You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2474 lines
67 KiB

/*-
* Copyright (c) 2003-2009 Tim Kientzle
* Copyright (c) 2010-2012 Michihiro NAKAJIMA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "archive_platform.h"
__FBSDID("$FreeBSD$");
#if defined(_WIN32) && !defined(__CYGWIN__)
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#include <winioctl.h>
#include "archive.h"
#include "archive_string.h"
#include "archive_entry.h"
#include "archive_private.h"
#include "archive_read_disk_private.h"
#ifndef O_BINARY
#define O_BINARY 0
#endif
#ifndef IO_REPARSE_TAG_SYMLINK
/* Old SDKs do not provide IO_REPARSE_TAG_SYMLINK */
#define IO_REPARSE_TAG_SYMLINK 0xA000000CL
#endif
/*-
* This is a new directory-walking system that addresses a number
* of problems I've had with fts(3). In particular, it has no
* pathname-length limits (other than the size of 'int'), handles
* deep logical traversals, uses considerably less memory, and has
* an opaque interface (easier to modify in the future).
*
* Internally, it keeps a single list of "tree_entry" items that
* represent filesystem objects that require further attention.
* Non-directories are not kept in memory: they are pulled from
* readdir(), returned to the client, then freed as soon as possible.
* Any directory entry to be traversed gets pushed onto the stack.
*
* There is surprisingly little information that needs to be kept for
* each item on the stack. Just the name, depth (represented here as the
* string length of the parent directory's pathname), and some markers
* indicating how to get back to the parent (via chdir("..") for a
* regular dir or via fchdir(2) for a symlink).
*/
struct restore_time {
const wchar_t *full_path;
FILETIME lastWriteTime;
FILETIME lastAccessTime;
mode_t filetype;
};
struct tree_entry {
int depth;
struct tree_entry *next;
struct tree_entry *parent;
size_t full_path_dir_length;
struct archive_wstring name;
struct archive_wstring full_path;
size_t dirname_length;
int64_t dev;
int64_t ino;
int flags;
int filesystem_id;
/* How to restore time of a directory. */
struct restore_time restore_time;
};
struct filesystem {
int64_t dev;
int synthetic;
int remote;
DWORD bytesPerSector;
};
/* Definitions for tree_entry.flags bitmap. */
#define isDir 1 /* This entry is a regular directory. */
#define isDirLink 2 /* This entry is a symbolic link to a directory. */
#define needsFirstVisit 4 /* This is an initial entry. */
#define needsDescent 8 /* This entry needs to be previsited. */
#define needsOpen 16 /* This is a directory that needs to be opened. */
#define needsAscent 32 /* This entry needs to be postvisited. */
/*
* On Windows, "first visit" is handled as a pattern to be handed to
* _findfirst(). This is consistent with Windows conventions that
* file patterns are handled within the application. On Posix,
* "first visit" is just returned to the client.
*/
#define MAX_OVERLAPPED 8
#define READ_BUFFER_SIZE (1024 * 64) /* Default to 64KB per https://technet.microsoft.com/en-us/library/cc938632.aspx */
#define DIRECT_IO 0/* Disabled */
#define ASYNC_IO 1/* Enabled */
/*
* Local data for this package.
