314 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			314 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * !checksrc! disable COPYRIGHT
 | |
|  * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
 | |
|  * MD4 Message-Digest Algorithm (RFC 1320).
 | |
|  *
 | |
|  * Homepage:
 | |
|  https://openwall.info/wiki/people/solar/software/public-domain-source-code/md4
 | |
|  *
 | |
|  * Author:
 | |
|  * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
 | |
|  *
 | |
|  * This software was written by Alexander Peslyak in 2001.  No copyright is
 | |
|  * claimed, and the software is hereby placed in the public domain.  In case
 | |
|  * this attempt to disclaim copyright and place the software in the public
 | |
|  * domain is deemed null and void, then the software is Copyright (c) 2001
 | |
|  * Alexander Peslyak and it is hereby released to the general public under the
 | |
|  * following terms:
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted.
 | |
|  *
 | |
|  * There's ABSOLUTELY NO WARRANTY, express or implied.
 | |
|  *
 | |
|  * (This is a heavily cut-down "BSD license".)
 | |
|  *
 | |
|  * This differs from Colin Plumb's older public domain implementation in that
 | |
|  * no exactly 32-bit integer data type is required (any 32-bit or wider
 | |
|  * unsigned integer data type will do), there's no compile-time endianness
 | |
|  * configuration, and the function prototypes match OpenSSL's.  No code from
 | |
|  * Colin Plumb's implementation has been reused; this comment merely compares
 | |
|  * the properties of the two independent implementations.
 | |
|  *
 | |
|  * The primary goals of this implementation are portability and ease of use.
 | |
|  * It is meant to be fast, but not as fast as possible.  Some known
 | |
|  * optimizations are not included to reduce source code size and avoid
 | |
|  * compile-time configuration.
 | |
|  */
 | |
| 
 | |
| #include "curl_setup.h"
 | |
| 
 | |
| /* The NSS, OS/400, and when not included, OpenSSL and mbed TLS crypto
 | |
|  * libraries do not provide the MD4 hash algorithm, so we use this
 | |
|  * implementation of it */
 | |
| #if defined(USE_NSS) || defined(USE_OS400CRYPTO) || \
 | |
|     (defined(USE_OPENSSL) && defined(OPENSSL_NO_MD4)) || \
 | |
|     (defined(USE_MBEDTLS) && !defined(MBEDTLS_MD4_C))
 | |
| 
 | |
| #include "curl_md4.h"
 | |
| #include "warnless.h"
 | |
| 
 | |
| #ifndef HAVE_OPENSSL
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| /* Any 32-bit or wider unsigned integer data type will do */
 | |
| typedef unsigned int MD4_u32plus;
 | |
| 
 | |
| typedef struct {
 | |
|   MD4_u32plus lo, hi;
 | |
|   MD4_u32plus a, b, c, d;
 | |
|   unsigned char buffer[64];
 | |
|   MD4_u32plus block[16];
 | |
| } MD4_CTX;
 | |
| 
 | |
| static void MD4_Init(MD4_CTX *ctx);
 | |
| static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size);
 | |
| static void MD4_Final(unsigned char *result, MD4_CTX *ctx);
 | |
| 
 | |
| /*
 | |
|  * The basic MD4 functions.
 | |
|  *
 | |
|  * F and G are optimized compared to their RFC 1320 definitions, with the
 | |
|  * optimization for F borrowed from Colin Plumb's MD5 implementation.
 | |
|  */
 | |
| #define F(x, y, z)                      ((z) ^ ((x) & ((y) ^ (z))))
 | |
| #define G(x, y, z)                      (((x) & ((y) | (z))) | ((y) & (z)))
 | |
| #define H(x, y, z)                      ((x) ^ (y) ^ (z))
 | |
| 
 | |
| /*
 | |
|  * The MD4 transformation for all three rounds.
 | |
|  */
 | |
| #define STEP(f, a, b, c, d, x, s) \
 | |
|         (a) += f((b), (c), (d)) + (x); \
 | |
|         (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s))));
 | |
| 
 | |
| /*
 | |
|  * SET reads 4 input bytes in little-endian byte order and stores them
 | |
|  * in a properly aligned word in host byte order.
