You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1144 lines
30 KiB
1144 lines
30 KiB
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
/// \file stream_encoder_mt.c
|
|
/// \brief Multithreaded .xz Stream encoder
|
|
//
|
|
// Author: Lasse Collin
|
|
//
|
|
// This file has been put into the public domain.
|
|
// You can do whatever you want with this file.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "filter_encoder.h"
|
|
#include "easy_preset.h"
|
|
#include "block_encoder.h"
|
|
#include "block_buffer_encoder.h"
|
|
#include "index_encoder.h"
|
|
#include "outqueue.h"
|
|
|
|
|
|
/// Maximum supported block size. This makes it simpler to prevent integer
|
|
/// overflows if we are given unusually large block size.
|
|
#define BLOCK_SIZE_MAX (UINT64_MAX / LZMA_THREADS_MAX)
|
|
|
|
|
|
typedef enum {
|
|
/// Waiting for work.
|
|
THR_IDLE,
|
|
|
|
/// Encoding is in progress.
|
|
THR_RUN,
|
|
|
|
/// Encoding is in progress but no more input data will
|
|
/// be read.
|
|
THR_FINISH,
|
|
|
|
/// The main thread wants the thread to stop whatever it was doing
|
|
/// but not exit.
|
|
THR_STOP,
|
|
|
|
/// The main thread wants the thread to exit. We could use
|
|
/// cancellation but since there's stopped anyway, this is lazier.
|
|
THR_EXIT,
|
|
|
|
} worker_state;
|
|
|
|
typedef struct lzma_stream_coder_s lzma_stream_coder;
|
|
|
|
typedef struct worker_thread_s worker_thread;
|
|
struct worker_thread_s {
|
|
worker_state state;
|
|
|
|
/// Input buffer of coder->block_size bytes. The main thread will
|
|
/// put new input into this and update in_size accordingly. Once
|
|
/// no more input is coming, state will be set to THR_FINISH.
|
|
uint8_t *in;
|
|
|
|
/// Amount of data available in the input buffer. This is modified
|
|
/// only by the main thread.
|
|
size_t in_size;
|
|
|
|
/// Output buffer for this thread. This is set by the main
|
|
/// thread every time a new Block is started with this thread
|
|
/// structure.
|
|
lzma_outbuf *outbuf;
|
|
|
|
/// Pointer to the main structure is needed when putting this
|
|
/// thread back to the stack of free threads.
|
|
lzma_stream_coder *coder;
|
|
|
|
/// The allocator is set by the main thread. Since a copy of the
|
|
/// pointer is kept here, the application must not change the
|
|
/// allocator before calling lzma_end().
|
|
const lzma_allocator *allocator;
|
|
|
|
/// Amount of uncompressed data that has already been compressed.
|
|
uint64_t progress_in;
|
|
|
|
/// Amount of compressed data that is ready.
|
|
uint64_t progress_out;
|
|
|
|
/// Block encoder
|
|
lzma_next_coder block_encoder;
|
|
|
|
/// Compression options for this Block
|
|
lzma_block block_options;
|
|
|
|
/// Next structure in the stack of free worker threads.
|
|
worker_thread *next;
|
|
|
|
mythread_mutex mutex;
|
|
mythread_cond cond;
|
|
|
|
/// The ID of this thread is used to join the thread
|
|
/// when it's not needed anymore.
|
|
mythread thread_id;
|
|
};
|
|
|
|
|
|
struct lzma_stream_coder_s {
|
|
enum {
|
|
SEQ_STREAM_HEADER,
|
|
SEQ_BLOCK,
|
|
SEQ_INDEX,
|
|
SEQ_STREAM_FOOTER,
|
|
} sequence;
|
|
|
|
/// Start a new Block every block_size bytes of input unless
|
|
/// LZMA_FULL_FLUSH or LZMA_FULL_BARRIER is used earlier.
|
|
size_t block_size;
|
|
|
|
/// The filter chain currently in use
|
|
lzma_filter filters[LZMA_FILTERS_MAX + 1];
|
|
|
|
|
|
/// Index to hold sizes of the Blocks
|
|
lzma_index *index;
|
|
|
|
/// Index encoder
|
|
lzma_next_coder index_encoder;
|
|
|
|
|
|
/// Stream Flags for encoding the Stream Header and Stream Footer.
|
|
lzma_stream_flags stream_flags;
|
|
|
|
/// Buffer to hold Stream Header and Stream Footer.
|
|
uint8_t header[LZMA_STREAM_HEADER_SIZE];
|
|
|
|
/// Read position in header[]
|
|
size_t header_pos;
|
|
|
|
|
|
/// Output buffer queue for compressed data
|
|
lzma_outq outq;
|
|
|
|
|
|
/// Maximum wait time if cannot use all the input and cannot
|
|
/// fill the output buffer. This is in milliseconds.
|
|
uint32_t timeout;
|
|
|
|
|
|
/// Error code from a worker thread
|
|
lzma_ret thread_error;
|
|
|
|
/// Array of allocated thread-specific structures
|
|
worker_thread *threads;
|
|
|
|
/// Number of structures in "threads" above. This is also the
|
|
/// number of threads that will be created at maximum.
|
|
uint32_t threads_max;
|
|
|
|
/// Number of thread structures that have been initialized, and
|
|
/// thus the number of worker threads actually created so far.
