
|
|
}
|
|
} while (0);
|
|
#endif
|
|
if (t->entry_fd < 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"Couldn't open %s", tree_current_path(t));
|
|
r = ARCHIVE_FAILED;
|
|
tree_enter_initial_dir(t);
|
|
goto abort_read_data;
|
|
}
|
|
tree_enter_initial_dir(t);
|
|
}
|
|
|
|
/*
|
|
* Allocate read buffer if not allocated.
|
|
*/
|
|
if (t->current_filesystem->allocation_ptr == NULL) {
|
|
r = setup_suitable_read_buffer(a);
|
|
if (r != ARCHIVE_OK) {
|
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
|
goto abort_read_data;
|
|
}
|
|
}
|
|
t->entry_buff = t->current_filesystem->buff;
|
|
t->entry_buff_size = t->current_filesystem->buff_size;
|
|
|
|
buffbytes = t->entry_buff_size;
|
|
if ((int64_t)buffbytes > t->current_sparse->length)
|
|
buffbytes = t->current_sparse->length;
|
|
|
|
if (t->current_sparse->length == 0)
|
|
empty_sparse_region = 1;
|
|
|
|
/*
|
|
* Skip hole.
|
|
* TODO: Should we consider t->current_filesystem->xfer_align?
|
|
*/
|
|
if (t->current_sparse->offset > t->entry_total) {
|
|
if (lseek(t->entry_fd,
|
|
(off_t)t->current_sparse->offset, SEEK_SET) < 0) {
|
|
archive_set_error(&a->archive, errno, "Seek error");
|
|
r = ARCHIVE_FATAL;
|
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
|
goto abort_read_data;
|
|
}
|
|
bytes = t->current_sparse->offset - t->entry_total;
|
|
t->entry_remaining_bytes -= bytes;
|
|
t->entry_total += bytes;
|
|
}
|
|
|
|
/*
|
|
* Read file contents.
|
|
*/
|
|
if (buffbytes > 0) {
|
|
bytes = read(t->entry_fd, t->entry_buff, buffbytes);
|
|
if (bytes < 0) {
|
|
archive_set_error(&a->archive, errno, "Read error");
|
|
r = ARCHIVE_FATAL;
|
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
|
goto abort_read_data;
|
|
}
|
|
} else
|
|
bytes = 0;
|
|
/*
|
|
* Return an EOF unless we've read a leading empty sparse region, which
|
|
* is used to represent fully-sparse files.
|
|
*/
|
|
if (bytes == 0 && !empty_sparse_region) {
|
|
/* Get EOF */
|
|
t->entry_eof = 1;
|
|
r = ARCHIVE_EOF;
|
|
goto abort_read_data;
|
|
}
|
|
*buff = t->entry_buff;
|
|
*size = bytes;
|
|
*offset = t->entry_total;
|
|
t->entry_total += bytes;
|
|
t->entry_remaining_bytes -= bytes;
|
|
if (t->entry_remaining_bytes == 0) {
|
|
/* Close the current file descriptor */
|
|
close_and_restore_time(t->entry_fd, t, &t->restore_time);
|
|
t->entry_fd = -1;
|
|
t->entry_eof = 1;
|
|
}
|
|
t->current_sparse->offset += bytes;
|
|
t->current_sparse->length -= bytes;
|
|
if (t->current_sparse->length == 0 && !t->entry_eof)
|
|
t->current_sparse++;
|
|
return (ARCHIVE_OK);
|
|
|
|
abort_read_data:
|
|
*buff = NULL;
|
|
*size = 0;
|
|
*offset = t->entry_total;
|
|
if (t->entry_fd >= 0) {
|
|
/* Close the current file descriptor */
|
|
close_and_restore_time(t->entry_fd, t, &t->restore_time);
|
|
t->entry_fd = -1;
|
|
}
|
|
return (r);
|
|
}
|
|
|
|
static int
|
|
next_entry(struct archive_read_disk *a, struct tree *t,
|
|
struct archive_entry *entry)
|
|
{
|
|
const struct stat *st; /* info to use for this entry */
|
|
const struct stat *lst;/* lstat() information */
|
|
const char *name;
|
|
int descend, r;
|
|
|
|
st = NULL;
|
|
lst = NULL;
|
|
t->descend = 0;
|
|
do {
|
|
switch (tree_next(t)) {
|
|
case TREE_ERROR_FATAL:
|
|
archive_set_error(&a->archive, t->tree_errno,
|
|
"%s: Unable to continue traversing directory tree",
|
|
tree_current_path(t));
|
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
|
tree_enter_initial_dir(t);
|
|
return (ARCHIVE_FATAL);
|
|
case TREE_ERROR_DIR:
|
|
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
|
|
"%s: Couldn't visit directory",
|
|
tree_current_path(t));
|
|
tree_enter_initial_dir(t);
|
|
return (ARCHIVE_FAILED);
|
|
case 0:
|
|
tree_enter_initial_dir(t);
|
|
return (ARCHIVE_EOF);
|
|
case TREE_POSTDESCENT:
|
|
case TREE_POSTASCENT:
|
|
break;
|
|
case TREE_REGULAR:
|
|
lst = tree_current_lstat(t);
|
|
if (lst == NULL) {
|
|
archive_set_error(&a->archive, errno,
|
|
"%s: Cannot stat",
|
|
tree_current_path(t));
|
|
tree_enter_initial_dir(t);
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
break;
|
|
}
|
|
} while (lst == NULL);
|
|
|
|
#ifdef __APPLE__
|
|
if (a->flags & ARCHIVE_READDISK_MAC_COPYFILE) {
|
|
/* If we're using copyfile(), ignore "._XXX" files. */
|
|
const char *bname = strrchr(tree_current_path(t), '/');
|
|
if (bname == NULL)
|
|
bname = tree_current_path(t);
|
|
else
|
|
++bname;
|
|
if (bname[0] == '.' && bname[1] == '_')
|
|
return (ARCHIVE_RETRY);
|
|
}
|
|
#endif
|
|
|
|
archive_entry_copy_pathname(entry, tree_current_path(t));
|
|
/*
|
|
* Perform path matching.
|
|
*/
|
|
if (a->matching) {
|
|
r = archive_match_path_excluded(a->matching, entry);
|
|
if (r < 0) {
|
|
archive_set_error(&(a->archive), errno,
|
|
"Failed : %s", archive_error_string(a->matching));
|
|
return (r);
|
|
}
|
|
if (r) {
|
|
if (a->excluded_cb_func)
|
|
a->excluded_cb_func(&(a->archive),
|
|
a->excluded_cb_data, entry);
|
|
return (ARCHIVE_RETRY);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Distinguish 'L'/'P'/'H' symlink following.
|
|
*/
|
|
switch(t->symlink_mode) {
|
|
case 'H':
|
|
/* 'H': After the first item, rest like 'P'. */
|
|
t->symlink_mode = 'P';
|
|
/* 'H': First item (from command line) like 'L'. */
|
|
/* FALLTHROUGH */
|
|
case 'L':
|
|
/* 'L': Do descend through a symlink to dir. */
|
|
descend = tree_current_is_dir(t);
|
|
/* 'L': Follow symlinks to files. */
|
|
a->symlink_mode = 'L';
|
|
a->follow_symlinks = 1;
|
|
/* 'L': Archive symlinks as targets, if we can. */
|
|
st = tree_current_stat(t);
|
|
if (st != NULL && !tree_target_is_same_as_parent(t, st))
|
|
break;
|
|
/* If stat fails, we have a broken symlink;
|
|
* in that case, don't follow the link. */
|
|
/* FALLTHROUGH */
|
|
default:
|
|
/* 'P': Don't descend through a symlink to dir. */
|
|
descend = tree_current_is_physical_dir(t);
|
|
/* 'P': Don't follow symlinks to files. */
|
|
a->symlink_mode = 'P';
|
|
a->follow_symlinks = 0;
|
|
/* 'P': Archive symlinks as symlinks. */
|
|
st = lst;
|
|
break;
|
|
}
|
|
|
|
if (update_current_filesystem(a, st->st_dev) != ARCHIVE_OK) {
|
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
|
tree_enter_initial_dir(t);
|
|
return (ARCHIVE_FATAL);
|
|
}
|
|
if (t->initial_filesystem_id == -1)
|
|
t->initial_filesystem_id = t->current_filesystem_id;
|
|
if (a->flags & ARCHIVE_READDISK_NO_TRAVERSE_MOUNTS) {
|
|
if (t->initial_filesystem_id != t->current_filesystem_id)
|
|
descend = 0;
|
|
}
|
|
t->descend = descend;
|
|
|
|
/*
|
|
* Honor nodump flag.
|
|
* If the file is marked with nodump flag, do not return this entry.