*/
struct tree {
struct tree_entry *stack;
struct tree_entry *current;
HANDLE d;
WIN32_FIND_DATAW _findData;
WIN32_FIND_DATAW *findData;
int flags;
int visit_type;
/* Error code from last failed operation. */
int tree_errno;
/* A full path with "\\?\" prefix. */
struct archive_wstring full_path;
size_t full_path_dir_length;
/* Dynamically-sized buffer for holding path */
struct archive_wstring path;
/* Last path element */
const wchar_t *basename;
/* Leading dir length */
size_t dirname_length;
int depth;
BY_HANDLE_FILE_INFORMATION lst;
BY_HANDLE_FILE_INFORMATION st;
int descend;
/* How to restore time of a file. */
struct restore_time restore_time;
struct entry_sparse {
int64_t length;
int64_t offset;
} *sparse_list, *current_sparse;
int sparse_count;
int sparse_list_size;
char initial_symlink_mode;
char symlink_mode;
struct filesystem *current_filesystem;
struct filesystem *filesystem_table;
int initial_filesystem_id;
int current_filesystem_id;
int max_filesystem_id;
int allocated_filesystem;
HANDLE entry_fh;
int entry_eof;
int64_t entry_remaining_bytes;
int64_t entry_total;
int ol_idx_doing;
int ol_idx_done;
int ol_num_doing;
int ol_num_done;
int64_t ol_remaining_bytes;
int64_t ol_total;
struct la_overlapped {
OVERLAPPED ol;
struct archive * _a;
unsigned char *buff;
size_t buff_size;
int64_t offset;
size_t bytes_expected;
size_t bytes_transferred;
} ol[MAX_OVERLAPPED];
int direct_io;
int async_io;
};
#define bhfi_dev(bhfi) ((bhfi)->dwVolumeSerialNumber)
/* Treat FileIndex as i-node. We should remove a sequence number
* which is high-16-bits of nFileIndexHigh. */
#define bhfi_ino(bhfi) \
((((int64_t)((bhfi)->nFileIndexHigh & 0x0000FFFFUL)) << 32) \
+ (bhfi)->nFileIndexLow)
/* Definitions for tree.flags bitmap. */
#define hasStat 16 /* The st entry is valid. */
#define hasLstat 32 /* The lst entry is valid. */
#define needsRestoreTimes 128
static int
tree_dir_next_windows(struct tree *t, const wchar_t *pattern);
/* Initiate/terminate a tree traversal. */
static struct tree *tree_open(const wchar_t *, int, int);
static struct tree *tree_reopen(struct tree *, const wchar_t *, int);
static void tree_close(struct tree *);
static void tree_free(struct tree *);
static void tree_push(struct tree *, const wchar_t *, const wchar_t *,
int, int64_t, int64_t, struct restore_time *);
/*
* tree_next() returns Zero if there is no next entry, non-zero if
* there is. Note that directories are visited three times.
* Directories are always visited first as part of enumerating their
* parent; that is a "regular" visit. If tree_descend() is invoked at
* that time, the directory is added to a work list and will
* subsequently be visited two more times: once just after descending
* into the directory ("postdescent") and again just after ascending
* back to the parent ("postascent").
*
* TREE_ERROR_DIR is returned if the descent failed (because the
* directory couldn't be opened, for instance). This is returned
* instead of TREE_POSTDESCENT/TREE_POSTASCENT. TREE_ERROR_DIR is not a
* fatal error, but it does imply that the relevant subtree won't be
* visited. TREE_ERROR_FATAL is returned for an error that left the
* traversal completely hosed. Right now, this is only returned for
* chdir() failures during ascent.
*/
#define TREE_REGULAR 1
#define TREE_POSTDESCENT 2
#define TREE_POSTASCENT 3
#define TREE_ERROR_DIR -1
#define TREE_ERROR_FATAL -2
static int tree_next(struct tree *);
/*
* Return information about the current entry.
*/
/*
* The current full pathname, length of the full pathname, and a name
* that can be used to access the file. Because tree does use chdir
* extensively, the access path is almost never the same as the full
* current path.
*
*/
static const wchar_t *tree_current_path(struct tree *);
static const wchar_t *tree_current_access_path(struct tree *);
/*
* Request the lstat() or stat() data for the current path. Since the
* tree package needs to do some of this anyway, and caches the
* results, you should take advantage of it here if you need it rather
* than make a redundant stat() or lstat() call of your own.