|
|
uint32_t threads_initialized;
|
|
|
|
/// Stack of free threads. When a thread finishes, it puts itself
|
|
/// back into this stack. This starts as empty because threads
|
|
/// are created only when actually needed.
|
|
worker_thread *threads_free;
|
|
|
|
/// The most recent worker thread to which the main thread writes
|
|
/// the new input from the application.
|
|
worker_thread *thr;
|
|
|
|
|
|
/// Amount of uncompressed data in Blocks that have already
|
|
/// been finished.
|
|
uint64_t progress_in;
|
|
|
|
/// Amount of compressed data in Stream Header + Blocks that
|
|
/// have already been finished.
|
|
uint64_t progress_out;
|
|
|
|
|
|
mythread_mutex mutex;
|
|
mythread_cond cond;
|
|
};
|
|
|
|
|
|
/// Tell the main thread that something has gone wrong.
|
|
static void
|
|
worker_error(worker_thread *thr, lzma_ret ret)
|
|
{
|
|
assert(ret != LZMA_OK);
|
|
assert(ret != LZMA_STREAM_END);
|
|
|
|
mythread_sync(thr->coder->mutex) {
|
|
if (thr->coder->thread_error == LZMA_OK)
|
|
thr->coder->thread_error = ret;
|
|
|
|
mythread_cond_signal(&thr->coder->cond);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
static worker_state
|
|
worker_encode(worker_thread *thr, worker_state state)
|
|
{
|
|
assert(thr->progress_in == 0);
|
|
assert(thr->progress_out == 0);
|
|
|
|
// Set the Block options.
|
|
thr->block_options = (lzma_block){
|
|
.version = 0,
|
|
.check = thr->coder->stream_flags.check,
|
|
.compressed_size = thr->coder->outq.buf_size_max,
|
|
.uncompressed_size = thr->coder->block_size,
|
|
|
|
// TODO: To allow changing the filter chain, the filters
|
|
// array must be copied to each worker_thread.
|
|
.filters = thr->coder->filters,
|
|
};
|
|
|
|
// Calculate maximum size of the Block Header. This amount is
|
|
// reserved in the beginning of the buffer so that Block Header
|
|
// along with Compressed Size and Uncompressed Size can be
|
|
// written there.
|
|
lzma_ret ret = lzma_block_header_size(&thr->block_options);
|
|
if (ret != LZMA_OK) {
|
|
worker_error(thr, ret);
|
|
return THR_STOP;
|
|
}
|
|
|
|
// Initialize the Block encoder.
|
|
ret = lzma_block_encoder_init(&thr->block_encoder,
|
|
thr->allocator, &thr->block_options);
|
|
if (ret != LZMA_OK) {
|
|
worker_error(thr, ret);
|
|
return THR_STOP;
|
|
}
|
|
|
|
size_t in_pos = 0;
|
|
size_t in_size = 0;
|
|
|
|
thr->outbuf->size = thr->block_options.header_size;
|
|
const size_t out_size = thr->coder->outq.buf_size_max;
|
|
|
|
do {
|
|
mythread_sync(thr->mutex) {
|
|
// Store in_pos and out_pos into *thr so that
|
|
// an application may read them via
|
|
// lzma_get_progress() to get progress information.
|
|
//
|
|
// NOTE: These aren't updated when the encoding
|
|
// finishes. Instead, the final values are taken
|
|
// later from thr->outbuf.
|
|
thr->progress_in = in_pos;
|
|
thr->progress_out = thr->outbuf->size;
|
|
|
|
while (in_size == thr->in_size
|
|
&& thr->state == THR_RUN)
|
|
mythread_cond_wait(&thr->cond, &thr->mutex);
|
|
|
|
state = thr->state;
|
|
in_size = thr->in_size;
|
|
}
|
|
|
|
// Return if we were asked to stop or exit.
|
|
if (state >= THR_STOP)
|
|
return state;
|
|
|
|
lzma_action action = state == THR_FINISH
|
|
? LZMA_FINISH : LZMA_RUN;
|
|
|
|
// Limit the amount of input given to the Block encoder
|
|
// at once. This way this thread can react fairly quickly
|
|
// if the main thread wants us to stop or exit.
|
|
static const size_t in_chunk_max = 16384;
|
|
size_t in_limit = in_size;
|
|
if (in_size - in_pos > in_chunk_max) {
|
|
in_limit = in_pos + in_chunk_max;
|
|
action = LZMA_RUN;
|
|
}
|
|
|
|
ret = thr->block_encoder.code(
|
|
thr->block_encoder.coder, thr->allocator,
|
|
thr->in, &in_pos, in_limit, thr->outbuf->buf,
|
|
&thr->outbuf->size, out_size, action);
|
|
} while (ret == LZMA_OK && thr->outbuf->size < out_size);
|
|
|
|
switch (ret) {
|
|
case LZMA_STREAM_END:
|
|
assert(state == THR_FINISH);
|
|
|
|
// Encode the Block Header. By doing it after
|
|
// the compression, we can store the Compressed Size
|
|
// and Uncompressed Size fields.
|
|
ret = lzma_block_header_encode(&thr->block_options,
|
|
thr->outbuf->buf);
|
|
if (ret != LZMA_OK) {
|
|
worker_error(thr, ret);
|
|
return THR_STOP;
|
|
}
|
|
|
|
break;
|
|
|
|
case LZMA_OK:
|
|
// The data was incompressible. Encode it using uncompressed
|
|
// LZMA2 chunks.