|
|
*/
|
|
if (a->flags & ARCHIVE_READDISK_HONOR_NODUMP) {
|
|
#if defined(HAVE_STRUCT_STAT_ST_FLAGS) && defined(UF_NODUMP)
|
|
if (st->st_flags & UF_NODUMP)
|
|
return (ARCHIVE_RETRY);
|
|
#elif (defined(FS_IOC_GETFLAGS) && defined(FS_NODUMP_FL) && \
|
|
defined(HAVE_WORKING_FS_IOC_GETFLAGS)) || \
|
|
(defined(EXT2_IOC_GETFLAGS) && defined(EXT2_NODUMP_FL) && \
|
|
defined(HAVE_WORKING_EXT2_IOC_GETFLAGS))
|
|
if (S_ISREG(st->st_mode) || S_ISDIR(st->st_mode)) {
|
|
int stflags;
|
|
|
|
t->entry_fd = open_on_current_dir(t,
|
|
tree_current_access_path(t),
|
|
O_RDONLY | O_NONBLOCK | O_CLOEXEC);
|
|
__archive_ensure_cloexec_flag(t->entry_fd);
|
|
if (t->entry_fd >= 0) {
|
|
r = ioctl(t->entry_fd,
|
|
#ifdef FS_IOC_GETFLAGS
|
|
FS_IOC_GETFLAGS,
|
|
#else
|
|
EXT2_IOC_GETFLAGS,
|
|
#endif
|
|
&stflags);
|
|
#ifdef FS_NODUMP_FL
|
|
if (r == 0 && (stflags & FS_NODUMP_FL) != 0)
|
|
#else
|
|
if (r == 0 && (stflags & EXT2_NODUMP_FL) != 0)
|
|
#endif
|
|
return (ARCHIVE_RETRY);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
archive_entry_copy_stat(entry, st);
|
|
|
|
/* Save the times to be restored. This must be in before
|
|
* calling archive_read_disk_descend() or any chance of it,
|
|
* especially, invoking a callback. */
|
|
t->restore_time.mtime = archive_entry_mtime(entry);
|
|
t->restore_time.mtime_nsec = archive_entry_mtime_nsec(entry);
|
|
t->restore_time.atime = archive_entry_atime(entry);
|
|
t->restore_time.atime_nsec = archive_entry_atime_nsec(entry);
|
|
t->restore_time.filetype = archive_entry_filetype(entry);
|
|
t->restore_time.noatime = t->current_filesystem->noatime;
|
|
|
|
/*
|
|
* Perform time matching.
|
|
*/
|
|
if (a->matching) {
|
|
r = archive_match_time_excluded(a->matching, entry);
|
|
if (r < 0) {
|
|
archive_set_error(&(a->archive), errno,
|
|
"Failed : %s", archive_error_string(a->matching));
|
|
return (r);
|
|
}
|
|
if (r) {
|
|
if (a->excluded_cb_func)
|
|
a->excluded_cb_func(&(a->archive),
|
|
a->excluded_cb_data, entry);
|
|
return (ARCHIVE_RETRY);
|
|
}
|
|
}
|
|
|
|
/* Lookup uname/gname */
|
|
name = archive_read_disk_uname(&(a->archive), archive_entry_uid(entry));
|
|
if (name != NULL)
|
|
archive_entry_copy_uname(entry, name);
|
|
name = archive_read_disk_gname(&(a->archive), archive_entry_gid(entry));
|
|
if (name != NULL)
|
|
archive_entry_copy_gname(entry, name);
|
|
|
|
/*
|
|
* Perform owner matching.
|
|
*/
|
|
if (a->matching) {
|
|
r = archive_match_owner_excluded(a->matching, entry);
|
|
if (r < 0) {
|
|
archive_set_error(&(a->archive), errno,
|
|
"Failed : %s", archive_error_string(a->matching));
|
|
return (r);
|
|
}
|
|
if (r) {
|
|
if (a->excluded_cb_func)
|
|
a->excluded_cb_func(&(a->archive),
|
|
a->excluded_cb_data, entry);
|
|
return (ARCHIVE_RETRY);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invoke a meta data filter callback.
|
|
*/
|
|
if (a->metadata_filter_func) {
|
|
if (!a->metadata_filter_func(&(a->archive),
|
|
a->metadata_filter_data, entry))
|
|
return (ARCHIVE_RETRY);
|
|
}
|
|
|
|
/*
|
|
* Populate the archive_entry with metadata from the disk.
|
|
*/
|
|
archive_entry_copy_sourcepath(entry, tree_current_access_path(t));
|
|
r = archive_read_disk_entry_from_file(&(a->archive), entry,
|
|
t->entry_fd, st);
|
|
|
|
return (r);
|
|
}
|
|
|
|
static int
|
|
_archive_read_next_header(struct archive *_a, struct archive_entry **entryp)
|
|
{
|
|
int ret;
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
*entryp = NULL;
|
|
ret = _archive_read_next_header2(_a, a->entry);
|
|
*entryp = a->entry;
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
_archive_read_next_header2(struct archive *_a, struct archive_entry *entry)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
struct tree *t;
|
|
int r;
|
|
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
|
|
"archive_read_next_header2");
|
|
|
|
t = a->tree;
|
|
if (t->entry_fd >= 0) {
|
|
close_and_restore_time(t->entry_fd, t, &t->restore_time);
|
|
t->entry_fd = -1;
|
|
}
|
|
|
|
for (;;) {
|
|
r = next_entry(a, t, entry);
|
|
if (t->entry_fd >= 0) {
|
|
close(t->entry_fd);
|
|
t->entry_fd = -1;
|
|
}
|
|
|
|
if (r == ARCHIVE_RETRY) {
|
|
archive_entry_clear(entry);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Return to the initial directory. */
|
|
tree_enter_initial_dir(t);
|
|
|
|
/*
|
|
* EOF and FATAL are persistent at this layer. By
|
|
* modifying the state, we guarantee that future calls to
|
|
* read a header or read data will fail.
|
|
*/
|
|
switch (r) {
|
|
case ARCHIVE_EOF:
|
|
a->archive.state = ARCHIVE_STATE_EOF;
|
|
break;
|
|
case ARCHIVE_OK:
|
|
case ARCHIVE_WARN:
|
|
/* Overwrite the sourcepath based on the initial directory. */
|
|
archive_entry_copy_sourcepath(entry, tree_current_path(t));
|
|
t->entry_total = 0;
|
|
if (archive_entry_filetype(entry) == AE_IFREG) {
|
|
t->nlink = archive_entry_nlink(entry);
|
|
t->entry_remaining_bytes = archive_entry_size(entry);
|
|
t->entry_eof = (t->entry_remaining_bytes == 0)? 1: 0;
|
|
if (!t->entry_eof &&
|
|
setup_sparse(a, entry) != ARCHIVE_OK)
|
|
return (ARCHIVE_FATAL);
|
|
} else {
|
|
t->entry_remaining_bytes = 0;
|
|
t->entry_eof = 1;
|
|
}
|
|
a->archive.state = ARCHIVE_STATE_DATA;
|
|
break;
|
|
case ARCHIVE_RETRY:
|
|
break;
|
|
case ARCHIVE_FATAL:
|
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
|
break;
|
|
}
|
|
|
|
__archive_reset_read_data(&a->archive);
|
|
return (r);
|
|
}
|
|
|
|
static int
|
|
setup_sparse(struct archive_read_disk *a, struct archive_entry *entry)
|
|
{
|
|
struct tree *t = a->tree;
|
|
int64_t length, offset;
|
|
int i;
|
|
|
|
t->sparse_count = archive_entry_sparse_reset(entry);
|
|
if (t->sparse_count+1 > t->sparse_list_size) {
|
|
free(t->sparse_list);
|
|
t->sparse_list_size = t->sparse_count + 1;
|
|
t->sparse_list = malloc(sizeof(t->sparse_list[0]) *
|
|
t->sparse_list_size);
|
|
if (t->sparse_list == NULL) {
|
|
t->sparse_list_size = 0;
|
|
archive_set_error(&a->archive, ENOMEM,
|
|
"Can't allocate data");
|
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
|
return (ARCHIVE_FATAL);
|
|
}
|
|
}
|
|
for (i = 0; i < t->sparse_count; i++) {
|
|
archive_entry_sparse_next(entry, &offset, &length);
|
|
t->sparse_list[i].offset = offset;
|
|
t->sparse_list[i].length = length;
|
|
}
|
|
if (i == 0) {
|
|
t->sparse_list[i].offset = 0;
|
|
t->sparse_list[i].length = archive_entry_size(entry);
|
|
} else {
|
|
t->sparse_list[i].offset = archive_entry_size(entry);
|
|
t->sparse_list[i].length = 0;
|
|
}
|
|
t->current_sparse = t->sparse_list;
|
|
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
int
|
|
archive_read_disk_set_matching(struct archive *_a, struct archive *_ma,
|
|
void (*_excluded_func)(struct archive *, void *, struct archive_entry *),
|
|
void *_client_data)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_ANY, "archive_read_disk_set_matching");
|
|
a->matching = _ma;
|
|
a->excluded_cb_func = _excluded_func;
|
|
a->excluded_cb_data = _client_data;
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
int
|
|
archive_read_disk_set_metadata_filter_callback(struct archive *_a,
|
|
int (*_metadata_filter_func)(struct archive *, void *,
|
|
struct archive_entry *), void *_client_data)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY,
|
|
"archive_read_disk_set_metadata_filter_callback");
|
|
|
|
a->metadata_filter_func = _metadata_filter_func;
|
|
a->metadata_filter_data = _client_data;
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
int
|
|
archive_read_disk_can_descend(struct archive *_a)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
struct tree *t = a->tree;
|
|
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
|
|
"archive_read_disk_can_descend");
|
|
|
|
return (t->visit_type == TREE_REGULAR && t->descend);
|
|
}
|
|
|
|
/*
|
|
* Called by the client to mark the directory just returned from
|
|
* tree_next() as needing to be visited.
