1251 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1251 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| /// \file       index.c
 | |
| /// \brief      Handling of .xz Indexes and some other Stream information
 | |
| //
 | |
| //  Author:     Lasse Collin
 | |
| //
 | |
| //  This file has been put into the public domain.
 | |
| //  You can do whatever you want with this file.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include "index.h"
 | |
| #include "stream_flags_common.h"
 | |
| 
 | |
| 
 | |
| /// \brief      How many Records to allocate at once
 | |
| ///
 | |
| /// This should be big enough to avoid making lots of tiny allocations
 | |
| /// but small enough to avoid too much unused memory at once.
 | |
| #define INDEX_GROUP_SIZE 512
 | |
| 
 | |
| 
 | |
| /// \brief      How many Records can be allocated at once at maximum
 | |
| #define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
 | |
| 
 | |
| 
 | |
| /// \brief      Base structure for index_stream and index_group structures
 | |
| typedef struct index_tree_node_s index_tree_node;
 | |
| struct index_tree_node_s {
 | |
| 	/// Uncompressed start offset of this Stream (relative to the
 | |
| 	/// beginning of the file) or Block (relative to the beginning
 | |
| 	/// of the Stream)
 | |
| 	lzma_vli uncompressed_base;
 | |
| 
 | |
| 	/// Compressed start offset of this Stream or Block
 | |
| 	lzma_vli compressed_base;
 | |
| 
 | |
| 	index_tree_node *parent;
 | |
| 	index_tree_node *left;
 | |
| 	index_tree_node *right;
 | |
| };
 | |
| 
 | |
| 
 | |
| /// \brief      AVL tree to hold index_stream or index_group structures
 | |
| typedef struct {
 | |
| 	/// Root node
 | |
| 	index_tree_node *root;
 | |
| 
 | |
| 	/// Leftmost node. Since the tree will be filled sequentially,
 | |
| 	/// this won't change after the first node has been added to
 | |
| 	/// the tree.
 | |
| 	index_tree_node *leftmost;
 | |
| 
 | |
| 	/// The rightmost node in the tree. Since the tree is filled
 | |
| 	/// sequentially, this is always the node where to add the new data.
 | |
| 	index_tree_node *rightmost;
 | |
| 
 | |
| 	/// Number of nodes in the tree
 | |
| 	uint32_t count;
 | |
| 
 | |
| } index_tree;
 | |
| 
 | |
| 
 | |
| typedef struct {
 | |
| 	lzma_vli uncompressed_sum;
 | |
| 	lzma_vli unpadded_sum;
 | |
| } index_record;
 | |
| 
 | |
| 
 | |
| typedef struct {
 | |
| 	/// Every Record group is part of index_stream.groups tree.
 | |
| 	index_tree_node node;
 | |
| 
 | |
| 	/// Number of Blocks in this Stream before this group.
 | |
| 	lzma_vli number_base;
 | |
| 
 | |
| 	/// Number of Records that can be put in records[].
 | |
| 	size_t allocated;
 | |
| 
 | |
| 	/// Index of the last Record in use.
 | |
| 	size_t last;
 | |
| 
 | |
| 	/// The sizes in this array are stored as cumulative sums relative
 | |
| 	/// to the beginning of the Stream. This makes it possible to
 | |
| 	/// use binary search in lzma_index_locate().
 | |
| 	///
 | |
| 	/// Note that the cumulative summing is done specially for
 | |
| 	/// unpadded_sum: The previous value is rounded up to the next
 | |
| 	/// multiple of four before adding the Unpadded Size of the new
 | |
| 	/// Block. The total encoded size of the Blocks in the Stream
 | |
| 	/// is records[last].unpadded_sum in the last Record group of
 | |
| 	/// the Stream.
 | |
| 	///
 | |
| 	/// For example, if the Unpadded Sizes are 39, 57, and 81, the
 | |
| 	/// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
 | |
| 	/// The total encoded size of these Blocks is 184.
 | |
| 	///
 | |
| 	/// This is a flexible array, because it makes easy to optimize
 | |
| 	/// memory usage in case someone concatenates many Streams that
 | |
| 	/// have only one or few Blocks.
 | |
| 	index_record records[];
 | |
| 
 | |
| } index_group;
 | |
| 
 | |
| 
 | |
| typedef struct {
 | |
| 	/// Every index_stream is a node in the tree of Sreams.
 | |
| 	index_tree_node node;
 | |
| 
 | |
| 	/// Number of this Stream (first one is 1)
 | |
| 	uint32_t number;
 | |
| 
 | |
| 	/// Total number of Blocks before this Stream
 | |
| 	lzma_vli block_number_base;
 | |
| 
 | |
| 	/// Record groups of this Stream are stored in a tree.
 | |
| 	/// It's a T-tree with AVL-tree balancing. There are
 | |
| 	/// INDEX_GROUP_SIZE Records per node by default.
 | |
| 	/// This keeps the number of memory allocations reasonable
 | |
| 	/// and finding a Record is fast.
 | |
| 	index_tree groups;
 | |
| 
 | |
| 	/// Number of Records in this Stream
 | |
| 	lzma_vli record_count;
 | |
| 
 | |
| 	/// Size of the List of Records field in this Stream. This is used
 | |
| 	/// together with record_count to calculate the size of the Index
 | |
| 	/// field and thus the total size of the Stream.
 | |
| 	lzma_vli index_list_size;
 | |
| 
 | |
| 	/// Stream Flags of this Stream. This is meaningful only if
 | |
| 	/// the Stream Flags have been told us with lzma_index_stream_flags().
 | |
| 	/// Initially stream_flags.version is set to UINT32_MAX to indicate
 | |
| 	/// that the Stream Flags are unknown.
 | |
| 	lzma_stream_flags stream_flags;
 | |
| 
 | |
| 	/// Amount of Stream Padding after this Stream. This defaults to
 | |
| 	/// zero and can be set with lzma_index_stream_padding().
 | |
| 	lzma_vli stream_padding;
 | |
| 
 | |
| } index_stream;
 | |
| 
 | |
| 
 | |
| struct lzma_index_s {
 | |
| 	/// AVL-tree containing the Stream(s). Often there is just one
 | |
| 	/// Stream, but using a tree keeps lookups fast even when there
 | |
| 	/// are many concatenated Streams.