|
|
//
|
|
// First wait that we have gotten all the input.
|
|
mythread_sync(thr->mutex) {
|
|
while (thr->state == THR_RUN)
|
|
mythread_cond_wait(&thr->cond, &thr->mutex);
|
|
|
|
state = thr->state;
|
|
in_size = thr->in_size;
|
|
}
|
|
|
|
if (state >= THR_STOP)
|
|
return state;
|
|
|
|
// Do the encoding. This takes care of the Block Header too.
|
|
thr->outbuf->size = 0;
|
|
ret = lzma_block_uncomp_encode(&thr->block_options,
|
|
thr->in, in_size, thr->outbuf->buf,
|
|
&thr->outbuf->size, out_size);
|
|
|
|
// It shouldn't fail.
|
|
if (ret != LZMA_OK) {
|
|
worker_error(thr, LZMA_PROG_ERROR);
|
|
return THR_STOP;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
worker_error(thr, ret);
|
|
return THR_STOP;
|
|
}
|
|
|
|
// Set the size information that will be read by the main thread
|
|
// to write the Index field.
|
|
thr->outbuf->unpadded_size
|
|
= lzma_block_unpadded_size(&thr->block_options);
|
|
assert(thr->outbuf->unpadded_size != 0);
|
|
thr->outbuf->uncompressed_size = thr->block_options.uncompressed_size;
|
|
|
|
return THR_FINISH;
|
|
}
|
|
|
|
|
|
static MYTHREAD_RET_TYPE
|
|
worker_start(void *thr_ptr)
|
|
{
|
|
worker_thread *thr = thr_ptr;
|
|
worker_state state = THR_IDLE; // Init to silence a warning
|
|
|
|
while (true) {
|
|
// Wait for work.
|
|
mythread_sync(thr->mutex) {
|
|
while (true) {
|
|
// The thread is already idle so if we are
|
|
// requested to stop, just set the state.
|
|
if (thr->state == THR_STOP) {
|
|
thr->state = THR_IDLE;
|
|
mythread_cond_signal(&thr->cond);
|
|
}
|
|
|
|
state = thr->state;
|
|
if (state != THR_IDLE)
|
|
break;
|
|
|
|
mythread_cond_wait(&thr->cond, &thr->mutex);
|
|
}
|
|
}
|
|
|
|
assert(state != THR_IDLE);
|
|
assert(state != THR_STOP);
|
|
|
|
if (state <= THR_FINISH)
|
|
state = worker_encode(thr, state);
|
|
|
|
if (state == THR_EXIT)
|
|
break;
|
|
|
|
// Mark the thread as idle unless the main thread has
|
|
// told us to exit. Signal is needed for the case
|
|
// where the main thread is waiting for the threads to stop.
|
|
mythread_sync(thr->mutex) {
|
|
if (thr->state != THR_EXIT) {
|
|
thr->state = THR_IDLE;
|
|
mythread_cond_signal(&thr->cond);
|
|
}
|
|
}
|
|
|
|
mythread_sync(thr->coder->mutex) {
|
|
// Mark the output buffer as finished if
|
|
// no errors occurred.
|
|
thr->outbuf->finished = state == THR_FINISH;
|
|
|
|
// Update the main progress info.
|
|
thr->coder->progress_in
|
|
+= thr->outbuf->uncompressed_size;
|
|
thr->coder->progress_out += thr->outbuf->size;
|
|
thr->progress_in = 0;
|
|
thr->progress_out = 0;
|
|
|
|
// Return this thread to the stack of free threads.
|
|
thr->next = thr->coder->threads_free;
|
|
thr->coder->threads_free = thr;
|
|
|
|
mythread_cond_signal(&thr->coder->cond);
|
|
}
|
|
}
|
|
|
|
// Exiting, free the resources.
|
|
mythread_mutex_destroy(&thr->mutex);
|
|
mythread_cond_destroy(&thr->cond);
|
|
|
|
lzma_next_end(&thr->block_encoder, thr->allocator);
|
|
lzma_free(thr->in, thr->allocator);
|
|
return MYTHREAD_RET_VALUE;
|
|
}
|
|
|
|
|
|
/// Make the threads stop but not exit. Optionally wait for them to stop.
|
|
static void
|
|
threads_stop(lzma_stream_coder *coder, bool wait_for_threads)
|
|
{
|
|
// Tell the threads to stop.
|
|
for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
|
|
mythread_sync(coder->threads[i].mutex) {
|
|
coder->threads[i].state = THR_STOP;
|
|
mythread_cond_signal(&coder->threads[i].cond);
|
|
}
|
|
}
|
|
|
|
if (!wait_for_threads)
|
|
return;
|
|
|
|
// Wait for the threads to settle in the idle state.
|
|
for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
|
|
mythread_sync(coder->threads[i].mutex) {
|
|
while (coder->threads[i].state != THR_IDLE)
|
|
mythread_cond_wait(&coder->threads[i].cond,
|
|
&coder->threads[i].mutex);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/// Stop the threads and free the resources associated with them.
|
|
/// Wait until the threads have exited.