|
|
*/
|
|
int
|
|
archive_read_disk_descend(struct archive *_a)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
struct tree *t = a->tree;
|
|
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
|
|
"archive_read_disk_descend");
|
|
|
|
if (t->visit_type != TREE_REGULAR || !t->descend)
|
|
return (ARCHIVE_OK);
|
|
|
|
if (tree_current_is_physical_dir(t)) {
|
|
tree_push(t, t->basename, t->current_filesystem_id,
|
|
t->lst.st_dev, t->lst.st_ino, &t->restore_time);
|
|
t->stack->flags |= isDir;
|
|
} else if (tree_current_is_dir(t)) {
|
|
tree_push(t, t->basename, t->current_filesystem_id,
|
|
t->st.st_dev, t->st.st_ino, &t->restore_time);
|
|
t->stack->flags |= isDirLink;
|
|
}
|
|
t->descend = 0;
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
int
|
|
archive_read_disk_open(struct archive *_a, const char *pathname)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
|
|
"archive_read_disk_open");
|
|
archive_clear_error(&a->archive);
|
|
|
|
return (_archive_read_disk_open(_a, pathname));
|
|
}
|
|
|
|
int
|
|
archive_read_disk_open_w(struct archive *_a, const wchar_t *pathname)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
struct archive_string path;
|
|
int ret;
|
|
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
|
|
ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
|
|
"archive_read_disk_open_w");
|
|
archive_clear_error(&a->archive);
|
|
|
|
/* Make a char string from a wchar_t string. */
|
|
archive_string_init(&path);
|
|
if (archive_string_append_from_wcs(&path, pathname,
|
|
wcslen(pathname)) != 0) {
|
|
if (errno == ENOMEM)
|
|
archive_set_error(&a->archive, ENOMEM,
|
|
"Can't allocate memory");
|
|
else
|
|
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
|
|
"Can't convert a path to a char string");
|
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
|
ret = ARCHIVE_FATAL;
|
|
} else
|
|
ret = _archive_read_disk_open(_a, path.s);
|
|
|
|
archive_string_free(&path);
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
_archive_read_disk_open(struct archive *_a, const char *pathname)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
|
|
if (a->tree != NULL)
|
|
a->tree = tree_reopen(a->tree, pathname,
|
|
a->flags & ARCHIVE_READDISK_RESTORE_ATIME);
|
|
else
|
|
a->tree = tree_open(pathname, a->symlink_mode,
|
|
a->flags & ARCHIVE_READDISK_RESTORE_ATIME);
|
|
if (a->tree == NULL) {
|
|
archive_set_error(&a->archive, ENOMEM,
|
|
"Can't allocate tar data");
|
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
|
return (ARCHIVE_FATAL);
|
|
}
|
|
a->archive.state = ARCHIVE_STATE_HEADER;
|
|
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
/*
|
|
* Return a current filesystem ID which is index of the filesystem entry
|
|
* you've visited through archive_read_disk.
|
|
*/
|
|
int
|
|
archive_read_disk_current_filesystem(struct archive *_a)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
|
|
"archive_read_disk_current_filesystem");
|
|
|
|
return (a->tree->current_filesystem_id);
|
|
}
|
|
|
|
static int
|
|
update_current_filesystem(struct archive_read_disk *a, int64_t dev)
|
|
{
|
|
struct tree *t = a->tree;
|
|
int i, fid;
|
|
|
|
if (t->current_filesystem != NULL &&
|
|
t->current_filesystem->dev == dev)
|
|
return (ARCHIVE_OK);
|
|
|
|
for (i = 0; i < t->max_filesystem_id; i++) {
|
|
if (t->filesystem_table[i].dev == dev) {
|
|
/* There is the filesystem ID we've already generated. */
|
|
t->current_filesystem_id = i;
|
|
t->current_filesystem = &(t->filesystem_table[i]);
|
|
return (ARCHIVE_OK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is the new filesystem which we have to generate a new ID for.
|
|
*/
|
|
fid = t->max_filesystem_id++;
|
|
if (t->max_filesystem_id > t->allocated_filesystem) {
|
|
size_t s;
|
|
void *p;
|
|
|
|
s = t->max_filesystem_id * 2;
|
|
p = realloc(t->filesystem_table,
|
|
s * sizeof(*t->filesystem_table));
|
|
if (p == NULL) {
|
|
archive_set_error(&a->archive, ENOMEM,
|
|
"Can't allocate tar data");
|
|
return (ARCHIVE_FATAL);
|
|
}
|
|
t->filesystem_table = (struct filesystem *)p;
|
|
t->allocated_filesystem = s;
|
|
}
|
|
t->current_filesystem_id = fid;
|
|
t->current_filesystem = &(t->filesystem_table[fid]);
|
|
t->current_filesystem->dev = dev;
|
|
t->current_filesystem->allocation_ptr = NULL;
|
|
t->current_filesystem->buff = NULL;
|
|
|
|
/* Setup the current filesystem properties which depend on
|
|
* platform specific. */
|
|
return (setup_current_filesystem(a));
|
|
}
|
|
|
|
/*
|
|
* Returns 1 if current filesystem is generated filesystem, 0 if it is not
|
|
* or -1 if it is unknown.
|
|
*/
|
|
int
|
|
archive_read_disk_current_filesystem_is_synthetic(struct archive *_a)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
|
|
"archive_read_disk_current_filesystem");
|
|
|
|
return (a->tree->current_filesystem->synthetic);
|
|
}
|
|
|
|
/*
|
|
* Returns 1 if current filesystem is remote filesystem, 0 if it is not
|
|
* or -1 if it is unknown.
|
|
*/
|
|
int
|
|
archive_read_disk_current_filesystem_is_remote(struct archive *_a)
|
|
{
|
|
struct archive_read_disk *a = (struct archive_read_disk *)_a;
|
|
|
|
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
|
|
"archive_read_disk_current_filesystem");
|
|
|
|
return (a->tree->current_filesystem->remote);
|
|
}
|
|
|
|
#if defined(_PC_REC_INCR_XFER_SIZE) && defined(_PC_REC_MAX_XFER_SIZE) &&\
|
|
defined(_PC_REC_MIN_XFER_SIZE) && defined(_PC_REC_XFER_ALIGN)
|
|
static int
|
|
get_xfer_size(struct tree *t, int fd, const char *path)
|
|
{
|
|
t->current_filesystem->xfer_align = -1;
|
|
errno = 0;
|
|
if (fd >= 0) {
|
|
t->current_filesystem->incr_xfer_size =
|
|
fpathconf(fd, _PC_REC_INCR_XFER_SIZE);
|
|
t->current_filesystem->max_xfer_size =
|
|
fpathconf(fd, _PC_REC_MAX_XFER_SIZE);
|
|
t->current_filesystem->min_xfer_size =
|
|
fpathconf(fd, _PC_REC_MIN_XFER_SIZE);
|
|
t->current_filesystem->xfer_align =
|
|
fpathconf(fd, _PC_REC_XFER_ALIGN);
|
|
} else if (path != NULL) {
|
|
t->current_filesystem->incr_xfer_size =
|
|
pathconf(path, _PC_REC_INCR_XFER_SIZE);
|
|
t->current_filesystem->max_xfer_size =
|
|
pathconf(path, _PC_REC_MAX_XFER_SIZE);
|
|
t->current_filesystem->min_xfer_size =
|
|
pathconf(path, _PC_REC_MIN_XFER_SIZE);
|
|
t->current_filesystem->xfer_align =
|
|
pathconf(path, _PC_REC_XFER_ALIGN);
|
|
}
|
|
/* At least we need an alignment size. */
|
|
if (t->current_filesystem->xfer_align == -1)
|
|
return ((errno == EINVAL)?1:-1);
|
|
else
|
|
return (0);
|
|
}
|
|
#else
|
|
static int
|
|
get_xfer_size(struct tree *t, int fd, const char *path)
|
|
{
|
|
(void)t; /* UNUSED */
|
|
(void)fd; /* UNUSED */
|
|
(void)path; /* UNUSED */
|
|
return (1);/* Not supported */
|
|
}
|
|
#endif
|
|
|
|
#if defined(HAVE_STATFS) && defined(HAVE_FSTATFS) && defined(MNT_LOCAL) \
|
|
&& !defined(ST_LOCAL)
|
|
|
|
/*
|
|
* Gather current filesystem properties on FreeBSD, OpenBSD and Mac OS X.