 | |
| 	index_tree streams;
 | |
| 
 | |
| 	/// Uncompressed size of all the Blocks in the Stream(s)
 | |
| 	lzma_vli uncompressed_size;
 | |
| 
 | |
| 	/// Total size of all the Blocks in the Stream(s)
 | |
| 	lzma_vli total_size;
 | |
| 
 | |
| 	/// Total number of Records in all Streams in this lzma_index
 | |
| 	lzma_vli record_count;
 | |
| 
 | |
| 	/// Size of the List of Records field if all the Streams in this
 | |
| 	/// lzma_index were packed into a single Stream (makes it simpler to
 | |
| 	/// take many .xz files and combine them into a single Stream).
 | |
| 	///
 | |
| 	/// This value together with record_count is needed to calculate
 | |
| 	/// Backward Size that is stored into Stream Footer.
 | |
| 	lzma_vli index_list_size;
 | |
| 
 | |
| 	/// How many Records to allocate at once in lzma_index_append().
 | |
| 	/// This defaults to INDEX_GROUP_SIZE but can be overriden with
 | |
| 	/// lzma_index_prealloc().
 | |
| 	size_t prealloc;
 | |
| 
 | |
| 	/// Bitmask indicating what integrity check types have been used
 | |
| 	/// as set by lzma_index_stream_flags(). The bit of the last Stream
 | |
| 	/// is not included here, since it is possible to change it by
 | |
| 	/// calling lzma_index_stream_flags() again.
 | |
| 	uint32_t checks;
 | |
| };
 | |
| 
 | |
| 
 | |
| static void
 | |
| index_tree_init(index_tree *tree)
 | |
| {
 | |
| 	tree->root = NULL;
 | |
| 	tree->leftmost = NULL;
 | |
| 	tree->rightmost = NULL;
 | |
| 	tree->count = 0;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Helper for index_tree_end()
 | |
| static void
 | |
| index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator,
 | |
| 		void (*free_func)(void *node, const lzma_allocator *allocator))
 | |
| {
 | |
| 	// The tree won't ever be very huge, so recursion should be fine.
 | |
| 	// 20 levels in the tree is likely quite a lot already in practice.
 | |
| 	if (node->left != NULL)
 | |
| 		index_tree_node_end(node->left, allocator, free_func);
 | |
| 
 | |
| 	if (node->right != NULL)
 | |
| 		index_tree_node_end(node->right, allocator, free_func);
 | |
| 
 | |
| 	free_func(node, allocator);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Free the memory allocated for a tree. Each node is freed using the
 | |
| /// given free_func which is either &lzma_free or &index_stream_end.
 | |
| /// The latter is used to free the Record groups from each index_stream
 | |
| /// before freeing the index_stream itself.
 | |
| static void
 | |
| index_tree_end(index_tree *tree, const lzma_allocator *allocator,
 | |
| 		void (*free_func)(void *node, const lzma_allocator *allocator))
 | |
| {
 | |
| 	assert(free_func != NULL);
 | |
| 
 | |
| 	if (tree->root != NULL)
 | |
| 		index_tree_node_end(tree->root, allocator, free_func);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Add a new node to the tree. node->uncompressed_base and
 | |
| /// node->compressed_base must have been set by the caller already.
 | |
| static void
 | |
| index_tree_append(index_tree *tree, index_tree_node *node)
 | |
| {
 | |
| 	node->parent = tree->rightmost;
 | |
| 	node->left = NULL;
 | |
| 	node->right = NULL;
 | |
| 
 | |
| 	++tree->count;
 | |
| 
 | |
| 	// Handle the special case of adding the first node.
 | |
| 	if (tree->root == NULL) {
 | |
| 		tree->root = node;
 | |
| 		tree->leftmost = node;
 | |
| 		tree->rightmost = node;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// The tree is always filled sequentially.
 | |
| 	assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
 | |
| 	assert(tree->rightmost->compressed_base < node->compressed_base);
 | |
| 
 | |
| 	// Add the new node after the rightmost node. It's the correct
 | |
| 	// place due to the reason above.
 | |
| 	tree->rightmost->right = node;
 | |
| 	tree->rightmost = node;
 | |
| 
 | |
| 	// Balance the AVL-tree if needed. We don't need to keep the balance
 | |
| 	// factors in nodes, because we always fill the tree sequentially,
 | |
| 	// and thus know the state of the tree just by looking at the node
 | |
| 	// count. From the node count we can calculate how many steps to go
 | |
| 	// up in the tree to find the rotation root.
 | |
| 	uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
 | |
| 	if (up != 0) {
 | |
| 		// Locate the root node for the rotation.
 | |
| 		up = ctz32(tree->count) + 2;
 | |
| 		do {
 | |
| 			node = node->parent;
 | |
| 		} while (--up > 0);
 | |
| 
 | |
| 		// Rotate left using node as the rotation root.
 | |
| 		index_tree_node *pivot = node->right;
 | |
| 
 | |
| 		if (node->parent == NULL) {
 | |
| 			tree->root = pivot;
 | |
| 		} else {
 | |
| 			assert(node->parent->right == node);
 | |
| 			node->parent->right = pivot;
 | |
| 		}
 | |
| 
 | |
| 		pivot->parent = node->parent;
 | |
| 
 | |
| 		node->right = pivot->left;
 | |
| 		if (node->right != NULL)
 | |
| 			node->right->parent = node;
 | |
| 
 | |
| 		pivot->left = node;
 | |
| 		node->parent = pivot;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Get the next node in the tree. Return NULL if there are no more nodes.
 | |
| static void *
 | |
| index_tree_next(const index_tree_node *node)
 | |
| {
 | |
| 	if (node->right != NULL) {
 | |
| 		node = node->right;
 | |
| 		while (node->left != NULL)
 | |
| 			node = node->left;
 | |
| 
 | |
| 		return (void *)(node);
 | |
| 	}
 | |
| 
 | |
| 	while (node->parent != NULL && node->parent->right == node)
 | |
| 		node = node->parent;
 | |
| 
 | |
| 	return (void *)(node->parent);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Locate a node that contains the given uncompressed offset. It is
 | |
| /// caller's job to check that target is not bigger than the uncompressed
 | |
| /// size of the tree (the last node would be returned in that case still).