|
|
static void
|
|
threads_end(lzma_stream_coder *coder, const lzma_allocator *allocator)
|
|
{
|
|
for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
|
|
mythread_sync(coder->threads[i].mutex) {
|
|
coder->threads[i].state = THR_EXIT;
|
|
mythread_cond_signal(&coder->threads[i].cond);
|
|
}
|
|
}
|
|
|
|
for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
|
|
int ret = mythread_join(coder->threads[i].thread_id);
|
|
assert(ret == 0);
|
|
(void)ret;
|
|
}
|
|
|
|
lzma_free(coder->threads, allocator);
|
|
return;
|
|
}
|
|
|
|
|
|
/// Initialize a new worker_thread structure and create a new thread.
|
|
static lzma_ret
|
|
initialize_new_thread(lzma_stream_coder *coder,
|
|
const lzma_allocator *allocator)
|
|
{
|
|
worker_thread *thr = &coder->threads[coder->threads_initialized];
|
|
|
|
thr->in = lzma_alloc(coder->block_size, allocator);
|
|
if (thr->in == NULL)
|
|
return LZMA_MEM_ERROR;
|
|
|
|
if (mythread_mutex_init(&thr->mutex))
|
|
goto error_mutex;
|
|
|
|
if (mythread_cond_init(&thr->cond))
|
|
goto error_cond;
|
|
|
|
thr->state = THR_IDLE;
|
|
thr->allocator = allocator;
|
|
thr->coder = coder;
|
|
thr->progress_in = 0;
|
|
thr->progress_out = 0;
|
|
thr->block_encoder = LZMA_NEXT_CODER_INIT;
|
|
|
|
if (mythread_create(&thr->thread_id, &worker_start, thr))
|
|
goto error_thread;
|
|
|
|
++coder->threads_initialized;
|
|
coder->thr = thr;
|
|
|
|
return LZMA_OK;
|
|
|
|
error_thread:
|
|
mythread_cond_destroy(&thr->cond);
|
|
|
|
error_cond:
|
|
mythread_mutex_destroy(&thr->mutex);
|
|
|
|
error_mutex:
|
|
lzma_free(thr->in, allocator);
|
|
return LZMA_MEM_ERROR;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
get_thread(lzma_stream_coder *coder, const lzma_allocator *allocator)
|
|
{
|
|
// If there are no free output subqueues, there is no
|
|
// point to try getting a thread.
|
|
if (!lzma_outq_has_buf(&coder->outq))
|
|
return LZMA_OK;
|
|
|
|
// If there is a free structure on the stack, use it.
|
|
mythread_sync(coder->mutex) {
|
|
if (coder->threads_free != NULL) {
|
|
coder->thr = coder->threads_free;
|
|
coder->threads_free = coder->threads_free->next;
|
|
}
|
|
}
|
|
|
|
if (coder->thr == NULL) {
|
|
// If there are no uninitialized structures left, return.
|
|
if (coder->threads_initialized == coder->threads_max)
|
|
return LZMA_OK;
|
|
|
|
// Initialize a new thread.
|
|
return_if_error(initialize_new_thread(coder, allocator));
|
|
}
|
|
|
|
// Reset the parts of the thread state that have to be done
|
|
// in the main thread.
|
|
mythread_sync(coder->thr->mutex) {
|
|
coder->thr->state = THR_RUN;
|
|
coder->thr->in_size = 0;
|
|
coder->thr->outbuf = lzma_outq_get_buf(&coder->outq);
|
|
mythread_cond_signal(&coder->thr->cond);
|
|
}
|
|
|
|
return LZMA_OK;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
stream_encode_in(lzma_stream_coder *coder, const lzma_allocator *allocator,
|
|
const uint8_t *restrict in, size_t *restrict in_pos,
|
|
size_t in_size, lzma_action action)
|
|
{
|
|
while (*in_pos < in_size
|
|
|| (coder->thr != NULL && action != LZMA_RUN)) {
|
|
if (coder->thr == NULL) {
|
|
// Get a new thread.
|
|
const lzma_ret ret = get_thread(coder, allocator);
|
|
if (coder->thr == NULL)
|
|
return ret;
|
|
}
|
|
|
|
// Copy the input data to thread's buffer.
|
|
size_t thr_in_size = coder->thr->in_size;
|
|
lzma_bufcpy(in, in_pos, in_size, coder->thr->in,
|
|
&thr_in_size, coder->block_size);
|
|
|
|
// Tell the Block encoder to finish if
|
|
// - it has got block_size bytes of input; or
|
|
// - all input was used and LZMA_FINISH, LZMA_FULL_FLUSH,
|
|
// or LZMA_FULL_BARRIER was used.
|
|
//
|
|
// TODO: LZMA_SYNC_FLUSH and LZMA_SYNC_BARRIER.
|
|
const bool finish = thr_in_size == coder->block_size
|
|
|| (*in_pos == in_size && action != LZMA_RUN);
|
|
|
|
bool block_error = false;
|
|
|
|
mythread_sync(coder->thr->mutex) {
|
|
if (coder->thr->state == THR_IDLE) {
|
|
// Something has gone wrong with the Block
|
|
// encoder. It has set coder->thread_error
|
|
// which we will read a few lines later.
|
|
block_error = true;
|
|
} else {
|
|
// Tell the Block encoder its new amount
|
|
// of input and update the state if needed.