|
|
*/
|
|
static int
|
|
setup_current_filesystem(struct archive_read_disk *a)
|
|
{
|
|
struct tree *t = a->tree;
|
|
struct statfs sfs;
|
|
#if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC)
|
|
/* TODO: configure should set GETVFSBYNAME_ARG_TYPE to make
|
|
* this accurate; some platforms have both and we need the one that's
|
|
* used by getvfsbyname()
|
|
*
|
|
* Then the following would become:
|
|
* #if defined(GETVFSBYNAME_ARG_TYPE)
|
|
* GETVFSBYNAME_ARG_TYPE vfc;
|
|
* #endif
|
|
*/
|
|
# if defined(HAVE_STRUCT_XVFSCONF)
|
|
struct xvfsconf vfc;
|
|
# else
|
|
struct vfsconf vfc;
|
|
# endif
|
|
#endif
|
|
int r, xr = 0;
|
|
#if !defined(HAVE_STRUCT_STATFS_F_NAMEMAX)
|
|
long nm;
|
|
#endif
|
|
|
|
t->current_filesystem->synthetic = -1;
|
|
t->current_filesystem->remote = -1;
|
|
if (tree_current_is_symblic_link_target(t)) {
|
|
#if defined(HAVE_OPENAT)
|
|
/*
|
|
* Get file system statistics on any directory
|
|
* where current is.
|
|
*/
|
|
int fd = openat(tree_current_dir_fd(t),
|
|
tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
|
|
__archive_ensure_cloexec_flag(fd);
|
|
if (fd < 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"openat failed");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
r = fstatfs(fd, &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, fd, NULL);
|
|
close(fd);
|
|
#else
|
|
if (tree_enter_working_dir(t) != 0) {
|
|
archive_set_error(&a->archive, errno, "fchdir failed");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
r = statfs(tree_current_access_path(t), &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, -1, tree_current_access_path(t));
|
|
#endif
|
|
} else {
|
|
r = fstatfs(tree_current_dir_fd(t), &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
|
|
}
|
|
if (r == -1 || xr == -1) {
|
|
archive_set_error(&a->archive, errno, "statfs failed");
|
|
return (ARCHIVE_FAILED);
|
|
} else if (xr == 1) {
|
|
/* pathconf(_PC_REX_*) operations are not supported. */
|
|
t->current_filesystem->xfer_align = sfs.f_bsize;
|
|
t->current_filesystem->max_xfer_size = -1;
|
|
t->current_filesystem->min_xfer_size = sfs.f_iosize;
|
|
t->current_filesystem->incr_xfer_size = sfs.f_iosize;
|
|
}
|
|
if (sfs.f_flags & MNT_LOCAL)
|
|
t->current_filesystem->remote = 0;
|
|
else
|
|
t->current_filesystem->remote = 1;
|
|
|
|
#if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC)
|
|
r = getvfsbyname(sfs.f_fstypename, &vfc);
|
|
if (r == -1) {
|
|
archive_set_error(&a->archive, errno, "getvfsbyname failed");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
if (vfc.vfc_flags & VFCF_SYNTHETIC)
|
|
t->current_filesystem->synthetic = 1;
|
|
else
|
|
t->current_filesystem->synthetic = 0;
|
|
#endif
|
|
|
|
#if defined(MNT_NOATIME)
|
|
if (sfs.f_flags & MNT_NOATIME)
|
|
t->current_filesystem->noatime = 1;
|
|
else
|
|
#endif
|
|
t->current_filesystem->noatime = 0;
|
|
|
|
#if defined(USE_READDIR_R)
|
|
/* Set maximum filename length. */
|
|
#if defined(HAVE_STRUCT_STATFS_F_NAMEMAX)
|
|
t->current_filesystem->name_max = sfs.f_namemax;
|
|
#else
|
|
# if defined(_PC_NAME_MAX)
|
|
/* Mac OS X does not have f_namemax in struct statfs. */
|
|
if (tree_current_is_symblic_link_target(t)) {
|
|
if (tree_enter_working_dir(t) != 0) {
|
|
archive_set_error(&a->archive, errno, "fchdir failed");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
nm = pathconf(tree_current_access_path(t), _PC_NAME_MAX);
|
|
} else
|
|
nm = fpathconf(tree_current_dir_fd(t), _PC_NAME_MAX);
|
|
# else
|
|
nm = -1;
|
|
# endif
|
|
if (nm == -1)
|
|
t->current_filesystem->name_max = NAME_MAX;
|
|
else
|
|
t->current_filesystem->name_max = nm;
|
|
#endif
|
|
#endif /* USE_READDIR_R */
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
#elif (defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS)) && defined(ST_LOCAL)
|
|
|
|
/*
|
|
* Gather current filesystem properties on NetBSD
|
|
*/
|
|
static int
|
|
setup_current_filesystem(struct archive_read_disk *a)
|
|
{
|
|
struct tree *t = a->tree;
|
|
struct statvfs sfs;
|
|
int r, xr = 0;
|
|
|
|
t->current_filesystem->synthetic = -1;
|
|
if (tree_enter_working_dir(t) != 0) {
|
|
archive_set_error(&a->archive, errno, "fchdir failed");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
if (tree_current_is_symblic_link_target(t)) {
|
|
r = statvfs(tree_current_access_path(t), &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, -1, tree_current_access_path(t));
|
|
} else {
|
|
#ifdef HAVE_FSTATVFS
|
|
r = fstatvfs(tree_current_dir_fd(t), &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
|
|
#else
|
|
r = statvfs(".", &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, -1, ".");
|
|
#endif
|
|
}
|
|
if (r == -1 || xr == -1) {
|
|
t->current_filesystem->remote = -1;
|
|
archive_set_error(&a->archive, errno, "statvfs failed");
|
|
return (ARCHIVE_FAILED);
|
|
} else if (xr == 1) {
|
|
/* Usually come here unless NetBSD supports _PC_REC_XFER_ALIGN
|
|
* for pathconf() function. */
|
|
t->current_filesystem->xfer_align = sfs.f_frsize;
|
|
t->current_filesystem->max_xfer_size = -1;
|
|
#if defined(HAVE_STRUCT_STATVFS_F_IOSIZE)
|
|
t->current_filesystem->min_xfer_size = sfs.f_iosize;
|
|
t->current_filesystem->incr_xfer_size = sfs.f_iosize;
|
|
#else
|
|
t->current_filesystem->min_xfer_size = sfs.f_bsize;
|
|
t->current_filesystem->incr_xfer_size = sfs.f_bsize;
|
|
#endif
|
|
}
|
|
if (sfs.f_flag & ST_LOCAL)
|
|
t->current_filesystem->remote = 0;
|
|
else
|
|
t->current_filesystem->remote = 1;
|
|
|
|
#if defined(ST_NOATIME)
|
|
if (sfs.f_flag & ST_NOATIME)
|
|
t->current_filesystem->noatime = 1;
|
|
else
|
|
#endif
|
|
t->current_filesystem->noatime = 0;
|
|
|
|
/* Set maximum filename length. */
|
|
t->current_filesystem->name_max = sfs.f_namemax;
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
#elif defined(HAVE_SYS_STATFS_H) && defined(HAVE_LINUX_MAGIC_H) &&\
|
|
defined(HAVE_STATFS) && defined(HAVE_FSTATFS)
|
|
/*
|
|
* Note: statfs is deprecated since LSB 3.2
|
|
*/
|
|
|
|
#ifndef CIFS_SUPER_MAGIC
|
|
#define CIFS_SUPER_MAGIC 0xFF534D42
|
|
#endif
|
|
#ifndef DEVFS_SUPER_MAGIC
|
|
#define DEVFS_SUPER_MAGIC 0x1373
|
|
#endif
|
|
|
|
/*
|
|
* Gather current filesystem properties on Linux
|
|
*/
|
|
static int
|
|
setup_current_filesystem(struct archive_read_disk *a)
|
|
{
|
|
struct tree *t = a->tree;
|
|
struct statfs sfs;
|
|
#if defined(HAVE_STATVFS)
|
|
struct statvfs svfs;
|
|
#endif
|
|
int r, vr = 0, xr = 0;
|
|
|
|
if (tree_current_is_symblic_link_target(t)) {
|
|
#if defined(HAVE_OPENAT)
|
|
/*
|
|
* Get file system statistics on any directory
|
|
* where current is.
