617 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			617 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| /// \file       lz_encoder.c
 | |
| /// \brief      LZ in window
 | |
| ///
 | |
| //  Authors:    Igor Pavlov
 | |
| //              Lasse Collin
 | |
| //
 | |
| //  This file has been put into the public domain.
 | |
| //  You can do whatever you want with this file.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include "lz_encoder.h"
 | |
| #include "lz_encoder_hash.h"
 | |
| 
 | |
| // See lz_encoder_hash.h. This is a bit hackish but avoids making
 | |
| // endianness a conditional in makefiles.
 | |
| #if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
 | |
| #	include "lz_encoder_hash_table.h"
 | |
| #endif
 | |
| 
 | |
| #include "memcmplen.h"
 | |
| 
 | |
| 
 | |
| typedef struct {
 | |
| 	/// LZ-based encoder e.g. LZMA
 | |
| 	lzma_lz_encoder lz;
 | |
| 
 | |
| 	/// History buffer and match finder
 | |
| 	lzma_mf mf;
 | |
| 
 | |
| 	/// Next coder in the chain
 | |
| 	lzma_next_coder next;
 | |
| } lzma_coder;
 | |
| 
 | |
| 
 | |
| /// \brief      Moves the data in the input window to free space for new data
 | |
| ///
 | |
| /// mf->buffer is a sliding input window, which keeps mf->keep_size_before
 | |
| /// bytes of input history available all the time. Now and then we need to
 | |
| /// "slide" the buffer to make space for the new data to the end of the
 | |
| /// buffer. At the same time, data older than keep_size_before is dropped.
 | |
| ///
 | |
| static void
 | |
| move_window(lzma_mf *mf)
 | |
| {
 | |
| 	// Align the move to a multiple of 16 bytes. Some LZ-based encoders
 | |
| 	// like LZMA use the lowest bits of mf->read_pos to know the
 | |
| 	// alignment of the uncompressed data. We also get better speed
 | |
| 	// for memmove() with aligned buffers.
 | |
| 	assert(mf->read_pos > mf->keep_size_before);
 | |
| 	const uint32_t move_offset
 | |
| 		= (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
 | |
| 
 | |
| 	assert(mf->write_pos > move_offset);
 | |
| 	const size_t move_size = mf->write_pos - move_offset;
 | |
| 
 | |
| 	assert(move_offset + move_size <= mf->size);
 | |
| 
 | |
| 	memmove(mf->buffer, mf->buffer + move_offset, move_size);
 | |
| 
 | |
| 	mf->offset += move_offset;
 | |
| 	mf->read_pos -= move_offset;
 | |
| 	mf->read_limit -= move_offset;
 | |
| 	mf->write_pos -= move_offset;
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief      Tries to fill the input window (mf->buffer)
 | |
| ///
 | |
| /// If we are the last encoder in the chain, our input data is in in[].
 | |
| /// Otherwise we call the next filter in the chain to process in[] and
 | |
| /// write its output to mf->buffer.
 | |
| ///
 | |
| /// This function must not be called once it has returned LZMA_STREAM_END.
 | |
| ///
 | |
| static lzma_ret
 | |
| fill_window(lzma_coder *coder, const lzma_allocator *allocator,
 | |
| 		const uint8_t *in, size_t *in_pos, size_t in_size,
 | |
| 		lzma_action action)
 | |
| {
 | |
| 	assert(coder->mf.read_pos <= coder->mf.write_pos);
 | |
| 
 | |
| 	// Move the sliding window if needed.
 | |
| 	if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
 | |
| 		move_window(&coder->mf);
 | |
| 
 | |
| 	// Maybe this is ugly, but lzma_mf uses uint32_t for most things
 | |
| 	// (which I find cleanest), but we need size_t here when filling
 | |
| 	// the history window.
 | |
| 	size_t write_pos = coder->mf.write_pos;
 | |
| 	lzma_ret ret;
 | |
| 	if (coder->next.code == NULL) {
 | |
| 		// Not using a filter, simply memcpy() as much as possible.