|
|
coder->thr->in_size = thr_in_size;
|
|
|
|
if (finish)
|
|
coder->thr->state = THR_FINISH;
|
|
|
|
mythread_cond_signal(&coder->thr->cond);
|
|
}
|
|
}
|
|
|
|
if (block_error) {
|
|
lzma_ret ret;
|
|
|
|
mythread_sync(coder->mutex) {
|
|
ret = coder->thread_error;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
if (finish)
|
|
coder->thr = NULL;
|
|
}
|
|
|
|
return LZMA_OK;
|
|
}
|
|
|
|
|
|
/// Wait until more input can be consumed, more output can be read, or
|
|
/// an optional timeout is reached.
|
|
static bool
|
|
wait_for_work(lzma_stream_coder *coder, mythread_condtime *wait_abs,
|
|
bool *has_blocked, bool has_input)
|
|
{
|
|
if (coder->timeout != 0 && !*has_blocked) {
|
|
// Every time when stream_encode_mt() is called via
|
|
// lzma_code(), *has_blocked starts as false. We set it
|
|
// to true here and calculate the absolute time when
|
|
// we must return if there's nothing to do.
|
|
//
|
|
// The idea of *has_blocked is to avoid unneeded calls
|
|
// to mythread_condtime_set(), which may do a syscall
|
|
// depending on the operating system.
|
|
*has_blocked = true;
|
|
mythread_condtime_set(wait_abs, &coder->cond, coder->timeout);
|
|
}
|
|
|
|
bool timed_out = false;
|
|
|
|
mythread_sync(coder->mutex) {
|
|
// There are four things that we wait. If one of them
|
|
// becomes possible, we return.
|
|
// - If there is input left, we need to get a free
|
|
// worker thread and an output buffer for it.
|
|
// - Data ready to be read from the output queue.
|
|
// - A worker thread indicates an error.
|
|
// - Time out occurs.
|
|
while ((!has_input || coder->threads_free == NULL
|
|
|| !lzma_outq_has_buf(&coder->outq))
|
|
&& !lzma_outq_is_readable(&coder->outq)
|
|
&& coder->thread_error == LZMA_OK
|
|
&& !timed_out) {
|
|
if (coder->timeout != 0)
|
|
timed_out = mythread_cond_timedwait(
|
|
&coder->cond, &coder->mutex,
|
|
wait_abs) != 0;
|
|
else
|
|
mythread_cond_wait(&coder->cond,
|
|
&coder->mutex);
|
|
}
|
|
}
|
|
|
|
return timed_out;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
stream_encode_mt(void *coder_ptr, const lzma_allocator *allocator,
|
|
const uint8_t *restrict in, size_t *restrict in_pos,
|
|
size_t in_size, uint8_t *restrict out,
|
|
size_t *restrict out_pos, size_t out_size, lzma_action action)
|
|
{
|
|
lzma_stream_coder *coder = coder_ptr;
|
|
|
|
switch (coder->sequence) {
|
|
case SEQ_STREAM_HEADER:
|
|
lzma_bufcpy(coder->header, &coder->header_pos,
|
|
sizeof(coder->header),
|
|
out, out_pos, out_size);
|
|
if (coder->header_pos < sizeof(coder->header))
|
|
return LZMA_OK;
|
|
|
|
coder->header_pos = 0;
|
|
coder->sequence = SEQ_BLOCK;
|
|
|
|
// Fall through
|
|
|
|
case SEQ_BLOCK: {
|
|
// Initialized to silence warnings.
|
|
lzma_vli unpadded_size = 0;
|
|
lzma_vli uncompressed_size = 0;
|
|
lzma_ret ret = LZMA_OK;
|
|
|
|
// These are for wait_for_work().
|
|
bool has_blocked = false;
|
|
mythread_condtime wait_abs;
|
|
|
|
while (true) {
|
|
mythread_sync(coder->mutex) {
|
|
// Check for Block encoder errors.
|
|
ret = coder->thread_error;
|
|
if (ret != LZMA_OK) {
|
|
assert(ret != LZMA_STREAM_END);
|
|
break;
|
|
}
|
|
|
|
// Try to read compressed data to out[].
|
|
ret = lzma_outq_read(&coder->outq,
|
|
out, out_pos, out_size,
|
|
&unpadded_size,
|
|
&uncompressed_size);
|
|
}
|
|
|
|
if (ret == LZMA_STREAM_END) {
|
|
// End of Block. Add it to the Index.
|
|
ret = lzma_index_append(coder->index,
|
|
allocator, unpadded_size,
|
|
uncompressed_size);
|
|
|
|
// If we didn't fill the output buffer yet,
|
|
// try to read more data. Maybe the next
|
|
// outbuf has been finished already too.
|
|
if (*out_pos < out_size)
|
|
continue;
|
|
}
|
|
|
|
if (ret != LZMA_OK) {
|
|
// coder->thread_error was set or
|
|
// lzma_index_append() failed.
|
|
threads_stop(coder, false);
|
|
return ret;
|
|
}
|
|
|
|
// Try to give uncompressed data to a worker thread.
|
|
ret = stream_encode_in(coder, allocator,
|
|
in, in_pos, in_size, action);
|
|
if (ret != LZMA_OK) {
|
|
threads_stop(coder, false);
|
|
return ret;
|
|
}
|
|
|
|
// See if we should wait or return.
|
|
//
|
|
// TODO: LZMA_SYNC_FLUSH and LZMA_SYNC_BARRIER.