 | |
| static void *
 | |
| index_tree_locate(const index_tree *tree, lzma_vli target)
 | |
| {
 | |
| 	const index_tree_node *result = NULL;
 | |
| 	const index_tree_node *node = tree->root;
 | |
| 
 | |
| 	assert(tree->leftmost == NULL
 | |
| 			|| tree->leftmost->uncompressed_base == 0);
 | |
| 
 | |
| 	// Consecutive nodes may have the same uncompressed_base.
 | |
| 	// We must pick the rightmost one.
 | |
| 	while (node != NULL) {
 | |
| 		if (node->uncompressed_base > target) {
 | |
| 			node = node->left;
 | |
| 		} else {
 | |
| 			result = node;
 | |
| 			node = node->right;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (void *)(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Allocate and initialize a new Stream using the given base offsets.
 | |
| static index_stream *
 | |
| index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
 | |
| 		uint32_t stream_number, lzma_vli block_number_base,
 | |
| 		const lzma_allocator *allocator)
 | |
| {
 | |
| 	index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
 | |
| 	if (s == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	s->node.uncompressed_base = uncompressed_base;
 | |
| 	s->node.compressed_base = compressed_base;
 | |
| 	s->node.parent = NULL;
 | |
| 	s->node.left = NULL;
 | |
| 	s->node.right = NULL;
 | |
| 
 | |
| 	s->number = stream_number;
 | |
| 	s->block_number_base = block_number_base;
 | |
| 
 | |
| 	index_tree_init(&s->groups);
 | |
| 
 | |
| 	s->record_count = 0;
 | |
| 	s->index_list_size = 0;
 | |
| 	s->stream_flags.version = UINT32_MAX;
 | |
| 	s->stream_padding = 0;
 | |
| 
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Free the memory allocated for a Stream and its Record groups.
 | |
| static void
 | |
| index_stream_end(void *node, const lzma_allocator *allocator)
 | |
| {
 | |
| 	index_stream *s = node;
 | |
| 	index_tree_end(&s->groups, allocator, &lzma_free);
 | |
| 	lzma_free(s, allocator);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| static lzma_index *
 | |
| index_init_plain(const lzma_allocator *allocator)
 | |
| {
 | |
| 	lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
 | |
| 	if (i != NULL) {
 | |
| 		index_tree_init(&i->streams);
 | |
| 		i->uncompressed_size = 0;
 | |
| 		i->total_size = 0;
 | |
| 		i->record_count = 0;
 | |
| 		i->index_list_size = 0;
 | |
| 		i->prealloc = INDEX_GROUP_SIZE;
 | |
| 		i->checks = 0;
 | |
| 	}
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_index *)
 | |
| lzma_index_init(const lzma_allocator *allocator)
 | |
| {
 | |
| 	lzma_index *i = index_init_plain(allocator);
 | |
| 	if (i == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
 | |
| 	if (s == NULL) {
 | |
| 		lzma_free(i, allocator);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	index_tree_append(&i->streams, &s->node);
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(void)
 | |
| lzma_index_end(lzma_index *i, const lzma_allocator *allocator)
 | |
| {
 | |
| 	// NOTE: If you modify this function, check also the bottom
 | |
| 	// of lzma_index_cat().
 | |
| 	if (i != NULL) {
 | |
| 		index_tree_end(&i->streams, allocator, &index_stream_end);
 | |
| 		lzma_free(i, allocator);
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern void
 | |
| lzma_index_prealloc(lzma_index *i, lzma_vli records)
 | |
| {
 | |
| 	if (records > PREALLOC_MAX)
 | |
| 		records = PREALLOC_MAX;
 | |
| 
 | |
| 	i->prealloc = (size_t)(records);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(uint64_t)
 | |
| lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
 | |
| {
 | |
| 	// This calculates an upper bound that is only a little bit
 | |
| 	// bigger than the exact maximum memory usage with the given
 | |
| 	// parameters.
 | |
| 
 | |
| 	// Typical malloc() overhead is 2 * sizeof(void *) but we take
 | |
| 	// a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
 | |
| 	// instead would give too inaccurate estimate.
 | |
| 	const size_t alloc_overhead = 4 * sizeof(void *);
 | |
| 
 | |
| 	// Amount of memory needed for each Stream base structures.
 | |
| 	// We assume that every Stream has at least one Block and
 | |
| 	// thus at least one group.
 | |
| 	const size_t stream_base = sizeof(index_stream)
 | |
| 			+ sizeof(index_group) + 2 * alloc_overhead;
 | |
| 
 | |
| 	// Amount of memory needed per group.
 | |
| 	const size_t group_base = sizeof(index_group)
 | |
| 			+ INDEX_GROUP_SIZE * sizeof(index_record)
 | |
| 			+ alloc_overhead;
 | |
| 
 | |
| 	// Number of groups. There may actually be more, but that overhead
 | |
| 	// has been taken into account in stream_base already.
 | |
| 	const lzma_vli groups
 | |
| 			= (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;
 | |
| 
 | |
| 	// Memory used by index_stream and index_group structures.
 | |
| 	const uint64_t streams_mem = streams * stream_base;
 | |
| 	const uint64_t groups_mem = groups * group_base;
 | |
| 
 | |
| 	// Memory used by the base structure.
 | |
| 	const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
 | |
| 
 | |
| 	// Validate the arguments and catch integer overflows.
 | |
| 	// Maximum number of Streams is "only" UINT32_MAX, because
 | |
| 	// that limit is used by the tree containing the Streams.