 | |
| 		lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
 | |
| 				&write_pos, coder->mf.size);
 | |
| 
 | |
| 		ret = action != LZMA_RUN && *in_pos == in_size
 | |
| 				? LZMA_STREAM_END : LZMA_OK;
 | |
| 
 | |
| 	} else {
 | |
| 		ret = coder->next.code(coder->next.coder, allocator,
 | |
| 				in, in_pos, in_size,
 | |
| 				coder->mf.buffer, &write_pos,
 | |
| 				coder->mf.size, action);
 | |
| 	}
 | |
| 
 | |
| 	coder->mf.write_pos = write_pos;
 | |
| 
 | |
| 	// Silence Valgrind. lzma_memcmplen() can read extra bytes
 | |
| 	// and Valgrind will give warnings if those bytes are uninitialized
 | |
| 	// because Valgrind cannot see that the values of the uninitialized
 | |
| 	// bytes are eventually ignored.
 | |
| 	memzero(coder->mf.buffer + write_pos, LZMA_MEMCMPLEN_EXTRA);
 | |
| 
 | |
| 	// If end of stream has been reached or flushing completed, we allow
 | |
| 	// the encoder to process all the input (that is, read_pos is allowed
 | |
| 	// to reach write_pos). Otherwise we keep keep_size_after bytes
 | |
| 	// available as prebuffer.
 | |
| 	if (ret == LZMA_STREAM_END) {
 | |
| 		assert(*in_pos == in_size);
 | |
| 		ret = LZMA_OK;
 | |
| 		coder->mf.action = action;
 | |
| 		coder->mf.read_limit = coder->mf.write_pos;
 | |
| 
 | |
| 	} else if (coder->mf.write_pos > coder->mf.keep_size_after) {
 | |
| 		// This needs to be done conditionally, because if we got
 | |
| 		// only little new input, there may be too little input
 | |
| 		// to do any encoding yet.
 | |
| 		coder->mf.read_limit = coder->mf.write_pos
 | |
| 				- coder->mf.keep_size_after;
 | |
| 	}
 | |
| 
 | |
| 	// Restart the match finder after finished LZMA_SYNC_FLUSH.
 | |
| 	if (coder->mf.pending > 0
 | |
| 			&& coder->mf.read_pos < coder->mf.read_limit) {
 | |
| 		// Match finder may update coder->pending and expects it to
 | |
| 		// start from zero, so use a temporary variable.
 | |
| 		const uint32_t pending = coder->mf.pending;
 | |
| 		coder->mf.pending = 0;
 | |
| 
 | |
| 		// Rewind read_pos so that the match finder can hash
 | |
| 		// the pending bytes.
 | |
| 		assert(coder->mf.read_pos >= pending);
 | |
| 		coder->mf.read_pos -= pending;
 | |
| 
 | |
| 		// Call the skip function directly instead of using
 | |
| 		// mf_skip(), since we don't want to touch mf->read_ahead.
 | |
| 		coder->mf.skip(&coder->mf, pending);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static lzma_ret
 | |
| lz_encode(void *coder_ptr, const lzma_allocator *allocator,
 | |
| 		const uint8_t *restrict in, size_t *restrict in_pos,
 | |
| 		size_t in_size,
 | |
| 		uint8_t *restrict out, size_t *restrict out_pos,
 | |
| 		size_t out_size, lzma_action action)
 | |
| {
 | |
| 	lzma_coder *coder = coder_ptr;
 | |
| 
 | |
| 	while (*out_pos < out_size
 | |
| 			&& (*in_pos < in_size || action != LZMA_RUN)) {
 | |
| 		// Read more data to coder->mf.buffer if needed.