|
|
*/
|
|
int fd = openat(tree_current_dir_fd(t),
|
|
tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
|
|
__archive_ensure_cloexec_flag(fd);
|
|
if (fd < 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"openat failed");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
#if defined(HAVE_FSTATVFS)
|
|
vr = fstatvfs(fd, &svfs);/* for f_flag, mount flags */
|
|
#endif
|
|
r = fstatfs(fd, &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, fd, NULL);
|
|
close(fd);
|
|
#else
|
|
if (tree_enter_working_dir(t) != 0) {
|
|
archive_set_error(&a->archive, errno, "fchdir failed");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
#if defined(HAVE_STATVFS)
|
|
vr = statvfs(tree_current_access_path(t), &svfs);
|
|
#endif
|
|
r = statfs(tree_current_access_path(t), &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, -1, tree_current_access_path(t));
|
|
#endif
|
|
} else {
|
|
#ifdef HAVE_FSTATFS
|
|
#if defined(HAVE_FSTATVFS)
|
|
vr = fstatvfs(tree_current_dir_fd(t), &svfs);
|
|
#endif
|
|
r = fstatfs(tree_current_dir_fd(t), &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
|
|
#else
|
|
if (tree_enter_working_dir(t) != 0) {
|
|
archive_set_error(&a->archive, errno, "fchdir failed");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
#if defined(HAVE_STATVFS)
|
|
vr = statvfs(".", &svfs);
|
|
#endif
|
|
r = statfs(".", &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, -1, ".");
|
|
#endif
|
|
}
|
|
if (r == -1 || xr == -1 || vr == -1) {
|
|
t->current_filesystem->synthetic = -1;
|
|
t->current_filesystem->remote = -1;
|
|
archive_set_error(&a->archive, errno, "statfs failed");
|
|
return (ARCHIVE_FAILED);
|
|
} else if (xr == 1) {
|
|
/* pathconf(_PC_REX_*) operations are not supported. */
|
|
#if defined(HAVE_STATVFS)
|
|
t->current_filesystem->xfer_align = svfs.f_frsize;
|
|
t->current_filesystem->max_xfer_size = -1;
|
|
t->current_filesystem->min_xfer_size = svfs.f_bsize;
|
|
t->current_filesystem->incr_xfer_size = svfs.f_bsize;
|
|
#else
|
|
t->current_filesystem->xfer_align = sfs.f_frsize;
|
|
t->current_filesystem->max_xfer_size = -1;
|
|
t->current_filesystem->min_xfer_size = sfs.f_bsize;
|
|
t->current_filesystem->incr_xfer_size = sfs.f_bsize;
|
|
#endif
|
|
}
|
|
switch (sfs.f_type) {
|
|
case AFS_SUPER_MAGIC:
|
|
case CIFS_SUPER_MAGIC:
|
|
case CODA_SUPER_MAGIC:
|
|
case NCP_SUPER_MAGIC:/* NetWare */
|
|
case NFS_SUPER_MAGIC:
|
|
case SMB_SUPER_MAGIC:
|
|
t->current_filesystem->remote = 1;
|
|
t->current_filesystem->synthetic = 0;
|
|
break;
|
|
case DEVFS_SUPER_MAGIC:
|
|
case PROC_SUPER_MAGIC:
|
|
case USBDEVICE_SUPER_MAGIC:
|
|
t->current_filesystem->remote = 0;
|
|
t->current_filesystem->synthetic = 1;
|
|
break;
|
|
default:
|
|
t->current_filesystem->remote = 0;
|
|
t->current_filesystem->synthetic = 0;
|
|
break;
|
|
}
|
|
|
|
#if defined(ST_NOATIME)
|
|
#if defined(HAVE_STATVFS)
|
|
if (svfs.f_flag & ST_NOATIME)
|
|
#else
|
|
if (sfs.f_flag & ST_NOATIME)
|
|
#endif
|
|
t->current_filesystem->noatime = 1;
|
|
else
|
|
#endif
|
|
t->current_filesystem->noatime = 0;
|
|
|
|
#if defined(USE_READDIR_R)
|
|
/* Set maximum filename length. */
|
|
t->current_filesystem->name_max = sfs.f_namelen;
|
|
#endif
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
#elif defined(HAVE_SYS_STATVFS_H) &&\
|
|
(defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS))
|
|
|
|
/*
|
|
* Gather current filesystem properties on other posix platform.
|
|
*/
|
|
static int
|
|
setup_current_filesystem(struct archive_read_disk *a)
|
|
{
|
|
struct tree *t = a->tree;
|
|
struct statvfs sfs;
|
|
int r, xr = 0;
|
|
|
|
t->current_filesystem->synthetic = -1;/* Not supported */
|
|
t->current_filesystem->remote = -1;/* Not supported */
|
|
if (tree_current_is_symblic_link_target(t)) {
|
|
#if defined(HAVE_OPENAT)
|
|
/*
|
|
* Get file system statistics on any directory
|
|
* where current is.
|
|
*/
|
|
int fd = openat(tree_current_dir_fd(t),
|
|
tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
|
|
__archive_ensure_cloexec_flag(fd);
|
|
if (fd < 0) {
|
|
archive_set_error(&a->archive, errno,
|
|
"openat failed");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
r = fstatvfs(fd, &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, fd, NULL);
|
|
close(fd);
|
|
#else
|
|
if (tree_enter_working_dir(t) != 0) {
|
|
archive_set_error(&a->archive, errno, "fchdir failed");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
r = statvfs(tree_current_access_path(t), &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, -1, tree_current_access_path(t));
|
|
#endif
|
|
} else {
|
|
#ifdef HAVE_FSTATVFS
|
|
r = fstatvfs(tree_current_dir_fd(t), &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
|
|
#else
|
|
if (tree_enter_working_dir(t) != 0) {
|
|
archive_set_error(&a->archive, errno, "fchdir failed");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
r = statvfs(".", &sfs);
|
|
if (r == 0)
|
|
xr = get_xfer_size(t, -1, ".");
|
|
#endif
|
|
}
|
|
if (r == -1 || xr == -1) {
|
|
t->current_filesystem->synthetic = -1;
|
|
t->current_filesystem->remote = -1;
|
|
archive_set_error(&a->archive, errno, "statvfs failed");
|
|
return (ARCHIVE_FAILED);
|
|
} else if (xr == 1) {
|
|
/* pathconf(_PC_REX_*) operations are not supported. */
|
|
t->current_filesystem->xfer_align = sfs.f_frsize;
|
|
t->current_filesystem->max_xfer_size = -1;
|
|
t->current_filesystem->min_xfer_size = sfs.f_bsize;
|
|
t->current_filesystem->incr_xfer_size = sfs.f_bsize;
|
|
}
|
|
|
|
#if defined(ST_NOATIME)
|
|
if (sfs.f_flag & ST_NOATIME)
|
|
t->current_filesystem->noatime = 1;
|
|
else
|
|
#endif
|
|
t->current_filesystem->noatime = 0;
|
|
|
|
#if defined(USE_READDIR_R)
|
|
/* Set maximum filename length. */
|
|
t->current_filesystem->name_max = sfs.f_namemax;
|
|
#endif
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
#else
|
|
|
|
/*
|
|
* Generic: Gather current filesystem properties.
|
|
* TODO: Is this generic function really needed?
|
|
*/
|
|
static int
|
|
setup_current_filesystem(struct archive_read_disk *a)
|
|
{
|
|
struct tree *t = a->tree;
|
|
#if defined(_PC_NAME_MAX) && defined(USE_READDIR_R)
|
|
long nm;
|
|
#endif
|
|
t->current_filesystem->synthetic = -1;/* Not supported */
|
|
t->current_filesystem->remote = -1;/* Not supported */
|
|
t->current_filesystem->noatime = 0;
|
|
(void)get_xfer_size(t, -1, ".");/* Dummy call to avoid build error. */
|
|
t->current_filesystem->xfer_align = -1;/* Unknown */
|
|
t->current_filesystem->max_xfer_size = -1;
|
|
t->current_filesystem->min_xfer_size = -1;
|
|
t->current_filesystem->incr_xfer_size = -1;
|
|
|
|
#if defined(USE_READDIR_R)
|
|
/* Set maximum filename length. */
|
|
# if defined(_PC_NAME_MAX)
|
|
if (tree_current_is_symblic_link_target(t)) {
|
|
if (tree_enter_working_dir(t) != 0) {
|
|
archive_set_error(&a->archive, errno, "fchdir failed");
|
|
return (ARCHIVE_FAILED);
|
|
}
|
|
nm = pathconf(tree_current_access_path(t), _PC_NAME_MAX);
|
|
} else
|
|
nm = fpathconf(tree_current_dir_fd(t), _PC_NAME_MAX);
|
|
if (nm == -1)
|
|
# endif /* _PC_NAME_MAX */
|
|
/*
|
|
* Some systems (HP-UX or others?) incorrectly defined
|
|
* NAME_MAX macro to be a smaller value.