 | |
| 	const uint64_t limit = UINT64_MAX - index_base;
 | |
| 	if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
 | |
| 			|| streams > limit / stream_base
 | |
| 			|| groups > limit / group_base
 | |
| 			|| limit - streams_mem < groups_mem)
 | |
| 		return UINT64_MAX;
 | |
| 
 | |
| 	return index_base + streams_mem + groups_mem;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(uint64_t)
 | |
| lzma_index_memused(const lzma_index *i)
 | |
| {
 | |
| 	return lzma_index_memusage(i->streams.count, i->record_count);
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_vli)
 | |
| lzma_index_block_count(const lzma_index *i)
 | |
| {
 | |
| 	return i->record_count;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_vli)
 | |
| lzma_index_stream_count(const lzma_index *i)
 | |
| {
 | |
| 	return i->streams.count;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_vli)
 | |
| lzma_index_size(const lzma_index *i)
 | |
| {
 | |
| 	return index_size(i->record_count, i->index_list_size);
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_vli)
 | |
| lzma_index_total_size(const lzma_index *i)
 | |
| {
 | |
| 	return i->total_size;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_vli)
 | |
| lzma_index_stream_size(const lzma_index *i)
 | |
| {
 | |
| 	// Stream Header + Blocks + Index + Stream Footer
 | |
| 	return LZMA_STREAM_HEADER_SIZE + i->total_size
 | |
| 			+ index_size(i->record_count, i->index_list_size)
 | |
| 			+ LZMA_STREAM_HEADER_SIZE;
 | |
| }
 | |
| 
 | |
| 
 | |
| static lzma_vli
 | |
| index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
 | |
| 		lzma_vli record_count, lzma_vli index_list_size,
 | |
| 		lzma_vli stream_padding)
 | |
| {
 | |
| 	// Earlier Streams and Stream Paddings + Stream Header
 | |
| 	// + Blocks + Index + Stream Footer + Stream Padding
 | |
| 	//
 | |
| 	// This might go over LZMA_VLI_MAX due to too big unpadded_sum
 | |
| 	// when this function is used in lzma_index_append().
 | |
| 	lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
 | |
| 			+ stream_padding + vli_ceil4(unpadded_sum);
 | |
| 	if (file_size > LZMA_VLI_MAX)
 | |
| 		return LZMA_VLI_UNKNOWN;
 | |
| 
 | |
| 	// The same applies here.
 | |
| 	file_size += index_size(record_count, index_list_size);
 | |
| 	if (file_size > LZMA_VLI_MAX)
 | |
| 		return LZMA_VLI_UNKNOWN;
 | |
| 
 | |
| 	return file_size;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_vli)
 | |
| lzma_index_file_size(const lzma_index *i)
 | |
| {
 | |
| 	const index_stream *s = (const index_stream *)(i->streams.rightmost);
 | |
| 	const index_group *g = (const index_group *)(s->groups.rightmost);
 | |
| 	return index_file_size(s->node.compressed_base,
 | |
| 			g == NULL ? 0 : g->records[g->last].unpadded_sum,
 | |
| 			s->record_count, s->index_list_size,
 | |
| 			s->stream_padding);
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_vli)
 | |
| lzma_index_uncompressed_size(const lzma_index *i)
 | |
| {
 | |
| 	return i->uncompressed_size;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(uint32_t)
 | |
| lzma_index_checks(const lzma_index *i)
 | |
| {
 | |
| 	uint32_t checks = i->checks;
 | |
| 
 | |
| 	// Get the type of the Check of the last Stream too.
 | |
| 	const index_stream *s = (const index_stream *)(i->streams.rightmost);
 | |
| 	if (s->stream_flags.version != UINT32_MAX)
 | |
| 		checks |= UINT32_C(1) << s->stream_flags.check;
 | |
| 
 | |
| 	return checks;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern uint32_t
 | |
| lzma_index_padding_size(const lzma_index *i)
 | |
| {
 | |
| 	return (LZMA_VLI_C(4) - index_size_unpadded(
 | |
| 			i->record_count, i->index_list_size)) & 3;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_ret)
 | |
| lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
 | |
| {
 | |
| 	if (i == NULL || stream_flags == NULL)
 | |
| 		return LZMA_PROG_ERROR;
 | |
| 
 | |
| 	// Validate the Stream Flags.
 | |
| 	return_if_error(lzma_stream_flags_compare(
 | |
| 			stream_flags, stream_flags));
 | |
| 
 | |
| 	index_stream *s = (index_stream *)(i->streams.rightmost);
 | |
| 	s->stream_flags = *stream_flags;
 | |
| 
 | |
| 	return LZMA_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_ret)
 | |
| lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
 | |
| {
 | |
| 	if (i == NULL || stream_padding > LZMA_VLI_MAX
 | |
| 			|| (stream_padding & 3) != 0)
 | |
| 		return LZMA_PROG_ERROR;
 | |
| 
 | |
| 	index_stream *s = (index_stream *)(i->streams.rightmost);
 | |
| 
 | |
| 	// Check that the new value won't make the file grow too big.
 | |
| 	const lzma_vli old_stream_padding = s->stream_padding;
 | |
| 	s->stream_padding = 0;
 | |
| 	if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
 | |
| 		s->stream_padding = old_stream_padding;
 | |
| 		return LZMA_DATA_ERROR;
 | |
| 	}
 | |
| 
 | |
| 	s->stream_padding = stream_padding;
 | |
| 	return LZMA_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_ret)
 | |
| lzma_index_append(lzma_index *i, const lzma_allocator *allocator,
 | |
| 		lzma_vli unpadded_size, lzma_vli uncompressed_size)
 | |
| {
 | |
| 	// Validate.
 | |
| 	if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
 | |
| 			|| unpadded_size > UNPADDED_SIZE_MAX
 | |
| 			|| uncompressed_size > LZMA_VLI_MAX)
 | |
| 		return LZMA_PROG_ERROR;
 | |
| 
 | |
| 	index_stream *s = (index_stream *)(i->streams.rightmost);
 | |
| 	index_group *g = (index_group *)(s->groups.rightmost);
 | |
| 
 | |
| 	const lzma_vli compressed_base = g == NULL ? 0
 | |
| 			: vli_ceil4(g->records[g->last].unpadded_sum);
 | |
| 	const lzma_vli uncompressed_base = g == NULL ? 0
 | |
| 			: g->records[g->last].uncompressed_sum;
 | |
| 	const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
 | |
| 			+ lzma_vli_size(uncompressed_size);
 | |
| 
 | |
| 	// Check that the file size will stay within limits.