 | |
| 		if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
 | |
| 				>= coder->mf.read_limit)
 | |
| 			return_if_error(fill_window(coder, allocator,
 | |
| 					in, in_pos, in_size, action));
 | |
| 
 | |
| 		// Encode
 | |
| 		const lzma_ret ret = coder->lz.code(coder->lz.coder,
 | |
| 				&coder->mf, out, out_pos, out_size);
 | |
| 		if (ret != LZMA_OK) {
 | |
| 			// Setting this to LZMA_RUN for cases when we are
 | |
| 			// flushing. It doesn't matter when finishing or if
 | |
| 			// an error occurred.
 | |
| 			coder->mf.action = LZMA_RUN;
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return LZMA_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool
 | |
| lz_encoder_prepare(lzma_mf *mf, const lzma_allocator *allocator,
 | |
| 		const lzma_lz_options *lz_options)
 | |
| {
 | |
| 	// For now, the dictionary size is limited to 1.5 GiB. This may grow
 | |
| 	// in the future if needed, but it needs a little more work than just
 | |
| 	// changing this check.
 | |
| 	if (lz_options->dict_size < LZMA_DICT_SIZE_MIN
 | |
| 			|| lz_options->dict_size
 | |
| 				> (UINT32_C(1) << 30) + (UINT32_C(1) << 29)
 | |
| 			|| lz_options->nice_len > lz_options->match_len_max)
 | |
| 		return true;
 | |
| 
 | |
| 	mf->keep_size_before = lz_options->before_size + lz_options->dict_size;
 | |
| 
 | |
| 	mf->keep_size_after = lz_options->after_size
 | |
| 			+ lz_options->match_len_max;
 | |
| 
 | |
| 	// To avoid constant memmove()s, allocate some extra space. Since
 | |
| 	// memmove()s become more expensive when the size of the buffer
 | |
| 	// increases, we reserve more space when a large dictionary is
 | |
| 	// used to make the memmove() calls rarer.
 | |
| 	//
 | |
| 	// This works with dictionaries up to about 3 GiB. If bigger
 | |
| 	// dictionary is wanted, some extra work is needed:
 | |
| 	//   - Several variables in lzma_mf have to be changed from uint32_t
 | |
| 	//     to size_t.
 | |
| 	//   - Memory usage calculation needs something too, e.g. use uint64_t
 | |
| 	//     for mf->size.
 | |
| 	uint32_t reserve = lz_options->dict_size / 2;
 | |
| 	if (reserve > (UINT32_C(1) << 30))
 | |
| 		reserve /= 2;
 | |
| 
 | |
| 	reserve += (lz_options->before_size + lz_options->match_len_max
 | |
| 			+ lz_options->after_size) / 2 + (UINT32_C(1) << 19);
 | |
| 
 | |
| 	const uint32_t old_size = mf->size;
 | |
| 	mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
 | |
| 
 | |
| 	// Deallocate the old history buffer if it exists but has different
 | |
| 	// size than what is needed now.
 | |
| 	if (mf->buffer != NULL && old_size != mf->size) {
 | |
| 		lzma_free(mf->buffer, allocator);
 | |
| 		mf->buffer = NULL;
 | |
| 	}
 | |
| 
 | |
| 	// Match finder options
 | |
| 	mf->match_len_max = lz_options->match_len_max;
 | |
| 	mf->nice_len = lz_options->nice_len;
 | |
| 
 | |
| 	// cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
 | |
| 	// mean limiting dictionary size to less than 2 GiB. With a match
 | |
| 	// finder that uses multibyte resolution (hashes start at e.g. every
 | |
| 	// fourth byte), cyclic_size would stay below 2 Gi even when
 | |
| 	// dictionary size is greater than 2 GiB.
 | |
| 	//
 | |
| 	// It would be possible to allow cyclic_size >= 2 Gi, but then we
 | |
| 	// would need to be careful to use 64-bit types in various places
 | |
| 	// (size_t could do since we would need bigger than 32-bit address
 | |
| 	// space anyway). It would also require either zeroing a multigigabyte
 | |
| 	// buffer at initialization (waste of time and RAM) or allow
 | |
| 	// normalization in lz_encoder_mf.c to access uninitialized
 | |
| 	// memory to keep the code simpler. The current way is simple and
 | |
| 	// still allows pretty big dictionaries, so I don't expect these
 | |
| 	// limits to change.