|
|
*/
|
|
# if defined(NAME_MAX) && NAME_MAX >= 255
|
|
t->current_filesystem->name_max = NAME_MAX;
|
|
# else
|
|
/* No way to get a trusted value of maximum filename
|
|
* length. */
|
|
t->current_filesystem->name_max = PATH_MAX;
|
|
# endif /* NAME_MAX */
|
|
# if defined(_PC_NAME_MAX)
|
|
else
|
|
t->current_filesystem->name_max = nm;
|
|
# endif /* _PC_NAME_MAX */
|
|
#endif /* USE_READDIR_R */
|
|
return (ARCHIVE_OK);
|
|
}
|
|
|
|
#endif
|
|
|
|
static int
|
|
close_and_restore_time(int fd, struct tree *t, struct restore_time *rt)
|
|
{
|
|
#ifndef HAVE_UTIMES
|
|
(void)t; /* UNUSED */
|
|
(void)rt; /* UNUSED */
|
|
return (close(fd));
|
|
#else
|
|
#if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__)
|
|
struct timespec timespecs[2];
|
|
#endif
|
|
struct timeval times[2];
|
|
|
|
if ((t->flags & needsRestoreTimes) == 0 || rt->noatime) {
|
|
if (fd >= 0)
|
|
return (close(fd));
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
#if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__)
|
|
timespecs[1].tv_sec = rt->mtime;
|
|
timespecs[1].tv_nsec = rt->mtime_nsec;
|
|
|
|
timespecs[0].tv_sec = rt->atime;
|
|
timespecs[0].tv_nsec = rt->atime_nsec;
|
|
/* futimens() is defined in POSIX.1-2008. */
|
|
if (futimens(fd, timespecs) == 0)
|
|
return (close(fd));
|
|
#endif
|
|
|
|
times[1].tv_sec = rt->mtime;
|
|
times[1].tv_usec = rt->mtime_nsec / 1000;
|
|
|
|
times[0].tv_sec = rt->atime;
|
|
times[0].tv_usec = rt->atime_nsec / 1000;
|
|
|
|
#if !defined(HAVE_FUTIMENS) && defined(HAVE_FUTIMES) && !defined(__CYGWIN__)
|
|
if (futimes(fd, times) == 0)
|
|
return (close(fd));
|
|
#endif
|
|
close(fd);
|
|
#if defined(HAVE_FUTIMESAT)
|
|
if (futimesat(tree_current_dir_fd(t), rt->name, times) == 0)
|
|
return (0);
|
|
#endif
|
|
#ifdef HAVE_LUTIMES
|
|
if (lutimes(rt->name, times) != 0)
|
|
#else
|
|
if (AE_IFLNK != rt->filetype && utimes(rt->name, times) != 0)
|
|
#endif
|
|
return (-1);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
open_on_current_dir(struct tree *t, const char *path, int flags)
|
|
{
|
|
#ifdef HAVE_OPENAT
|
|
return (openat(tree_current_dir_fd(t), path, flags));
|
|
#else
|
|
if (tree_enter_working_dir(t) != 0)
|
|
return (-1);
|
|
return (open(path, flags));
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
tree_dup(int fd)
|
|
{
|
|
int new_fd;
|
|
#ifdef F_DUPFD_CLOEXEC
|
|
static volatile int can_dupfd_cloexec = 1;
|
|
|
|
if (can_dupfd_cloexec) {
|
|
new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 0);
|
|
if (new_fd != -1)
|
|
return (new_fd);
|
|
/* Linux 2.6.18 - 2.6.23 declare F_DUPFD_CLOEXEC,
|
|
* but it cannot be used. So we have to try dup(). */
|
|
/* We won't try F_DUPFD_CLOEXEC. */
|
|
can_dupfd_cloexec = 0;
|
|
}
|
|
#endif /* F_DUPFD_CLOEXEC */
|
|
new_fd = dup(fd);
|
|
__archive_ensure_cloexec_flag(new_fd);
|
|
return (new_fd);
|
|
}
|
|
|
|
/*
|
|
* Add a directory path to the current stack.
|
|
*/
|
|
static void
|
|
tree_push(struct tree *t, const char *path, int filesystem_id,
|
|
int64_t dev, int64_t ino, struct restore_time *rt)
|
|
{
|
|
struct tree_entry *te;
|
|
|
|
te = calloc(1, sizeof(*te));
|
|
te->next = t->stack;
|
|
te->parent = t->current;
|
|
if (te->parent)
|
|
te->depth = te->parent->depth + 1;
|
|
t->stack = te;
|
|
archive_string_init(&te->name);
|
|
te->symlink_parent_fd = -1;
|
|
archive_strcpy(&te->name, path);
|
|
te->flags = needsDescent | needsOpen | needsAscent;
|
|
te->filesystem_id = filesystem_id;
|
|
te->dev = dev;
|
|
te->ino = ino;
|
|
te->dirname_length = t->dirname_length;
|
|
te->restore_time.name = te->name.s;
|
|
if (rt != NULL) {
|
|
te->restore_time.mtime = rt->mtime;
|
|
te->restore_time.mtime_nsec = rt->mtime_nsec;
|
|
te->restore_time.atime = rt->atime;
|
|
te->restore_time.atime_nsec = rt->atime_nsec;
|
|
te->restore_time.filetype = rt->filetype;
|
|
te->restore_time.noatime = rt->noatime;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Append a name to the current dir path.
|
|
*/
|
|
static void
|
|
tree_append(struct tree *t, const char *name, size_t name_length)
|
|
{
|
|
size_t size_needed;
|
|
|
|
t->path.s[t->dirname_length] = '\0';
|
|
t->path.length = t->dirname_length;
|
|
/* Strip trailing '/' from name, unless entire name is "/". */
|
|
while (name_length > 1 && name[name_length - 1] == '/')
|
|
name_length--;
|
|
|
|
/* Resize pathname buffer as needed. */
|
|
size_needed = name_length + t->dirname_length + 2;
|
|
archive_string_ensure(&t->path, size_needed);
|
|
/* Add a separating '/' if it's needed. */
|
|
if (t->dirname_length > 0 && t->path.s[archive_strlen(&t->path)-1] != '/')
|
|
archive_strappend_char(&t->path, '/');
|
|
t->basename = t->path.s + archive_strlen(&t->path);
|
|
archive_strncat(&t->path, name, name_length);
|
|
t->restore_time.name = t->basename;
|
|
}
|
|
|
|
/*
|
|
* Open a directory tree for traversal.
|
|
*/
|
|
static struct tree *
|
|
tree_open(const char *path, int symlink_mode, int restore_time)
|
|
{
|
|
struct tree *t;
|
|
|
|
if ((t = calloc(1, sizeof(*t))) == NULL)
|
|
return (NULL);
|
|
archive_string_init(&t->path);
|
|
archive_string_ensure(&t->path, 31);
|
|
t->initial_symlink_mode = symlink_mode;
|
|
return (tree_reopen(t, path, restore_time));
|
|
}
|
|
|
|
static struct tree *
|
|
tree_reopen(struct tree *t, const char *path, int restore_time)
|
|
{
|
|
t->flags = (restore_time != 0)?needsRestoreTimes:0;
|
|
t->flags |= onInitialDir;
|
|
t->visit_type = 0;
|
|
t->tree_errno = 0;
|
|
t->dirname_length = 0;
|
|
t->depth = 0;
|
|
t->descend = 0;
|
|
t->current = NULL;
|
|
t->d = INVALID_DIR_HANDLE;
|
|
t->symlink_mode = t->initial_symlink_mode;
|
|
archive_string_empty(&t->path);
|
|
t->entry_fd = -1;
|
|
t->entry_eof = 0;
|
|
t->entry_remaining_bytes = 0;
|
|
t->initial_filesystem_id = -1;
|
|
|
|
/* First item is set up a lot like a symlink traversal. */
|
|
tree_push(t, path, 0, 0, 0, NULL);
|
|
t->stack->flags = needsFirstVisit;
|
|
t->maxOpenCount = t->openCount = 1;
|
|
t->initial_dir_fd = open(".", O_RDONLY | O_CLOEXEC);
|
|
__archive_ensure_cloexec_flag(t->initial_dir_fd);
|
|
t->working_dir_fd = tree_dup(t->initial_dir_fd);
|
|
return (t);
|
|
}
|
|
|
|
static int
|
|
tree_descent(struct tree *t)
|
|
{
|
|
int flag, new_fd, r = 0;
|
|
|
|
t->dirname_length = archive_strlen(&t->path);
|
|
flag = O_RDONLY | O_CLOEXEC;
|
|
#if defined(O_DIRECTORY)
|
|
flag |= O_DIRECTORY;
|
|
#endif
|
|
new_fd = open_on_current_dir(t, t->stack->name.s, flag);
|
|
__archive_ensure_cloexec_flag(new_fd);
|
|
if (new_fd < 0) {
|
|
t->tree_errno = errno;
|
|
r = TREE_ERROR_DIR;
|
|
} else {
|
|
t->depth++;
|
|
/* If it is a link, set up fd for the ascent. */
|
|
if (t->stack->flags & isDirLink) {
|
|
t->stack->symlink_parent_fd = t->working_dir_fd;
|
|
t->openCount++;
|
|
if (t->openCount > t->maxOpenCount)
|
|
t->maxOpenCount = t->openCount;
|
|
} else
|
|
close(t->working_dir_fd);
|
|
/* Renew the current working directory. */
|
|
t->working_dir_fd = new_fd;
|
|
t->flags &= ~onWorkingDir;
|
|
}
|
|
return (r);
|
|
}
|
|
|
|
/*
|
|
* We've finished a directory; ascend back to the parent.