 | |
| 	if (index_file_size(s->node.compressed_base,
 | |
| 			compressed_base + unpadded_size, s->record_count + 1,
 | |
| 			s->index_list_size + index_list_size_add,
 | |
| 			s->stream_padding) == LZMA_VLI_UNKNOWN)
 | |
| 		return LZMA_DATA_ERROR;
 | |
| 
 | |
| 	// The size of the Index field must not exceed the maximum value
 | |
| 	// that can be stored in the Backward Size field.
 | |
| 	if (index_size(i->record_count + 1,
 | |
| 			i->index_list_size + index_list_size_add)
 | |
| 			> LZMA_BACKWARD_SIZE_MAX)
 | |
| 		return LZMA_DATA_ERROR;
 | |
| 
 | |
| 	if (g != NULL && g->last + 1 < g->allocated) {
 | |
| 		// There is space in the last group at least for one Record.
 | |
| 		++g->last;
 | |
| 	} else {
 | |
| 		// We need to allocate a new group.
 | |
| 		g = lzma_alloc(sizeof(index_group)
 | |
| 				+ i->prealloc * sizeof(index_record),
 | |
| 				allocator);
 | |
| 		if (g == NULL)
 | |
| 			return LZMA_MEM_ERROR;
 | |
| 
 | |
| 		g->last = 0;
 | |
| 		g->allocated = i->prealloc;
 | |
| 
 | |
| 		// Reset prealloc so that if the application happens to
 | |
| 		// add new Records, the allocation size will be sane.
 | |
| 		i->prealloc = INDEX_GROUP_SIZE;
 | |
| 
 | |
| 		// Set the start offsets of this group.
 | |
| 		g->node.uncompressed_base = uncompressed_base;
 | |
| 		g->node.compressed_base = compressed_base;
 | |
| 		g->number_base = s->record_count + 1;
 | |
| 
 | |
| 		// Add the new group to the Stream.
 | |
| 		index_tree_append(&s->groups, &g->node);
 | |
| 	}
 | |
| 
 | |
| 	// Add the new Record to the group.
 | |
| 	g->records[g->last].uncompressed_sum
 | |
| 			= uncompressed_base + uncompressed_size;
 | |
| 	g->records[g->last].unpadded_sum
 | |
| 			= compressed_base + unpadded_size;
 | |
| 
 | |
| 	// Update the totals.
 | |
| 	++s->record_count;
 | |
| 	s->index_list_size += index_list_size_add;
 | |
| 
 | |
| 	i->total_size += vli_ceil4(unpadded_size);
 | |
| 	i->uncompressed_size += uncompressed_size;
 | |
| 	++i->record_count;
 | |
| 	i->index_list_size += index_list_size_add;
 | |
| 
 | |
| 	return LZMA_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Structure to pass info to index_cat_helper()
 | |
| typedef struct {
 | |
| 	/// Uncompressed size of the destination
 | |
| 	lzma_vli uncompressed_size;
 | |
| 
 | |
| 	/// Compressed file size of the destination
 | |
| 	lzma_vli file_size;
 | |
| 
 | |
| 	/// Same as above but for Block numbers
 | |
| 	lzma_vli block_number_add;
 | |
| 
 | |
| 	/// Number of Streams that were in the destination index before we
 | |
| 	/// started appending new Streams from the source index. This is
 | |
| 	/// used to fix the Stream numbering.
 | |
| 	uint32_t stream_number_add;
 | |
| 
 | |
| 	/// Destination index' Stream tree
 | |
| 	index_tree *streams;
 | |
| 
 | |
| } index_cat_info;
 | |
| 
 | |
| 
 | |
| /// Add the Stream nodes from the source index to dest using recursion.
 | |
| /// Simplest iterative traversal of the source tree wouldn't work, because
 | |
| /// we update the pointers in nodes when moving them to the destination tree.
 | |
| static void
 | |
| index_cat_helper(const index_cat_info *info, index_stream *this)
 | |
| {
 | |
| 	index_stream *left = (index_stream *)(this->node.left);
 | |
| 	index_stream *right = (index_stream *)(this->node.right);
 | |
| 
 | |
| 	if (left != NULL)
 | |
| 		index_cat_helper(info, left);
 | |
| 
 | |
| 	this->node.uncompressed_base += info->uncompressed_size;
 | |
| 	this->node.compressed_base += info->file_size;
 | |
| 	this->number += info->stream_number_add;
 | |
| 	this->block_number_base += info->block_number_add;
 | |
| 	index_tree_append(info->streams, &this->node);
 | |
| 
 | |
| 	if (right != NULL)
 | |
| 		index_cat_helper(info, right);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_ret)
 | |
| lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
 | |
| 		const lzma_allocator *allocator)
 | |
| {
 | |
| 	const lzma_vli dest_file_size = lzma_index_file_size(dest);
 | |
| 
 | |
| 	// Check that we don't exceed the file size limits.
 | |
| 	if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
 | |
| 			|| dest->uncompressed_size + src->uncompressed_size
 | |
| 				> LZMA_VLI_MAX)
 | |
| 		return LZMA_DATA_ERROR;
 | |
| 
 | |
| 	// Check that the encoded size of the combined lzma_indexes stays
 | |
| 	// within limits. In theory, this should be done only if we know
 | |
| 	// that the user plans to actually combine the Streams and thus
 | |
| 	// construct a single Index (probably rare). However, exceeding
 | |
| 	// this limit is quite theoretical, so we do this check always
 | |
| 	// to simplify things elsewhere.
 | |
| 	{
 | |
| 		const lzma_vli dest_size = index_size_unpadded(
 | |
| 				dest->record_count, dest->index_list_size);
 | |
| 		const lzma_vli src_size = index_size_unpadded(
 | |
| 				src->record_count, src->index_list_size);
 | |
| 		if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
 | |
| 			return LZMA_DATA_ERROR;
 | |
| 	}
 | |
| 
 | |
| 	// Optimize the last group to minimize memory usage. Allocation has
 | |
| 	// to be done before modifying dest or src.