 | |
| 	mf->cyclic_size = lz_options->dict_size + 1;
 | |
| 
 | |
| 	// Validate the match finder ID and setup the function pointers.
 | |
| 	switch (lz_options->match_finder) {
 | |
| #ifdef HAVE_MF_HC3
 | |
| 	case LZMA_MF_HC3:
 | |
| 		mf->find = &lzma_mf_hc3_find;
 | |
| 		mf->skip = &lzma_mf_hc3_skip;
 | |
| 		break;
 | |
| #endif
 | |
| #ifdef HAVE_MF_HC4
 | |
| 	case LZMA_MF_HC4:
 | |
| 		mf->find = &lzma_mf_hc4_find;
 | |
| 		mf->skip = &lzma_mf_hc4_skip;
 | |
| 		break;
 | |
| #endif
 | |
| #ifdef HAVE_MF_BT2
 | |
| 	case LZMA_MF_BT2:
 | |
| 		mf->find = &lzma_mf_bt2_find;
 | |
| 		mf->skip = &lzma_mf_bt2_skip;
 | |
| 		break;
 | |
| #endif
 | |
| #ifdef HAVE_MF_BT3
 | |
| 	case LZMA_MF_BT3:
 | |
| 		mf->find = &lzma_mf_bt3_find;
 | |
| 		mf->skip = &lzma_mf_bt3_skip;
 | |
| 		break;
 | |
| #endif
 | |
| #ifdef HAVE_MF_BT4
 | |
| 	case LZMA_MF_BT4:
 | |
| 		mf->find = &lzma_mf_bt4_find;
 | |
| 		mf->skip = &lzma_mf_bt4_skip;
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| 	default:
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	// Calculate the sizes of mf->hash and mf->son and check that
 | |
| 	// nice_len is big enough for the selected match finder.
 | |
| 	const uint32_t hash_bytes = lz_options->match_finder & 0x0F;
 | |
| 	if (hash_bytes > mf->nice_len)
 | |
| 		return true;
 | |
| 
 | |
| 	const bool is_bt = (lz_options->match_finder & 0x10) != 0;
 | |
| 	uint32_t hs;
 | |
| 
 | |
| 	if (hash_bytes == 2) {
 | |
| 		hs = 0xFFFF;
 | |
| 	} else {
 | |
| 		// Round dictionary size up to the next 2^n - 1 so it can
 | |
| 		// be used as a hash mask.
 | |
| 		hs = lz_options->dict_size - 1;
 | |
| 		hs |= hs >> 1;
 | |
| 		hs |= hs >> 2;
 | |
| 		hs |= hs >> 4;
 | |
| 		hs |= hs >> 8;
 | |
| 		hs >>= 1;
 | |
| 		hs |= 0xFFFF;
 | |
| 
 | |
| 		if (hs > (UINT32_C(1) << 24)) {
 | |
| 			if (hash_bytes == 3)
 | |
| 				hs = (UINT32_C(1) << 24) - 1;
 | |
| 			else
 | |
| 				hs >>= 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mf->hash_mask = hs;
 | |
| 
 | |
| 	++hs;
 | |
| 	if (hash_bytes > 2)
 | |
| 		hs += HASH_2_SIZE;
 | |
| 	if (hash_bytes > 3)
 | |
| 		hs += HASH_3_SIZE;
 | |
| /*
 | |
| 	No match finder uses this at the moment.
 | |
| 	if (mf->hash_bytes > 4)
 | |
| 		hs += HASH_4_SIZE;
 | |
| */
 | |
| 
 | |
| 	const uint32_t old_hash_count = mf->hash_count;
 | |
| 	const uint32_t old_sons_count = mf->sons_count;
 | |
| 	mf->hash_count = hs;
 | |
| 	mf->sons_count = mf->cyclic_size;
 | |
| 	if (is_bt)
 | |
| 		mf->sons_count *= 2;
 | |
| 
 | |
| 	// Deallocate the old hash array if it exists and has different size
 | |
| 	// than what is needed now.