|
|
*/
|
|
static int
|
|
tree_ascend(struct tree *t)
|
|
{
|
|
struct tree_entry *te;
|
|
int new_fd, r = 0, prev_dir_fd;
|
|
|
|
te = t->stack;
|
|
prev_dir_fd = t->working_dir_fd;
|
|
if (te->flags & isDirLink)
|
|
new_fd = te->symlink_parent_fd;
|
|
else {
|
|
new_fd = open_on_current_dir(t, "..", O_RDONLY | O_CLOEXEC);
|
|
__archive_ensure_cloexec_flag(new_fd);
|
|
}
|
|
if (new_fd < 0) {
|
|
t->tree_errno = errno;
|
|
r = TREE_ERROR_FATAL;
|
|
} else {
|
|
/* Renew the current working directory. */
|
|
t->working_dir_fd = new_fd;
|
|
t->flags &= ~onWorkingDir;
|
|
/* Current directory has been changed, we should
|
|
* close an fd of previous working directory. */
|
|
close_and_restore_time(prev_dir_fd, t, &te->restore_time);
|
|
if (te->flags & isDirLink) {
|
|
t->openCount--;
|
|
te->symlink_parent_fd = -1;
|
|
}
|
|
t->depth--;
|
|
}
|
|
return (r);
|
|
}
|
|
|
|
/*
|
|
* Return to the initial directory where tree_open() was performed.
|
|
*/
|
|
static int
|
|
tree_enter_initial_dir(struct tree *t)
|
|
{
|
|
int r = 0;
|
|
|
|
if ((t->flags & onInitialDir) == 0) {
|
|
r = fchdir(t->initial_dir_fd);
|
|
if (r == 0) {
|
|
t->flags &= ~onWorkingDir;
|
|
t->flags |= onInitialDir;
|
|
}
|
|
}
|
|
return (r);
|
|
}
|
|
|
|
/*
|
|
* Restore working directory of directory traversals.
|
|
*/
|
|
static int
|
|
tree_enter_working_dir(struct tree *t)
|
|
{
|
|
int r = 0;
|
|
|
|
/*
|
|
* Change the current directory if really needed.
|
|
* Sometimes this is unneeded when we did not do
|
|
* descent.
|
|
*/
|
|
if (t->depth > 0 && (t->flags & onWorkingDir) == 0) {
|
|
r = fchdir(t->working_dir_fd);
|
|
if (r == 0) {
|
|
t->flags &= ~onInitialDir;
|
|
t->flags |= onWorkingDir;
|
|
}
|
|
}
|
|
return (r);
|
|
}
|
|
|
|
static int
|
|
tree_current_dir_fd(struct tree *t)
|
|
{
|
|
return (t->working_dir_fd);
|
|
}
|
|
|
|
/*
|
|
* Pop the working stack.
|
|
*/
|
|
static void
|
|
tree_pop(struct tree *t)
|
|
{
|
|
struct tree_entry *te;
|
|
|
|
t->path.s[t->dirname_length] = '\0';
|
|
t->path.length = t->dirname_length;
|
|
if (t->stack == t->current && t->current != NULL)
|
|
t->current = t->current->parent;
|
|
te = t->stack;
|
|
t->stack = te->next;
|
|
t->dirname_length = te->dirname_length;
|
|
t->basename = t->path.s + t->dirname_length;
|
|
while (t->basename[0] == '/')
|
|
t->basename++;
|
|
archive_string_free(&te->name);
|
|
free(te);
|
|
}
|
|
|
|
/*
|
|
* Get the next item in the tree traversal.
|
|
*/
|
|
static int
|
|
tree_next(struct tree *t)
|
|
{
|
|
int r;
|
|
|
|
while (t->stack != NULL) {
|
|
/* If there's an open dir, get the next entry from there. */
|
|
if (t->d != INVALID_DIR_HANDLE) {
|
|
r = tree_dir_next_posix(t);
|
|
if (r == 0)
|
|
continue;
|
|
return (r);
|
|
}
|
|
|
|
if (t->stack->flags & needsFirstVisit) {
|
|
/* Top stack item needs a regular visit. */
|
|
t->current = t->stack;
|
|
tree_append(t, t->stack->name.s,
|
|
archive_strlen(&(t->stack->name)));
|
|
/* t->dirname_length = t->path_length; */
|
|
/* tree_pop(t); */
|
|
t->stack->flags &= ~needsFirstVisit;
|
|
return (t->visit_type = TREE_REGULAR);
|
|
} else if (t->stack->flags & needsDescent) {
|
|
/* Top stack item is dir to descend into. */
|
|
t->current = t->stack;
|
|
tree_append(t, t->stack->name.s,
|
|
archive_strlen(&(t->stack->name)));
|
|
t->stack->flags &= ~needsDescent;
|
|
r = tree_descent(t);
|
|
if (r != 0) {
|
|
tree_pop(t);
|
|
t->visit_type = r;
|
|
} else
|
|
t->visit_type = TREE_POSTDESCENT;
|
|
return (t->visit_type);
|
|
} else if (t->stack->flags & needsOpen) {
|
|
t->stack->flags &= ~needsOpen;
|
|
r = tree_dir_next_posix(t);
|
|
if (r == 0)
|
|
continue;
|
|
return (r);
|
|
} else if (t->stack->flags & needsAscent) {
|
|
/* Top stack item is dir and we're done with it. */
|
|
r = tree_ascend(t);
|
|
tree_pop(t);
|
|
t->visit_type = r != 0 ? r : TREE_POSTASCENT;
|
|
return (t->visit_type);
|
|
} else {
|
|
/* Top item on stack is dead. */
|
|
tree_pop(t);
|
|
t->flags &= ~hasLstat;
|
|
t->flags &= ~hasStat;
|
|
}
|
|
}
|
|
return (t->visit_type = 0);
|
|
}
|
|
|
|
static int
|
|
tree_dir_next_posix(struct tree *t)
|
|
{
|
|
int r;
|
|
const char *name;
|
|
size_t namelen;
|
|
|
|
if (t->d == NULL) {
|
|
#if defined(USE_READDIR_R)
|
|
size_t dirent_size;
|
|
#endif
|
|
|
|
#if defined(HAVE_FDOPENDIR)
|
|
t->d = fdopendir(tree_dup(t->working_dir_fd));
|
|
#else /* HAVE_FDOPENDIR */
|
|
if (tree_enter_working_dir(t) == 0) {
|
|
t->d = opendir(".");
|
|
#if HAVE_DIRFD || defined(dirfd)
|
|
__archive_ensure_cloexec_flag(dirfd(t->d));
|
|
#endif
|
|
}
|
|
#endif /* HAVE_FDOPENDIR */
|
|
if (t->d == NULL) {
|
|
r = tree_ascend(t); /* Undo "chdir" */
|
|
tree_pop(t);
|
|
t->tree_errno = errno;
|
|
t->visit_type = r != 0 ? r : TREE_ERROR_DIR;
|
|
return (t->visit_type);
|
|
}
|
|
#if defined(USE_READDIR_R)
|
|
dirent_size = offsetof(struct dirent, d_name) +
|
|
t->filesystem_table[t->current->filesystem_id].name_max + 1;
|
|
if (t->dirent == NULL || t->dirent_allocated < dirent_size) {
|
|
free(t->dirent);
|
|
t->dirent = malloc(dirent_size);
|
|
if (t->dirent == NULL) {
|
|
closedir(t->d);
|
|
t->d = INVALID_DIR_HANDLE;
|
|
(void)tree_ascend(t);
|
|
tree_pop(t);
|
|
t->tree_errno = ENOMEM;
|
|
t->visit_type = TREE_ERROR_DIR;
|
|
return (t->visit_type);
|
|
}
|
|
t->dirent_allocated = dirent_size;
|
|
}
|
|
#endif /* USE_READDIR_R */
|
|
}
|
|
for (;;) {
|
|
errno = 0;
|
|
#if defined(USE_READDIR_R)
|
|
r = readdir_r(t->d, t->dirent, &t->de);
|
|
#ifdef _AIX
|
|
/* Note: According to the man page, return value 9 indicates
|
|
* that the readdir_r was not successful and the error code
|
|
* is set to the global errno variable. And then if the end
|
|
* of directory entries was reached, the return value is 9
|
|
* and the third parameter is set to NULL and errno is
|
|
* unchanged. */
|
|
if (r == 9)
|
|
r = errno;
|
|
#endif /* _AIX */
|
|
if (r != 0 || t->de == NULL) {
|
|
#else
|
|
t->de = readdir(t->d);
|
|
if (t->de == NULL) {
|
|
r = errno;
|
|
#endif
|
|
closedir(t->d);
|
|
t->d = INVALID_DIR_HANDLE;
|
|
if (r != 0) {
|
|
t->tree_errno = r;
|
|
t->visit_type = TREE_ERROR_DIR;
|
|
return (t->visit_type);
|
|
} else
|
|
return (0);
|
|
}
|
|
name = t->de->d_name;
|
|
namelen = D_NAMELEN(t->de);
|
|
t->flags &= ~hasLstat;
|
|
t->flags &= ~hasStat;
|
|
if (name[0] == '.' && name[1] == '\0')
|
|
continue;
|
|
if (name[0] == '.' && name[1] == '.' && name[2] == '\0')
|
|
continue;
|
|
tree_append(t, name, namelen);
|
|
return (t->visit_type = TREE_REGULAR);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Get the stat() data for the entry just returned from tree_next().