 | |
| 	{
 | |
| 		index_stream *s = (index_stream *)(dest->streams.rightmost);
 | |
| 		index_group *g = (index_group *)(s->groups.rightmost);
 | |
| 		if (g != NULL && g->last + 1 < g->allocated) {
 | |
| 			assert(g->node.left == NULL);
 | |
| 			assert(g->node.right == NULL);
 | |
| 
 | |
| 			index_group *newg = lzma_alloc(sizeof(index_group)
 | |
| 					+ (g->last + 1)
 | |
| 					* sizeof(index_record),
 | |
| 					allocator);
 | |
| 			if (newg == NULL)
 | |
| 				return LZMA_MEM_ERROR;
 | |
| 
 | |
| 			newg->node = g->node;
 | |
| 			newg->allocated = g->last + 1;
 | |
| 			newg->last = g->last;
 | |
| 			newg->number_base = g->number_base;
 | |
| 
 | |
| 			memcpy(newg->records, g->records, newg->allocated
 | |
| 					* sizeof(index_record));
 | |
| 
 | |
| 			if (g->node.parent != NULL) {
 | |
| 				assert(g->node.parent->right == &g->node);
 | |
| 				g->node.parent->right = &newg->node;
 | |
| 			}
 | |
| 
 | |
| 			if (s->groups.leftmost == &g->node) {
 | |
| 				assert(s->groups.root == &g->node);
 | |
| 				s->groups.leftmost = &newg->node;
 | |
| 				s->groups.root = &newg->node;
 | |
| 			}
 | |
| 
 | |
| 			if (s->groups.rightmost == &g->node)
 | |
| 				s->groups.rightmost = &newg->node;
 | |
| 
 | |
| 			lzma_free(g, allocator);
 | |
| 
 | |
| 			// NOTE: newg isn't leaked here because
 | |
| 			// newg == (void *)&newg->node.
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Add all the Streams from src to dest. Update the base offsets
 | |
| 	// of each Stream from src.
 | |
| 	const index_cat_info info = {
 | |
| 		.uncompressed_size = dest->uncompressed_size,
 | |
| 		.file_size = dest_file_size,
 | |
| 		.stream_number_add = dest->streams.count,
 | |
| 		.block_number_add = dest->record_count,
 | |
| 		.streams = &dest->streams,
 | |
| 	};
 | |
| 	index_cat_helper(&info, (index_stream *)(src->streams.root));
 | |
| 
 | |
| 	// Update info about all the combined Streams.
 | |
| 	dest->uncompressed_size += src->uncompressed_size;
 | |
| 	dest->total_size += src->total_size;
 | |
| 	dest->record_count += src->record_count;
 | |
| 	dest->index_list_size += src->index_list_size;
 | |
| 	dest->checks = lzma_index_checks(dest) | src->checks;
 | |
| 
 | |
| 	// There's nothing else left in src than the base structure.
 | |
| 	lzma_free(src, allocator);
 | |
| 
 | |
| 	return LZMA_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Duplicate an index_stream.
 | |
| static index_stream *
 | |
| index_dup_stream(const index_stream *src, const lzma_allocator *allocator)
 | |
| {
 | |
| 	// Catch a somewhat theoretical integer overflow.
 | |
| 	if (src->record_count > PREALLOC_MAX)
 | |
| 		return NULL;
 | |
| 
 | |
| 	// Allocate and initialize a new Stream.
 | |
| 	index_stream *dest = index_stream_init(src->node.compressed_base,
 | |
| 			src->node.uncompressed_base, src->number,
 | |
| 			src->block_number_base, allocator);
 | |
| 	if (dest == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	// Copy the overall information.
 | |
| 	dest->record_count = src->record_count;
 | |
| 	dest->index_list_size = src->index_list_size;
 | |
| 	dest->stream_flags = src->stream_flags;
 | |
| 	dest->stream_padding = src->stream_padding;
 | |
| 
 | |
| 	// Return if there are no groups to duplicate.
 | |
| 	if (src->groups.leftmost == NULL)
 | |
| 		return dest;
 | |
| 
 | |
| 	// Allocate memory for the Records. We put all the Records into
 | |
| 	// a single group. It's simplest and also tends to make
 | |
| 	// lzma_index_locate() a little bit faster with very big Indexes.
 | |
| 	index_group *destg = lzma_alloc(sizeof(index_group)
 | |
| 			+ src->record_count * sizeof(index_record),
 | |
| 			allocator);
 | |
| 	if (destg == NULL) {
 | |
| 		index_stream_end(dest, allocator);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	// Initialize destg.
 | |
| 	destg->node.uncompressed_base = 0;
 | |
| 	destg->node.compressed_base = 0;
 | |
| 	destg->number_base = 1;
 | |
| 	destg->allocated = src->record_count;
 | |
| 	destg->last = src->record_count - 1;
 | |
| 
 | |
| 	// Go through all the groups in src and copy the Records into destg.
 | |
| 	const index_group *srcg = (const index_group *)(src->groups.leftmost);
 | |
| 	size_t i = 0;
 | |
| 	do {
 | |
| 		memcpy(destg->records + i, srcg->records,
 | |
| 				(srcg->last + 1) * sizeof(index_record));
 | |
| 		i += srcg->last + 1;
 | |
| 		srcg = index_tree_next(&srcg->node);
 | |
| 	} while (srcg != NULL);
 | |
| 
 | |
| 	assert(i == destg->allocated);
 | |
| 
 | |
| 	// Add the group to the new Stream.
 | |
| 	index_tree_append(&dest->groups, &destg->node);
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_index *)
 | |
| lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator)
 | |
| {
 | |
| 	// Allocate the base structure (no initial Stream).
 | |
| 	lzma_index *dest = index_init_plain(allocator);
 | |
| 	if (dest == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	// Copy the totals.
 | |
| 	dest->uncompressed_size = src->uncompressed_size;
 | |
| 	dest->total_size = src->total_size;
 | |
| 	dest->record_count = src->record_count;
 | |
| 	dest->index_list_size = src->index_list_size;
 | |
| 
 | |
| 	// Copy the Streams and the groups in them.