*/
static const BY_HANDLE_FILE_INFORMATION *tree_current_stat(struct tree *);
static const BY_HANDLE_FILE_INFORMATION *tree_current_lstat(struct tree *);
/* The following functions use tricks to avoid a certain number of
* stat()/lstat() calls. */
/* "is_physical_dir" is equivalent to S_ISDIR(tree_current_lstat()->st_mode) */
static int tree_current_is_physical_dir(struct tree *);
/* "is_physical_link" is equivalent to S_ISLNK(tree_current_lstat()->st_mode) */
static int tree_current_is_physical_link(struct tree *);
/* Instead of archive_entry_copy_stat for BY_HANDLE_FILE_INFORMATION */
static void tree_archive_entry_copy_bhfi(struct archive_entry *,
struct tree *, const BY_HANDLE_FILE_INFORMATION *);
/* "is_dir" is equivalent to S_ISDIR(tree_current_stat()->st_mode) */
static int tree_current_is_dir(struct tree *);
static int update_current_filesystem(struct archive_read_disk *a,
int64_t dev);
static int setup_current_filesystem(struct archive_read_disk *);
static int tree_target_is_same_as_parent(struct tree *,
const BY_HANDLE_FILE_INFORMATION *);
static int _archive_read_disk_open_w(struct archive *, const wchar_t *);
static int _archive_read_free(struct archive *);
static int _archive_read_close(struct archive *);
static int _archive_read_data_block(struct archive *,
const void **, size_t *, int64_t *);
static int _archive_read_next_header(struct archive *,
struct archive_entry **);
static int _archive_read_next_header2(struct archive *,
struct archive_entry *);
static const char *trivial_lookup_gname(void *, int64_t gid);
static const char *trivial_lookup_uname(void *, int64_t uid);
static int setup_sparse(struct archive_read_disk *, struct archive_entry *);
static int close_and_restore_time(HANDLE, struct tree *,
struct restore_time *);
static int setup_sparse_from_disk(struct archive_read_disk *,
struct archive_entry *, HANDLE);
static int la_linkname_from_handle(HANDLE, wchar_t **, int *);
static int la_linkname_from_pathw(const wchar_t *, wchar_t **, int *);
static void entry_symlink_from_pathw(struct archive_entry *,
const wchar_t *path);
typedef struct _REPARSE_DATA_BUFFER {
ULONG ReparseTag;
USHORT ReparseDataLength;
USHORT Reserved;
union {
struct {
USHORT SubstituteNameOffset;
USHORT SubstituteNameLength;
USHORT PrintNameOffset;
USHORT PrintNameLength;
ULONG Flags;
WCHAR PathBuffer[1];
} SymbolicLinkReparseBuffer;
struct {
USHORT SubstituteNameOffset;
USHORT SubstituteNameLength;
USHORT PrintNameOffset;
USHORT PrintNameLength;
WCHAR PathBuffer[1];
} MountPointReparseBuffer;
struct {
UCHAR DataBuffer[1];
} GenericReparseBuffer;
} DUMMYUNIONNAME;
} REPARSE_DATA_BUFFER, *PREPARSE_DATA_BUFFER;
/*
* Reads the target of a symbolic link
*
* Returns 0 on success and -1 on failure
* outbuf is allocated in the function
*/
static int
la_linkname_from_handle(HANDLE h, wchar_t **linkname, int *linktype)
{
DWORD inbytes;
REPARSE_DATA_BUFFER *buf;
BY_HANDLE_FILE_INFORMATION st;
size_t len;
BOOL ret;
BYTE *indata;
wchar_t *tbuf;
ret = GetFileInformationByHandle(h, &st);
if (ret == 0 ||
(st.dwFileAttributes & FILE_ATTRIBUTE_REPARSE_POINT) == 0) {
return (-1);
}
indata = malloc(MAXIMUM_REPARSE_DATA_BUFFER_SIZE);
ret = DeviceIoControl(h, FSCTL_GET_REPARSE_POINT, NULL, 0, indata,
1024, &inbytes, NULL);
if (ret == 0) {
la_dosmaperr(GetLastError());
free(indata);
return (-1);
}
buf = (REPARSE_DATA_BUFFER *) indata;
if (buf->ReparseTag != IO_REPARSE_TAG_SYMLINK) {
free(indata);
/* File is not a symbolic link */
errno = EINVAL;
return (-1);
}
len = buf->SymbolicLinkReparseBuffer.SubstituteNameLength;
if (len <= 0) {
free(indata);
return (-1);
}
tbuf = malloc(len + 1 * sizeof(wchar_t));
if (tbuf == NULL) {
free(indata);
return (-1);
}
memcpy(tbuf, &((BYTE *)buf->SymbolicLinkReparseBuffer.PathBuffer)
[buf->SymbolicLinkReparseBuffer.SubstituteNameOffset], len);
free(indata);
tbuf[len / sizeof(wchar_t)] = L'\0';
*linkname = tbuf;
/*
* Translate backslashes to slashes for libarchive internal use
*/
while(*tbuf != L'\0') {
if (*tbuf == L'\\')
*tbuf = L'/';
tbuf++;
}
if ((st.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) == 0)
*linktype = AE_SYMLINK_TYPE_FILE;
else
*linktype = AE_SYMLINK_TYPE_DIRECTORY;
return (0);
}
/*
* Returns AE_SYMLINK_TYPE_FILE, AE_SYMLINK_TYPE_DIRECTORY or -1 on error