|
|
if (*in_pos == in_size) {
|
|
// LZMA_RUN: More data is probably coming
|
|
// so return to let the caller fill the
|
|
// input buffer.
|
|
if (action == LZMA_RUN)
|
|
return LZMA_OK;
|
|
|
|
// LZMA_FULL_BARRIER: The same as with
|
|
// LZMA_RUN but tell the caller that the
|
|
// barrier was completed.
|
|
if (action == LZMA_FULL_BARRIER)
|
|
return LZMA_STREAM_END;
|
|
|
|
// Finishing or flushing isn't completed until
|
|
// all input data has been encoded and copied
|
|
// to the output buffer.
|
|
if (lzma_outq_is_empty(&coder->outq)) {
|
|
// LZMA_FINISH: Continue to encode
|
|
// the Index field.
|
|
if (action == LZMA_FINISH)
|
|
break;
|
|
|
|
// LZMA_FULL_FLUSH: Return to tell
|
|
// the caller that flushing was
|
|
// completed.
|
|
if (action == LZMA_FULL_FLUSH)
|
|
return LZMA_STREAM_END;
|
|
}
|
|
}
|
|
|
|
// Return if there is no output space left.
|
|
// This check must be done after testing the input
|
|
// buffer, because we might want to use a different
|
|
// return code.
|
|
if (*out_pos == out_size)
|
|
return LZMA_OK;
|
|
|
|
// Neither in nor out has been used completely.
|
|
// Wait until there's something we can do.
|
|
if (wait_for_work(coder, &wait_abs, &has_blocked,
|
|
*in_pos < in_size))
|
|
return LZMA_TIMED_OUT;
|
|
}
|
|
|
|
// All Blocks have been encoded and the threads have stopped.
|
|
// Prepare to encode the Index field.
|
|
return_if_error(lzma_index_encoder_init(
|
|
&coder->index_encoder, allocator,
|
|
coder->index));
|
|
coder->sequence = SEQ_INDEX;
|
|
|
|
// Update the progress info to take the Index and
|
|
// Stream Footer into account. Those are very fast to encode
|
|
// so in terms of progress information they can be thought
|
|
// to be ready to be copied out.
|
|
coder->progress_out += lzma_index_size(coder->index)
|
|
+ LZMA_STREAM_HEADER_SIZE;
|
|
}
|
|
|
|
// Fall through
|
|
|
|
case SEQ_INDEX: {
|
|
// Call the Index encoder. It doesn't take any input, so
|
|
// those pointers can be NULL.
|
|
const lzma_ret ret = coder->index_encoder.code(
|
|
coder->index_encoder.coder, allocator,
|
|
NULL, NULL, 0,
|
|
out, out_pos, out_size, LZMA_RUN);
|
|
if (ret != LZMA_STREAM_END)
|
|
return ret;
|
|
|
|
// Encode the Stream Footer into coder->buffer.
|
|
coder->stream_flags.backward_size
|
|
= lzma_index_size(coder->index);
|
|
if (lzma_stream_footer_encode(&coder->stream_flags,
|
|
coder->header) != LZMA_OK)
|
|
return LZMA_PROG_ERROR;
|
|
|
|
coder->sequence = SEQ_STREAM_FOOTER;
|
|
}
|
|
|
|
// Fall through
|
|
|
|
case SEQ_STREAM_FOOTER:
|
|
lzma_bufcpy(coder->header, &coder->header_pos,
|
|
sizeof(coder->header),
|
|
out, out_pos, out_size);
|
|
return coder->header_pos < sizeof(coder->header)
|
|
? LZMA_OK : LZMA_STREAM_END;
|
|
}
|
|
|
|
assert(0);
|
|
return LZMA_PROG_ERROR;
|
|
}
|
|
|
|
|
|
static void
|
|
stream_encoder_mt_end(void *coder_ptr, const lzma_allocator *allocator)
|
|
{
|
|
lzma_stream_coder *coder = coder_ptr;
|
|
|
|
// Threads must be killed before the output queue can be freed.
|
|
threads_end(coder, allocator);
|
|
lzma_outq_end(&coder->outq, allocator);
|
|
|
|
for (size_t i = 0; coder->filters[i].id != LZMA_VLI_UNKNOWN; ++i)
|
|
lzma_free(coder->filters[i].options, allocator);
|
|
|
|
lzma_next_end(&coder->index_encoder, allocator);
|
|
lzma_index_end(coder->index, allocator);
|
|
|
|
mythread_cond_destroy(&coder->cond);
|
|
mythread_mutex_destroy(&coder->mutex);
|
|
|
|
lzma_free(coder, allocator);
|
|
return;
|
|
}
|
|
|
|
|
|
/// Options handling for lzma_stream_encoder_mt_init() and
|
|
/// lzma_stream_encoder_mt_memusage()
|
|
static lzma_ret
|
|
get_options(const lzma_mt *options, lzma_options_easy *opt_easy,
|
|
const lzma_filter **filters, uint64_t *block_size,
|
|
uint64_t *outbuf_size_max)
|
|
{
|
|
// Validate some of the options.
|
|
if (options == NULL)
|
|
return LZMA_PROG_ERROR;
|
|
|
|
if (options->flags != 0 || options->threads == 0
|
|
|| options->threads > LZMA_THREADS_MAX)
|
|
return LZMA_OPTIONS_ERROR;
|
|
|
|
if (options->filters != NULL) {
|
|
// Filter chain was given, use it as is.