|
|
*/
|
|
static const struct stat *
|
|
tree_current_stat(struct tree *t)
|
|
{
|
|
if (!(t->flags & hasStat)) {
|
|
#ifdef HAVE_FSTATAT
|
|
if (fstatat(tree_current_dir_fd(t),
|
|
tree_current_access_path(t), &t->st, 0) != 0)
|
|
#else
|
|
if (tree_enter_working_dir(t) != 0)
|
|
return NULL;
|
|
if (stat(tree_current_access_path(t), &t->st) != 0)
|
|
#endif
|
|
return NULL;
|
|
t->flags |= hasStat;
|
|
}
|
|
return (&t->st);
|
|
}
|
|
|
|
/*
|
|
* Get the lstat() data for the entry just returned from tree_next().
|
|
*/
|
|
static const struct stat *
|
|
tree_current_lstat(struct tree *t)
|
|
{
|
|
if (!(t->flags & hasLstat)) {
|
|
#ifdef HAVE_FSTATAT
|
|
if (fstatat(tree_current_dir_fd(t),
|
|
tree_current_access_path(t), &t->lst,
|
|
AT_SYMLINK_NOFOLLOW) != 0)
|
|
#else
|
|
if (tree_enter_working_dir(t) != 0)
|
|
return NULL;
|
|
if (lstat(tree_current_access_path(t), &t->lst) != 0)
|
|
#endif
|
|
return NULL;
|
|
t->flags |= hasLstat;
|
|
}
|
|
return (&t->lst);
|
|
}
|
|
|
|
/*
|
|
* Test whether current entry is a dir or link to a dir.
|
|
*/
|
|
static int
|
|
tree_current_is_dir(struct tree *t)
|
|
{
|
|
const struct stat *st;
|
|
/*
|
|
* If we already have lstat() info, then try some
|
|
* cheap tests to determine if this is a dir.
|
|
*/
|
|
if (t->flags & hasLstat) {
|
|
/* If lstat() says it's a dir, it must be a dir. */
|
|
st = tree_current_lstat(t);
|
|
if (st == NULL)
|
|
return 0;
|
|
if (S_ISDIR(st->st_mode))
|
|
return 1;
|
|
/* Not a dir; might be a link to a dir. */
|
|
/* If it's not a link, then it's not a link to a dir. */
|
|
if (!S_ISLNK(st->st_mode))
|
|
return 0;
|
|
/*
|
|
* It's a link, but we don't know what it's a link to,
|
|
* so we'll have to use stat().
|
|
*/
|
|
}
|
|
|
|
st = tree_current_stat(t);
|
|
/* If we can't stat it, it's not a dir. */
|
|
if (st == NULL)
|
|
return 0;
|
|
/* Use the definitive test. Hopefully this is cached. */
|
|
return (S_ISDIR(st->st_mode));
|
|
}
|
|
|
|
/*
|
|
* Test whether current entry is a physical directory. Usually, we
|
|
* already have at least one of stat() or lstat() in memory, so we
|
|
* use tricks to try to avoid an extra trip to the disk.
|
|
*/
|
|
static int
|
|
tree_current_is_physical_dir(struct tree *t)
|
|
{
|
|
const struct stat *st;
|
|
|
|
/*
|
|
* If stat() says it isn't a dir, then it's not a dir.
|
|
* If stat() data is cached, this check is free, so do it first.
|
|
*/
|
|
if (t->flags & hasStat) {
|
|
st = tree_current_stat(t);
|
|
if (st == NULL)
|
|
return (0);
|
|
if (!S_ISDIR(st->st_mode))
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Either stat() said it was a dir (in which case, we have
|
|
* to determine whether it's really a link to a dir) or
|
|
* stat() info wasn't available. So we use lstat(), which
|
|
* hopefully is already cached.
|
|
*/
|
|
|
|
st = tree_current_lstat(t);
|
|
/* If we can't stat it, it's not a dir. */
|
|
if (st == NULL)
|
|
return 0;
|
|
/* Use the definitive test. Hopefully this is cached. */
|
|
return (S_ISDIR(st->st_mode));
|
|
}
|
|
|
|
/*
|
|
* Test whether the same file has been in the tree as its parent.
|
|
*/
|
|
static int
|
|
tree_target_is_same_as_parent(struct tree *t, const struct stat *st)
|
|
{
|
|
struct tree_entry *te;
|
|
|
|
for (te = t->current->parent; te != NULL; te = te->parent) {
|
|
if (te->dev == (int64_t)st->st_dev &&
|
|
te->ino == (int64_t)st->st_ino)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Test whether the current file is symbolic link target and
|
|
* on the other filesystem.
|
|
*/
|
|
static int
|
|
tree_current_is_symblic_link_target(struct tree *t)
|
|
{
|
|
static const struct stat *lst, *st;
|
|
|
|
lst = tree_current_lstat(t);
|
|
st = tree_current_stat(t);
|
|
return (st != NULL && lst != NULL &&
|
|
(int64_t)st->st_dev == t->current_filesystem->dev &&
|
|
st->st_dev != lst->st_dev);
|
|
}
|
|
|
|
/*
|
|
* Return the access path for the entry just returned from tree_next().
|
|
*/
|
|
static const char *
|
|
tree_current_access_path(struct tree *t)
|
|
{
|
|
return (t->basename);
|
|
}
|
|
|
|
/*
|
|
* Return the full path for the entry just returned from tree_next().
|
|
*/
|
|
static const char *
|
|
tree_current_path(struct tree *t)
|
|
{
|
|
return (t->path.s);
|
|
}
|
|
|
|
/*
|
|
* Terminate the traversal.
|
|
*/
|
|
static void
|
|
tree_close(struct tree *t)
|
|
{
|
|
|
|
if (t == NULL)
|
|
return;
|
|
if (t->entry_fd >= 0) {
|
|
close_and_restore_time(t->entry_fd, t, &t->restore_time);
|
|
t->entry_fd = -1;
|
|
}
|
|
/* Close the handle of readdir(). */
|
|
if (t->d != INVALID_DIR_HANDLE) {
|
|
closedir(t->d);
|
|
t->d = INVALID_DIR_HANDLE;
|
|
}
|
|
/* Release anything remaining in the stack. */
|
|
while (t->stack != NULL) {
|
|
if (t->stack->flags & isDirLink)
|
|
close(t->stack->symlink_parent_fd);
|
|
tree_pop(t);
|
|
}
|
|
if (t->working_dir_fd >= 0) {
|
|
close(t->working_dir_fd);
|
|
t->working_dir_fd = -1;
|
|
}
|
|
if (t->initial_dir_fd >= 0) {
|
|
close(t->initial_dir_fd);
|
|
t->initial_dir_fd = -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release any resources.
|
|
*/
|
|
static void
|
|
tree_free(struct tree *t)
|
|
{
|
|
int i;
|
|
|
|
if (t == NULL)
|
|
return;
|
|
archive_string_free(&t->path);
|
|
#if defined(USE_READDIR_R)
|
|
free(t->dirent);
|
|
#endif
|
|
free(t->sparse_list);
|
|
for (i = 0; i < t->max_filesystem_id; i++)
|
|
free(t->filesystem_table[i].allocation_ptr);
|
|
free(t->filesystem_table);
|
|
free(t);
|
|
}
|
|
|
|
#endif
|