 | |
| 	const index_stream *srcstream
 | |
| 			= (const index_stream *)(src->streams.leftmost);
 | |
| 	do {
 | |
| 		index_stream *deststream = index_dup_stream(
 | |
| 				srcstream, allocator);
 | |
| 		if (deststream == NULL) {
 | |
| 			lzma_index_end(dest, allocator);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		index_tree_append(&dest->streams, &deststream->node);
 | |
| 
 | |
| 		srcstream = index_tree_next(&srcstream->node);
 | |
| 	} while (srcstream != NULL);
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Indexing for lzma_index_iter.internal[]
 | |
| enum {
 | |
| 	ITER_INDEX,
 | |
| 	ITER_STREAM,
 | |
| 	ITER_GROUP,
 | |
| 	ITER_RECORD,
 | |
| 	ITER_METHOD,
 | |
| };
 | |
| 
 | |
| 
 | |
| /// Values for lzma_index_iter.internal[ITER_METHOD].s
 | |
| enum {
 | |
| 	ITER_METHOD_NORMAL,
 | |
| 	ITER_METHOD_NEXT,
 | |
| 	ITER_METHOD_LEFTMOST,
 | |
| };
 | |
| 
 | |
| 
 | |
| static void
 | |
| iter_set_info(lzma_index_iter *iter)
 | |
| {
 | |
| 	const lzma_index *i = iter->internal[ITER_INDEX].p;
 | |
| 	const index_stream *stream = iter->internal[ITER_STREAM].p;
 | |
| 	const index_group *group = iter->internal[ITER_GROUP].p;
 | |
| 	const size_t record = iter->internal[ITER_RECORD].s;
 | |
| 
 | |
| 	// lzma_index_iter.internal must not contain a pointer to the last
 | |
| 	// group in the index, because that may be reallocated by
 | |
| 	// lzma_index_cat().
 | |
| 	if (group == NULL) {
 | |
| 		// There are no groups.
 | |
| 		assert(stream->groups.root == NULL);
 | |
| 		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
 | |
| 
 | |
| 	} else if (i->streams.rightmost != &stream->node
 | |
| 			|| stream->groups.rightmost != &group->node) {
 | |
| 		// The group is not not the last group in the index.
 | |
| 		iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
 | |
| 
 | |
| 	} else if (stream->groups.leftmost != &group->node) {
 | |
| 		// The group isn't the only group in the Stream, thus we
 | |
| 		// know that it must have a parent group i.e. it's not
 | |
| 		// the root node.
 | |
| 		assert(stream->groups.root != &group->node);
 | |
| 		assert(group->node.parent->right == &group->node);
 | |
| 		iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
 | |
| 		iter->internal[ITER_GROUP].p = group->node.parent;
 | |
| 
 | |
| 	} else {
 | |
| 		// The Stream has only one group.
 | |
| 		assert(stream->groups.root == &group->node);
 | |
| 		assert(group->node.parent == NULL);
 | |
| 		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
 | |
| 		iter->internal[ITER_GROUP].p = NULL;
 | |
| 	}
 | |
| 
 | |
| 	// NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t
 | |
| 	// internally.
 | |
| 	iter->stream.number = stream->number;
 | |
| 	iter->stream.block_count = stream->record_count;
 | |
| 	iter->stream.compressed_offset = stream->node.compressed_base;
 | |
| 	iter->stream.uncompressed_offset = stream->node.uncompressed_base;
 | |
| 
 | |
| 	// iter->stream.flags will be NULL if the Stream Flags haven't been
 | |
| 	// set with lzma_index_stream_flags().
 | |
| 	iter->stream.flags = stream->stream_flags.version == UINT32_MAX
 | |
| 			? NULL : &stream->stream_flags;
 | |
| 	iter->stream.padding = stream->stream_padding;
 | |
| 
 | |
| 	if (stream->groups.rightmost == NULL) {
 | |
| 		// Stream has no Blocks.
 | |
| 		iter->stream.compressed_size = index_size(0, 0)
 | |
| 				+ 2 * LZMA_STREAM_HEADER_SIZE;
 | |
| 		iter->stream.uncompressed_size = 0;
 | |
| 	} else {
 | |
| 		const index_group *g = (const index_group *)(
 | |
| 				stream->groups.rightmost);
 | |
| 
 | |
| 		// Stream Header + Stream Footer + Index + Blocks
 | |
| 		iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
 | |
| 				+ index_size(stream->record_count,
 | |
| 					stream->index_list_size)
 | |
| 				+ vli_ceil4(g->records[g->last].unpadded_sum);
 | |
| 		iter->stream.uncompressed_size
 | |
| 				= g->records[g->last].uncompressed_sum;
 | |
| 	}
 | |
| 
 | |
| 	if (group != NULL) {
 | |
| 		iter->block.number_in_stream = group->number_base + record;
 | |
| 		iter->block.number_in_file = iter->block.number_in_stream
 | |
| 				+ stream->block_number_base;
 | |
| 
 | |
| 		iter->block.compressed_stream_offset
 | |
| 				= record == 0 ? group->node.compressed_base
 | |
| 				: vli_ceil4(group->records[
 | |
| 					record - 1].unpadded_sum);
 | |
| 		iter->block.uncompressed_stream_offset
 | |
| 				= record == 0 ? group->node.uncompressed_base
 | |
| 				: group->records[record - 1].uncompressed_sum;
 | |
| 
 | |
| 		iter->block.uncompressed_size
 | |
| 				= group->records[record].uncompressed_sum
 | |
| 				- iter->block.uncompressed_stream_offset;
 | |
| 		iter->block.unpadded_size
 | |
| 				= group->records[record].unpadded_sum
 | |
| 				- iter->block.compressed_stream_offset;
 | |
| 		iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
 | |
| 
 | |
| 		iter->block.compressed_stream_offset
 | |
| 				+= LZMA_STREAM_HEADER_SIZE;
 | |
| 
 | |
| 		iter->block.compressed_file_offset
 | |
| 				= iter->block.compressed_stream_offset
 | |
| 				+ iter->stream.compressed_offset;
 | |
| 		iter->block.uncompressed_file_offset
 | |
| 				= iter->block.uncompressed_stream_offset
 | |
| 				+ iter->stream.uncompressed_offset;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(void)
 | |
| lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
 | |
| {
 | |
| 	iter->internal[ITER_INDEX].p = i;
 | |
| 	lzma_index_iter_rewind(iter);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(void)
 | |
| lzma_index_iter_rewind(lzma_index_iter *iter)
 | |
| {
 | |
| 	iter->internal[ITER_STREAM].p = NULL;
 | |
| 	iter->internal[ITER_GROUP].p = NULL;
 | |
| 	iter->internal[ITER_RECORD].s = 0;
 | |
| 	iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_bool)
 | |
| lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
 | |
| {
 | |
| 	// Catch unsupported mode values.