 | |
|  *
 | |
|  * The check for little-endian architectures that tolerate unaligned
 | |
|  * memory accesses is just an optimization.  Nothing will break if it
 | |
|  * doesn't work.
 | |
|  */
 | |
| #if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
 | |
| #define SET(n) \
 | |
|         (*(MD4_u32plus *)(void *)&ptr[(n) * 4])
 | |
| #define GET(n) \
 | |
|         SET(n)
 | |
| #else
 | |
| #define SET(n) \
 | |
|         (ctx->block[(n)] = \
 | |
|         (MD4_u32plus)ptr[(n) * 4] | \
 | |
|         ((MD4_u32plus)ptr[(n) * 4 + 1] << 8) | \
 | |
|         ((MD4_u32plus)ptr[(n) * 4 + 2] << 16) | \
 | |
|         ((MD4_u32plus)ptr[(n) * 4 + 3] << 24))
 | |
| #define GET(n) \
 | |
|         (ctx->block[(n)])
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This processes one or more 64-byte data blocks, but does NOT update
 | |
|  * the bit counters.  There are no alignment requirements.
 | |
|  */
 | |
| static const void *body(MD4_CTX *ctx, const void *data, unsigned long size)
 | |
| {
 | |
|   const unsigned char *ptr;
 | |
|   MD4_u32plus a, b, c, d;
 | |
| 
 | |
|   ptr = (const unsigned char *)data;
 | |
| 
 | |
|   a = ctx->a;
 | |
|   b = ctx->b;
 | |
|   c = ctx->c;
 | |
|   d = ctx->d;
 | |
| 
 | |
|   do {
 | |
|     MD4_u32plus saved_a, saved_b, saved_c, saved_d;
 | |
| 
 | |
|     saved_a = a;
 | |
|     saved_b = b;
 | |
|     saved_c = c;
 | |
|     saved_d = d;
 | |
| 
 | |
| /* Round 1 */
 | |
|     STEP(F, a, b, c, d, SET(0), 3)
 | |
|     STEP(F, d, a, b, c, SET(1), 7)
 | |
|     STEP(F, c, d, a, b, SET(2), 11)
 | |
|     STEP(F, b, c, d, a, SET(3), 19)
 | |
|     STEP(F, a, b, c, d, SET(4), 3)
 | |
|     STEP(F, d, a, b, c, SET(5), 7)
 | |
|     STEP(F, c, d, a, b, SET(6), 11)
 | |
|     STEP(F, b, c, d, a, SET(7), 19)
 | |
|     STEP(F, a, b, c, d, SET(8), 3)
 | |
|     STEP(F, d, a, b, c, SET(9), 7)
 | |
|     STEP(F, c, d, a, b, SET(10), 11)
 | |
|     STEP(F, b, c, d, a, SET(11), 19)
 | |
|     STEP(F, a, b, c, d, SET(12), 3)
 | |
|     STEP(F, d, a, b, c, SET(13), 7)
 | |
|     STEP(F, c, d, a, b, SET(14), 11)
 | |
|     STEP(F, b, c, d, a, SET(15), 19)
 | |
| 
 | |
| /* Round 2 */
 | |
|     STEP(G, a, b, c, d, GET(0) + 0x5a827999, 3)
 | |
|     STEP(G, d, a, b, c, GET(4) + 0x5a827999, 5)
 | |
|     STEP(G, c, d, a, b, GET(8) + 0x5a827999, 9)
 | |
|     STEP(G, b, c, d, a, GET(12) + 0x5a827999, 13)
 | |
|     STEP(G, a, b, c, d, GET(1) + 0x5a827999, 3)
 | |
|     STEP(G, d, a, b, c, GET(5) + 0x5a827999, 5)
 | |
|     STEP(G, c, d, a, b, GET(9) + 0x5a827999, 9)
 | |
|     STEP(G, b, c, d, a, GET(13) + 0x5a827999, 13)
 | |
|     STEP(G, a, b, c, d, GET(2) + 0x5a827999, 3)