|
|
*filters = options->filters;
|
|
} else {
|
|
// Use a preset.
|
|
if (lzma_easy_preset(opt_easy, options->preset))
|
|
return LZMA_OPTIONS_ERROR;
|
|
|
|
*filters = opt_easy->filters;
|
|
}
|
|
|
|
// Block size
|
|
if (options->block_size > 0) {
|
|
if (options->block_size > BLOCK_SIZE_MAX)
|
|
return LZMA_OPTIONS_ERROR;
|
|
|
|
*block_size = options->block_size;
|
|
} else {
|
|
// Determine the Block size from the filter chain.
|
|
*block_size = lzma_mt_block_size(*filters);
|
|
if (*block_size == 0)
|
|
return LZMA_OPTIONS_ERROR;
|
|
|
|
assert(*block_size <= BLOCK_SIZE_MAX);
|
|
}
|
|
|
|
// Calculate the maximum amount output that a single output buffer
|
|
// may need to hold. This is the same as the maximum total size of
|
|
// a Block.
|
|
*outbuf_size_max = lzma_block_buffer_bound64(*block_size);
|
|
if (*outbuf_size_max == 0)
|
|
return LZMA_MEM_ERROR;
|
|
|
|
return LZMA_OK;
|
|
}
|
|
|
|
|
|
static void
|
|
get_progress(void *coder_ptr, uint64_t *progress_in, uint64_t *progress_out)
|
|
{
|
|
lzma_stream_coder *coder = coder_ptr;
|
|
|
|
// Lock coder->mutex to prevent finishing threads from moving their
|
|
// progress info from the worker_thread structure to lzma_stream_coder.
|
|
mythread_sync(coder->mutex) {
|
|
*progress_in = coder->progress_in;
|
|
*progress_out = coder->progress_out;
|
|
|
|
for (size_t i = 0; i < coder->threads_initialized; ++i) {
|
|
mythread_sync(coder->threads[i].mutex) {
|
|
*progress_in += coder->threads[i].progress_in;
|
|
*progress_out += coder->threads[i]
|
|
.progress_out;
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
stream_encoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator,
|
|
const lzma_mt *options)
|
|
{
|
|
lzma_next_coder_init(&stream_encoder_mt_init, next, allocator);
|
|
|
|
// Get the filter chain.
|
|
lzma_options_easy easy;
|
|
const lzma_filter *filters;
|
|
uint64_t block_size;
|
|
uint64_t outbuf_size_max;
|
|
return_if_error(get_options(options, &easy, &filters,
|
|
&block_size, &outbuf_size_max));
|
|
|
|
#if SIZE_MAX < UINT64_MAX
|
|
if (block_size > SIZE_MAX)
|
|
return LZMA_MEM_ERROR;
|
|
#endif
|
|
|
|
// Validate the filter chain so that we can give an error in this
|
|
// function instead of delaying it to the first call to lzma_code().
|
|
// The memory usage calculation verifies the filter chain as
|
|
// a side effect so we take advatange of that.
|
|
if (lzma_raw_encoder_memusage(filters) == UINT64_MAX)
|
|
return LZMA_OPTIONS_ERROR;
|
|
|
|
// Validate the Check ID.
|
|
if ((unsigned int)(options->check) > LZMA_CHECK_ID_MAX)
|
|
return LZMA_PROG_ERROR;
|
|
|
|
if (!lzma_check_is_supported(options->check))
|
|
return LZMA_UNSUPPORTED_CHECK;
|
|
|
|
// Allocate and initialize the base structure if needed.
|
|
lzma_stream_coder *coder = next->coder;
|
|
if (coder == NULL) {
|
|
coder = lzma_alloc(sizeof(lzma_stream_coder), allocator);
|
|
if (coder == NULL)
|
|
return LZMA_MEM_ERROR;
|
|
|
|
next->coder = coder;
|
|
|
|
// For the mutex and condition variable initializations
|
|
// the error handling has to be done here because
|
|
// stream_encoder_mt_end() doesn't know if they have
|
|
// already been initialized or not.
|
|
if (mythread_mutex_init(&coder->mutex)) {
|
|
lzma_free(coder, allocator);
|
|
next->coder = NULL;
|
|
return LZMA_MEM_ERROR;
|
|
}
|
|
|
|
if (mythread_cond_init(&coder->cond)) {
|
|
mythread_mutex_destroy(&coder->mutex);
|
|
lzma_free(coder, allocator);
|
|
next->coder = NULL;
|
|
return LZMA_MEM_ERROR;
|
|
}
|
|
|
|
next->code = &stream_encode_mt;
|
|
next->end = &stream_encoder_mt_end;
|
|
next->get_progress = &get_progress;
|
|
// next->update = &stream_encoder_mt_update;
|
|
|
|
coder->filters[0].id = LZMA_VLI_UNKNOWN;
|
|
coder->index_encoder = LZMA_NEXT_CODER_INIT;
|
|
coder->index = NULL;
|
|
memzero(&coder->outq, sizeof(coder->outq));
|
|
coder->threads = NULL;
|
|
coder->threads_max = 0;
|
|
coder->threads_initialized = 0;
|
|
}
|
|
|
|
// Basic initializations
|
|
coder->sequence = SEQ_STREAM_HEADER;
|
|
coder->block_size = (size_t)(block_size);
|
|
coder->thread_error = LZMA_OK;
|
|
coder->thr = NULL;
|
|
|
|
// Allocate the thread-specific base structures.