 | |
| 	if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
 | |
| 		return true;
 | |
| 
 | |
| 	const lzma_index *i = iter->internal[ITER_INDEX].p;
 | |
| 	const index_stream *stream = iter->internal[ITER_STREAM].p;
 | |
| 	const index_group *group = NULL;
 | |
| 	size_t record = iter->internal[ITER_RECORD].s;
 | |
| 
 | |
| 	// If we are being asked for the next Stream, leave group to NULL
 | |
| 	// so that the rest of the this function thinks that this Stream
 | |
| 	// has no groups and will thus go to the next Stream.
 | |
| 	if (mode != LZMA_INDEX_ITER_STREAM) {
 | |
| 		// Get the pointer to the current group. See iter_set_inf()
 | |
| 		// for explanation.
 | |
| 		switch (iter->internal[ITER_METHOD].s) {
 | |
| 		case ITER_METHOD_NORMAL:
 | |
| 			group = iter->internal[ITER_GROUP].p;
 | |
| 			break;
 | |
| 
 | |
| 		case ITER_METHOD_NEXT:
 | |
| 			group = index_tree_next(iter->internal[ITER_GROUP].p);
 | |
| 			break;
 | |
| 
 | |
| 		case ITER_METHOD_LEFTMOST:
 | |
| 			group = (const index_group *)(
 | |
| 					stream->groups.leftmost);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	if (stream == NULL) {
 | |
| 		// We at the beginning of the lzma_index.
 | |
| 		// Locate the first Stream.
 | |
| 		stream = (const index_stream *)(i->streams.leftmost);
 | |
| 		if (mode >= LZMA_INDEX_ITER_BLOCK) {
 | |
| 			// Since we are being asked to return information
 | |
| 			// about the first a Block, skip Streams that have
 | |
| 			// no Blocks.
 | |
| 			while (stream->groups.leftmost == NULL) {
 | |
| 				stream = index_tree_next(&stream->node);
 | |
| 				if (stream == NULL)
 | |
| 					return true;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Start from the first Record in the Stream.
 | |
| 		group = (const index_group *)(stream->groups.leftmost);
 | |
| 		record = 0;
 | |
| 
 | |
| 	} else if (group != NULL && record < group->last) {
 | |
| 		// The next Record is in the same group.
 | |
| 		++record;
 | |
| 
 | |
| 	} else {
 | |
| 		// This group has no more Records or this Stream has
 | |
| 		// no Blocks at all.
 | |
| 		record = 0;
 | |
| 
 | |
| 		// If group is not NULL, this Stream has at least one Block
 | |
| 		// and thus at least one group. Find the next group.
 | |
| 		if (group != NULL)
 | |
| 			group = index_tree_next(&group->node);
 | |
| 
 | |
| 		if (group == NULL) {
 | |
| 			// This Stream has no more Records. Find the next
 | |
| 			// Stream. If we are being asked to return information
 | |
| 			// about a Block, we skip empty Streams.
 | |
| 			do {
 | |
| 				stream = index_tree_next(&stream->node);
 | |
| 				if (stream == NULL)
 | |
| 					return true;
 | |
| 			} while (mode >= LZMA_INDEX_ITER_BLOCK
 | |
| 					&& stream->groups.leftmost == NULL);
 | |
| 
 | |
| 			group = (const index_group *)(
 | |
| 					stream->groups.leftmost);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
 | |
| 		// We need to look for the next Block again if this Block
 | |
| 		// is empty.
 | |
| 		if (record == 0) {
 | |
| 			if (group->node.uncompressed_base
 | |
| 					== group->records[0].uncompressed_sum)
 | |
| 				goto again;
 | |
| 		} else if (group->records[record - 1].uncompressed_sum
 | |
| 				== group->records[record].uncompressed_sum) {
 | |
| 			goto again;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	iter->internal[ITER_STREAM].p = stream;
 | |
| 	iter->internal[ITER_GROUP].p = group;
 | |
| 	iter->internal[ITER_RECORD].s = record;
 | |
| 
 | |
| 	iter_set_info(iter);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern LZMA_API(lzma_bool)
 | |
| lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
 | |
| {
 | |
| 	const lzma_index *i = iter->internal[ITER_INDEX].p;
 | |
| 
 | |
| 	// If the target is past the end of the file, return immediately.
 | |
| 	if (i->uncompressed_size <= target)
 | |
| 		return true;
 | |
| 
 | |
| 	// Locate the Stream containing the target offset.
 | |
| 	const index_stream *stream = index_tree_locate(&i->streams, target);
 | |
| 	assert(stream != NULL);
 | |
| 	target -= stream->node.uncompressed_base;
 | |
| 
 | |
| 	// Locate the group containing the target offset.
 | |
| 	const index_group *group = index_tree_locate(&stream->groups, target);
 | |
| 	assert(group != NULL);
 | |
| 
 | |
| 	// Use binary search to locate the exact Record. It is the first
 | |
| 	// Record whose uncompressed_sum is greater than target.
 | |
| 	// This is because we want the rightmost Record that fullfills the
 | |
| 	// search criterion. It is possible that there are empty Blocks;
 | |
| 	// we don't want to return them.
 | |
| 	size_t left = 0;
 | |
| 	size_t right = group->last;
 | |
| 
 | |
| 	while (left < right) {
 | |
| 		const size_t pos = left + (right - left) / 2;
 | |
| 		if (group->records[pos].uncompressed_sum <= target)
 | |
| 			left = pos + 1;
 | |
| 		else
 | |
| 			right = pos;
 | |
| 	}
 | |
| 
 | |
| 	iter->internal[ITER_STREAM].p = stream;
 | |
| 	iter->internal[ITER_GROUP].p = group;
 | |
| 	iter->internal[ITER_RECORD].s = left;
 | |
| 
 | |
| 	iter_set_info(iter);
 | |
| 
 | |
| 	return false;
 | |
| }
 |