 | |
| 	if (old_hash_count != mf->hash_count
 | |
| 			|| old_sons_count != mf->sons_count) {
 | |
| 		lzma_free(mf->hash, allocator);
 | |
| 		mf->hash = NULL;
 | |
| 
 | |
| 		lzma_free(mf->son, allocator);
 | |
| 		mf->son = NULL;
 | |
| 	}
 | |
| 
 | |
| 	// Maximum number of match finder cycles
 | |
| 	mf->depth = lz_options->depth;
 | |
| 	if (mf->depth == 0) {
 | |
| 		if (is_bt)
 | |
| 			mf->depth = 16 + mf->nice_len / 2;
 | |
| 		else
 | |
| 			mf->depth = 4 + mf->nice_len / 4;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool
 | |
| lz_encoder_init(lzma_mf *mf, const lzma_allocator *allocator,
 | |
| 		const lzma_lz_options *lz_options)
 | |
| {
 | |
| 	// Allocate the history buffer.
 | |
| 	if (mf->buffer == NULL) {
 | |
| 		// lzma_memcmplen() is used for the dictionary buffer
 | |
| 		// so we need to allocate a few extra bytes to prevent
 | |
| 		// it from reading past the end of the buffer.
 | |
| 		mf->buffer = lzma_alloc(mf->size + LZMA_MEMCMPLEN_EXTRA,
 | |
| 				allocator);
 | |
| 		if (mf->buffer == NULL)
 | |
| 			return true;
 | |
| 
 | |
| 		// Keep Valgrind happy with lzma_memcmplen() and initialize
 | |
| 		// the extra bytes whose value may get read but which will
 | |
| 		// effectively get ignored.
 | |
| 		memzero(mf->buffer + mf->size, LZMA_MEMCMPLEN_EXTRA);
 | |
| 	}
 | |
| 
 | |
| 	// Use cyclic_size as initial mf->offset. This allows
 | |
| 	// avoiding a few branches in the match finders. The downside is
 | |
| 	// that match finder needs to be normalized more often, which may
 | |
| 	// hurt performance with huge dictionaries.
 | |
| 	mf->offset = mf->cyclic_size;
 | |
| 	mf->read_pos = 0;
 | |
| 	mf->read_ahead = 0;
 | |
| 	mf->read_limit = 0;
 | |
| 	mf->write_pos = 0;
 | |
| 	mf->pending = 0;
 | |
| 
 | |
| #if UINT32_MAX >= SIZE_MAX / 4
 | |
| 	// Check for integer overflow. (Huge dictionaries are not
 | |
| 	// possible on 32-bit CPU.)
 | |
| 	if (mf->hash_count > SIZE_MAX / sizeof(uint32_t)
 | |
| 			|| mf->sons_count > SIZE_MAX / sizeof(uint32_t))
 | |
| 		return true;
 | |
| #endif
 | |
| 
 | |
| 	// Allocate and initialize the hash table. Since EMPTY_HASH_VALUE
 | |
| 	// is zero, we can use lzma_alloc_zero() or memzero() for mf->hash.
 | |
| 	//
 | |
| 	// We don't need to initialize mf->son, but not doing that may
 | |
| 	// make Valgrind complain in normalization (see normalize() in
 | |
| 	// lz_encoder_mf.c). Skipping the initialization is *very* good
 | |
| 	// when big dictionary is used but only small amount of data gets
 | |
| 	// actually compressed: most of the mf->son won't get actually
 | |
| 	// allocated by the kernel, so we avoid wasting RAM and improve
 | |
| 	// initialization speed a lot.