|
|
assert(options->threads > 0);
|
|
if (coder->threads_max != options->threads) {
|
|
threads_end(coder, allocator);
|
|
|
|
coder->threads = NULL;
|
|
coder->threads_max = 0;
|
|
|
|
coder->threads_initialized = 0;
|
|
coder->threads_free = NULL;
|
|
|
|
coder->threads = lzma_alloc(
|
|
options->threads * sizeof(worker_thread),
|
|
allocator);
|
|
if (coder->threads == NULL)
|
|
return LZMA_MEM_ERROR;
|
|
|
|
coder->threads_max = options->threads;
|
|
} else {
|
|
// Reuse the old structures and threads. Tell the running
|
|
// threads to stop and wait until they have stopped.
|
|
threads_stop(coder, true);
|
|
}
|
|
|
|
// Output queue
|
|
return_if_error(lzma_outq_init(&coder->outq, allocator,
|
|
outbuf_size_max, options->threads));
|
|
|
|
// Timeout
|
|
coder->timeout = options->timeout;
|
|
|
|
// Free the old filter chain and copy the new one.
|
|
for (size_t i = 0; coder->filters[i].id != LZMA_VLI_UNKNOWN; ++i)
|
|
lzma_free(coder->filters[i].options, allocator);
|
|
|
|
return_if_error(lzma_filters_copy(
|
|
filters, coder->filters, allocator));
|
|
|
|
// Index
|
|
lzma_index_end(coder->index, allocator);
|
|
coder->index = lzma_index_init(allocator);
|
|
if (coder->index == NULL)
|
|
return LZMA_MEM_ERROR;
|
|
|
|
// Stream Header
|
|
coder->stream_flags.version = 0;
|
|
coder->stream_flags.check = options->check;
|
|
return_if_error(lzma_stream_header_encode(
|
|
&coder->stream_flags, coder->header));
|
|
|
|
coder->header_pos = 0;
|
|
|
|
// Progress info
|
|
coder->progress_in = 0;
|
|
coder->progress_out = LZMA_STREAM_HEADER_SIZE;
|
|
|
|
return LZMA_OK;
|
|
}
|
|
|
|
|
|
extern LZMA_API(lzma_ret)
|
|
lzma_stream_encoder_mt(lzma_stream *strm, const lzma_mt *options)
|
|
{
|
|
lzma_next_strm_init(stream_encoder_mt_init, strm, options);
|
|
|
|
strm->internal->supported_actions[LZMA_RUN] = true;
|
|
// strm->internal->supported_actions[LZMA_SYNC_FLUSH] = true;
|
|
strm->internal->supported_actions[LZMA_FULL_FLUSH] = true;
|
|
strm->internal->supported_actions[LZMA_FULL_BARRIER] = true;
|
|
strm->internal->supported_actions[LZMA_FINISH] = true;
|
|
|
|
return LZMA_OK;
|
|
}
|
|
|
|
|
|
// This function name is a monster but it's consistent with the older
|
|
// monster names. :-( 31 chars is the max that C99 requires so in that
|
|
// sense it's not too long. ;-)
|
|
extern LZMA_API(uint64_t)
|
|
lzma_stream_encoder_mt_memusage(const lzma_mt *options)
|
|
{
|
|
lzma_options_easy easy;
|
|
const lzma_filter *filters;
|
|
uint64_t block_size;
|
|
uint64_t outbuf_size_max;
|
|
|
|
if (get_options(options, &easy, &filters, &block_size,
|
|
&outbuf_size_max) != LZMA_OK)
|
|
return UINT64_MAX;
|
|
|
|
// Memory usage of the input buffers
|
|
const uint64_t inbuf_memusage = options->threads * block_size;
|
|
|
|
// Memory usage of the filter encoders
|
|
uint64_t filters_memusage = lzma_raw_encoder_memusage(filters);
|
|
if (filters_memusage == UINT64_MAX)
|
|
return UINT64_MAX;
|
|
|
|
filters_memusage *= options->threads;
|
|
|
|
// Memory usage of the output queue
|
|
const uint64_t outq_memusage = lzma_outq_memusage(
|
|
outbuf_size_max, options->threads);
|
|
if (outq_memusage == UINT64_MAX)
|
|
return UINT64_MAX;
|
|
|
|
// Sum them with overflow checking.
|
|
uint64_t total_memusage = LZMA_MEMUSAGE_BASE
|
|
+ sizeof(lzma_stream_coder)
|
|
+ options->threads * sizeof(worker_thread);
|
|
|
|
if (UINT64_MAX - total_memusage < inbuf_memusage)
|
|
return UINT64_MAX;
|
|
|
|
total_memusage += inbuf_memusage;
|
|
|
|
if (UINT64_MAX - total_memusage < filters_memusage)
|
|
return UINT64_MAX;
|
|
|
|
total_memusage += filters_memusage;
|
|
|
|
if (UINT64_MAX - total_memusage < outq_memusage)
|
|
return UINT64_MAX;
|
|
|
|
return total_memusage + outq_memusage;
|
|
}
|