 | |
|     STEP(G, d, a, b, c, GET(6) + 0x5a827999, 5)
 | |
|     STEP(G, c, d, a, b, GET(10) + 0x5a827999, 9)
 | |
|     STEP(G, b, c, d, a, GET(14) + 0x5a827999, 13)
 | |
|     STEP(G, a, b, c, d, GET(3) + 0x5a827999, 3)
 | |
|     STEP(G, d, a, b, c, GET(7) + 0x5a827999, 5)
 | |
|     STEP(G, c, d, a, b, GET(11) + 0x5a827999, 9)
 | |
|     STEP(G, b, c, d, a, GET(15) + 0x5a827999, 13)
 | |
| 
 | |
| /* Round 3 */
 | |
|     STEP(H, a, b, c, d, GET(0) + 0x6ed9eba1, 3)
 | |
|     STEP(H, d, a, b, c, GET(8) + 0x6ed9eba1, 9)
 | |
|     STEP(H, c, d, a, b, GET(4) + 0x6ed9eba1, 11)
 | |
|     STEP(H, b, c, d, a, GET(12) + 0x6ed9eba1, 15)
 | |
|     STEP(H, a, b, c, d, GET(2) + 0x6ed9eba1, 3)
 | |
|     STEP(H, d, a, b, c, GET(10) + 0x6ed9eba1, 9)
 | |
|     STEP(H, c, d, a, b, GET(6) + 0x6ed9eba1, 11)
 | |
|     STEP(H, b, c, d, a, GET(14) + 0x6ed9eba1, 15)
 | |
|     STEP(H, a, b, c, d, GET(1) + 0x6ed9eba1, 3)
 | |
|     STEP(H, d, a, b, c, GET(9) + 0x6ed9eba1, 9)
 | |
|     STEP(H, c, d, a, b, GET(5) + 0x6ed9eba1, 11)
 | |
|     STEP(H, b, c, d, a, GET(13) + 0x6ed9eba1, 15)
 | |
|     STEP(H, a, b, c, d, GET(3) + 0x6ed9eba1, 3)
 | |
|     STEP(H, d, a, b, c, GET(11) + 0x6ed9eba1, 9)
 | |
|     STEP(H, c, d, a, b, GET(7) + 0x6ed9eba1, 11)
 | |
|     STEP(H, b, c, d, a, GET(15) + 0x6ed9eba1, 15)
 | |
| 
 | |
|     a += saved_a;
 | |
|     b += saved_b;
 | |
|     c += saved_c;
 | |
|     d += saved_d;
 | |
| 
 | |
|     ptr += 64;
 | |
|   } while(size -= 64);
 | |
| 
 | |
|   ctx->a = a;
 | |
|   ctx->b = b;
 | |
|   ctx->c = c;
 | |
|   ctx->d = d;
 | |
| 
 | |
|   return ptr;
 | |
| }
 | |
| 
 | |
| static void MD4_Init(MD4_CTX *ctx)
 | |
| {
 | |
|   ctx->a = 0x67452301;
 | |
|   ctx->b = 0xefcdab89;
 | |
|   ctx->c = 0x98badcfe;
 | |
|   ctx->d = 0x10325476;
 | |
| 
 | |
|   ctx->lo = 0;
 | |
|   ctx->hi = 0;
 | |
| }
 | |
| 
 | |
| static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size)
 | |
| {
 | |
|   MD4_u32plus saved_lo;
 | |
|   unsigned long used;
 | |
| 
 | |
|   saved_lo = ctx->lo;
 | |
|   ctx->lo = (saved_lo + size) & 0x1fffffff;
 | |
|   if(ctx->lo < saved_lo)
 | |
|     ctx->hi++;
 | |
|   ctx->hi += (MD4_u32plus)size >> 29;
 | |
| 
 | |
|   used = saved_lo & 0x3f;
 | |
| 
 | |
|   if(used) {
 | |
|     unsigned long available = 64 - used;
 | |
| 
 | |
|     if(size < available) {
 | |
|       memcpy(&ctx->buffer[used], data, size);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     memcpy(&ctx->buffer[used], data, available);
 | |
|     data = (const unsigned char *)data + available;
 | |
|     size -= available;
 | |
|     body(ctx, ctx->buffer, 64);
 | |