 | |
| 	if (mf->hash == NULL) {
 | |
| 		mf->hash = lzma_alloc_zero(mf->hash_count * sizeof(uint32_t),
 | |
| 				allocator);
 | |
| 		mf->son = lzma_alloc(mf->sons_count * sizeof(uint32_t),
 | |
| 				allocator);
 | |
| 
 | |
| 		if (mf->hash == NULL || mf->son == NULL) {
 | |
| 			lzma_free(mf->hash, allocator);
 | |
| 			mf->hash = NULL;
 | |
| 
 | |
| 			lzma_free(mf->son, allocator);
 | |
| 			mf->son = NULL;
 | |
| 
 | |
| 			return true;
 | |
| 		}
 | |
| 	} else {
 | |
| /*
 | |
| 		for (uint32_t i = 0; i < mf->hash_count; ++i)
 | |
| 			mf->hash[i] = EMPTY_HASH_VALUE;
 | |
| */
 | |
| 		memzero(mf->hash, mf->hash_count * sizeof(uint32_t));
 | |
| 	}
 | |
| 
 | |
| 	mf->cyclic_pos = 0;
 | |
| 
 | |
| 	// Handle preset dictionary.
 | |
| 	if (lz_options->preset_dict != NULL
 | |
| 			&& lz_options->preset_dict_size > 0) {
 | |
| 		// If the preset dictionary is bigger than the actual
 | |
| 		// dictionary, use only the tail.
 | |
| 		mf->write_pos = my_min(lz_options->preset_dict_size, mf->size);
 | |
| 		memcpy(mf->buffer, lz_options->preset_dict
 | |
| 				+ lz_options->preset_dict_size - mf->write_pos,
 | |
| 				mf->write_pos);
 | |
| 		mf->action = LZMA_SYNC_FLUSH;
 | |
| 		mf->skip(mf, mf->write_pos);
 | |
| 	}
 | |
| 
 | |
| 	mf->action = LZMA_RUN;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern uint64_t
 | |
| lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
 | |
| {
 | |
| 	// Old buffers must not exist when calling lz_encoder_prepare().
 | |
| 	lzma_mf mf = {
 | |
| 		.buffer = NULL,
 | |
| 		.hash = NULL,
 | |
| 		.son = NULL,
 | |
| 		.hash_count = 0,
 | |
| 		.sons_count = 0,
 | |
| 	};
 | |
| 
 | |
| 	// Setup the size information into mf.
 | |
| 	if (lz_encoder_prepare(&mf, NULL, lz_options))
 | |
| 		return UINT64_MAX;
 | |
| 
 | |
| 	// Calculate the memory usage.
 | |
| 	return ((uint64_t)(mf.hash_count) + mf.sons_count) * sizeof(uint32_t)
 | |
| 			+ mf.size + sizeof(lzma_coder);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| lz_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
 | |
| {
 | |
| 	lzma_coder *coder = coder_ptr;
 | |
| 
 | |
| 	lzma_next_end(&coder->next, allocator);
 | |
| 
 | |
| 	lzma_free(coder->mf.son, allocator);
 | |
| 	lzma_free(coder->mf.hash, allocator);
 | |
| 	lzma_free(coder->mf.buffer, allocator);
 | |
| 
 | |
| 	if (coder->lz.end != NULL)
 | |
| 		coder->lz.end(coder->lz.coder, allocator);
 | |
| 	else
 | |
| 		lzma_free(coder->lz.coder, allocator);
 | |
| 
 | |
| 	lzma_free(coder, allocator);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| static lzma_ret
 | |
| lz_encoder_update(void *coder_ptr, const lzma_allocator *allocator,
 | |
| 		const lzma_filter *filters_null lzma_attribute((__unused__)),
 | |
| 		const lzma_filter *reversed_filters)
 | |
| {
 | |
| 	lzma_coder *coder = coder_ptr;
 | |
| 
 | |
| 	if (coder->lz.options_update == NULL)
 | |
| 		return LZMA_PROG_ERROR;
 | |
| 
 | |
| 	return_if_error(coder->lz.options_update(
 | |
| 			coder->lz.coder, reversed_filters));
 | |
| 
 | |
| 	return lzma_next_filter_update(
 | |
| 			&coder->next, allocator, reversed_filters + 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| extern lzma_ret
 | |
| lzma_lz_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
 | |
| 		const lzma_filter_info *filters,
 | |
| 		lzma_ret (*lz_init)(lzma_lz_encoder *lz,
 | |
| 			const lzma_allocator *allocator, const void *options,
 | |
| 			lzma_lz_options *lz_options))
 | |
| {
 | |
| #ifdef HAVE_SMALL
 | |
| 	// We need that the CRC32 table has been initialized.
 | |
| 	lzma_crc32_init();
 | |
| #endif
 | |
| 
 | |
| 	// Allocate and initialize the base data structure.
 | |
| 	lzma_coder *coder = next->coder;
 | |
| 	if (coder == NULL) {
 | |
| 		coder = lzma_alloc(sizeof(lzma_coder), allocator);
 | |
| 		if (coder == NULL)
 | |
| 			return LZMA_MEM_ERROR;
 | |
| 
 | |
| 		next->coder = coder;
 | |
| 		next->code = &lz_encode;
 | |
| 		next->end = &lz_encoder_end;
 | |
| 		next->update = &lz_encoder_update;
 | |
| 
 | |
| 		coder->lz.coder = NULL;
 | |
| 		coder->lz.code = NULL;
 | |
| 		coder->lz.end = NULL;
 | |
| 
 | |
| 		// mf.size is initialized to silence Valgrind
 | |
| 		// when used on optimized binaries (GCC may reorder
 | |
| 		// code in a way that Valgrind gets unhappy).
 | |
| 		coder->mf.buffer = NULL;
 | |
| 		coder->mf.size = 0;
 | |
| 		coder->mf.hash = NULL;
 | |
| 		coder->mf.son = NULL;
 | |
| 		coder->mf.hash_count = 0;
 | |
| 		coder->mf.sons_count = 0;
 | |
| 
 | |
| 		coder->next = LZMA_NEXT_CODER_INIT;
 | |
| 	}
 | |
| 
 | |
| 	// Initialize the LZ-based encoder.
 | |
| 	lzma_lz_options lz_options;
 | |
| 	return_if_error(lz_init(&coder->lz, allocator,
 | |
| 			filters[0].options, &lz_options));
 | |
| 
 | |
| 	// Setup the size information into coder->mf and deallocate
 | |
| 	// old buffers if they have wrong size.
 | |
| 	if (lz_encoder_prepare(&coder->mf, allocator, &lz_options))
 | |
| 		return LZMA_OPTIONS_ERROR;
 | |
| 
 | |
| 	// Allocate new buffers if needed, and do the rest of
 | |
| 	// the initialization.
 | |
| 	if (lz_encoder_init(&coder->mf, allocator, &lz_options))
 | |
| 		return LZMA_MEM_ERROR;
 | |
| 
 | |
| 	// Initialize the next filter in the chain, if any.
 | |
| 	return lzma_next_filter_init(&coder->next, allocator, filters + 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_bool)
 | |
| lzma_mf_is_supported(lzma_match_finder mf)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 
 | |
| #ifdef HAVE_MF_HC3
 | |
| 	if (mf == LZMA_MF_HC3)
 | |
| 		ret = true;
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_MF_HC4
 | |
| 	if (mf == LZMA_MF_HC4)
 | |
| 		ret = true;
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_MF_BT2
 | |
| 	if (mf == LZMA_MF_BT2)
 | |
| 		ret = true;
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_MF_BT3
 | |
| 	if (mf == LZMA_MF_BT3)
 | |
| 		ret = true;
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_MF_BT4
 | |
| 	if (mf == LZMA_MF_BT4)
 | |
| 		ret = true;
 | |
| #endif
 | |
| 
 | |
| 	return ret;
 | |
| }
 |