|   }
 | |
| 
 | |
|   if(size >= 64) {
 | |
|     data = body(ctx, data, size & ~(unsigned long)0x3f);
 | |
|     size &= 0x3f;
 | |
|   }
 | |
| 
 | |
|   memcpy(ctx->buffer, data, size);
 | |
| }
 | |
| 
 | |
| static void MD4_Final(unsigned char *result, MD4_CTX *ctx)
 | |
| {
 | |
|   unsigned long used, available;
 | |
| 
 | |
|   used = ctx->lo & 0x3f;
 | |
| 
 | |
|   ctx->buffer[used++] = 0x80;
 | |
| 
 | |
|   available = 64 - used;
 | |
| 
 | |
|   if(available < 8) {
 | |
|     memset(&ctx->buffer[used], 0, available);
 | |
|     body(ctx, ctx->buffer, 64);
 | |
|     used = 0;
 | |
|     available = 64;
 | |
|   }
 | |
| 
 | |
|   memset(&ctx->buffer[used], 0, available - 8);
 | |
| 
 | |
|   ctx->lo <<= 3;
 | |
|   ctx->buffer[56] = curlx_ultouc((ctx->lo)&0xff);
 | |
|   ctx->buffer[57] = curlx_ultouc((ctx->lo >> 8)&0xff);
 | |
|   ctx->buffer[58] = curlx_ultouc((ctx->lo >> 16)&0xff);
 | |
|   ctx->buffer[59] = curlx_ultouc((ctx->lo >> 24)&0xff);
 | |
|   ctx->buffer[60] = curlx_ultouc((ctx->hi)&0xff);
 | |
|   ctx->buffer[61] = curlx_ultouc((ctx->hi >> 8)&0xff);
 | |
|   ctx->buffer[62] = curlx_ultouc((ctx->hi >> 16)&0xff);
 | |
|   ctx->buffer[63] = curlx_ultouc(ctx->hi >> 24);
 | |
| 
 | |
|   body(ctx, ctx->buffer, 64);
 | |
| 
 | |
|   result[0] = curlx_ultouc((ctx->a)&0xff);
 | |
|   result[1] = curlx_ultouc((ctx->a >> 8)&0xff);
 | |
|   result[2] = curlx_ultouc((ctx->a >> 16)&0xff);
 | |
|   result[3] = curlx_ultouc(ctx->a >> 24);
 | |
|   result[4] = curlx_ultouc((ctx->b)&0xff);
 | |
|   result[5] = curlx_ultouc((ctx->b >> 8)&0xff);
 | |
|   result[6] = curlx_ultouc((ctx->b >> 16)&0xff);
 | |
|   result[7] = curlx_ultouc(ctx->b >> 24);
 | |
|   result[8] = curlx_ultouc((ctx->c)&0xff);
 | |
|   result[9] = curlx_ultouc((ctx->c >> 8)&0xff);
 | |
|   result[10] = curlx_ultouc((ctx->c >> 16)&0xff);
 | |
|   result[11] = curlx_ultouc(ctx->c >> 24);
 | |
|   result[12] = curlx_ultouc((ctx->d)&0xff);
 | |
|   result[13] = curlx_ultouc((ctx->d >> 8)&0xff);
 | |
|   result[14] = curlx_ultouc((ctx->d >> 16)&0xff);
 | |
|   result[15] = curlx_ultouc(ctx->d >> 24);
 | |
| 
 | |
|   memset(ctx, 0, sizeof(*ctx));
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void Curl_md4it(unsigned char *output, const unsigned char *input, size_t len)
 | |
| {
 | |
|   MD4_CTX ctx;
 | |
|   MD4_Init(&ctx);
 | |
|   MD4_Update(&ctx, input, curlx_uztoui(len));
 | |
|   MD4_Final(output, &ctx);
 | |
| }
 | |
| 
 | |
| #endif /* defined(USE_NSS) || defined(USE_OS400CRYPTO) ||
 | |
|     (defined(USE_OPENSSL) && defined(OPENSSL_NO_MD4)) ||
 | |
|     (defined(USE_MBEDTLS) && !defined(MBEDTLS_MD4_C)) */
 |