*/
static int
la_linkname_from_pathw(const wchar_t *path, wchar_t **outbuf, int *linktype)
{
HANDLE h;
const DWORD flag = FILE_FLAG_BACKUP_SEMANTICS |
FILE_FLAG_OPEN_REPARSE_POINT;
int ret;
h = CreateFileW(path, 0, FILE_SHARE_READ, NULL, OPEN_EXISTING, flag,
NULL);
if (h == INVALID_HANDLE_VALUE) {
la_dosmaperr(GetLastError());
return (-1);
}
ret = la_linkname_from_handle(h, outbuf, linktype);
CloseHandle(h);
return (ret);
}
static void
entry_symlink_from_pathw(struct archive_entry *entry, const wchar_t *path)
{
wchar_t *linkname = NULL;
int ret, linktype;
ret = la_linkname_from_pathw(path, &linkname, &linktype);
if (ret != 0)
return;
if (linktype >= 0) {
archive_entry_copy_symlink_w(entry, linkname);
archive_entry_set_symlink_type(entry, linktype);
}
free(linkname);
return;
}
static const struct archive_vtable
archive_read_disk_vtable = {
.archive_free = _archive_read_free,
.archive_close = _archive_read_close,
.archive_read_data_block = _archive_read_data_block,
.archive_read_next_header = _archive_read_next_header,
.archive_read_next_header2 = _archive_read_next_header2,
};
const char *
archive_read_disk_gname(struct archive *_a, la_int64_t gid)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_ANY, "archive_read_disk_gname"))
return (NULL);
if (a->lookup_gname == NULL)
return (NULL);
return ((*a->lookup_gname)(a->lookup_gname_data, gid));
}
const char *
archive_read_disk_uname(struct archive *_a, la_int64_t uid)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_ANY, "archive_read_disk_uname"))
return (NULL);
if (a->lookup_uname == NULL)
return (NULL);
return ((*a->lookup_uname)(a->lookup_uname_data, uid));
}
int
archive_read_disk_set_gname_lookup(struct archive *_a,
void *private_data,
const char * (*lookup_gname)(void *private, la_int64_t gid),
void (*cleanup_gname)(void *private))
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_ANY, "archive_read_disk_set_gname_lookup");
if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
(a->cleanup_gname)(a->lookup_gname_data);
a->lookup_gname = lookup_gname;
a->cleanup_gname = cleanup_gname;
a->lookup_gname_data = private_data;
return (ARCHIVE_OK);
}
int
archive_read_disk_set_uname_lookup(struct archive *_a,
void *private_data,
const char * (*lookup_uname)(void *private, int64_t uid),
void (*cleanup_uname)(void *private))
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_ANY, "archive_read_disk_set_uname_lookup");
if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
(a->cleanup_uname)(a->lookup_uname_data);
a->lookup_uname = lookup_uname;
a->cleanup_uname = cleanup_uname;
a->lookup_uname_data = private_data;
return (ARCHIVE_OK);
}
/*
* Create a new archive_read_disk object and initialize it with global state.
*/
struct archive *
archive_read_disk_new(void)
{
struct archive_read_disk *a;
a = (struct archive_read_disk *)calloc(1, sizeof(*a));
if (a == NULL)
return (NULL);
a->archive.magic = ARCHIVE_READ_DISK_MAGIC;
a->archive.state = ARCHIVE_STATE_NEW;
a->archive.vtable = &archive_read_disk_vtable;
a->entry = archive_entry_new2(&a->archive);
a->lookup_uname = trivial_lookup_uname;
a->lookup_gname = trivial_lookup_gname;
a->flags = ARCHIVE_READDISK_MAC_COPYFILE;
return (&a->archive);
}
static int
_archive_read_free(struct archive *_a)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
int r;
if (_a == NULL)
return (ARCHIVE_OK);
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_free");
if (a->archive.state != ARCHIVE_STATE_CLOSED)
r = _archive_read_close(&a->archive);
else
r = ARCHIVE_OK;
tree_free(a->tree);
if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
(a->cleanup_gname)(a->lookup_gname_data);
if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
(a->cleanup_uname)(a->lookup_uname_data);
archive_string_free(&a->archive.error_string);
archive_entry_free(a->entry);
a->archive.magic = 0;
free(a);
return (r);
}
static int
_archive_read_close(struct archive *_a)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_close");
if (a->archive.state != ARCHIVE_STATE_FATAL)
a->archive.state = ARCHIVE_STATE_CLOSED;
tree_close(a->tree);
return (ARCHIVE_OK);
}
static void
setup_symlink_mode(struct archive_read_disk *a, char symlink_mode,
int follow_symlinks)
{
a->symlink_mode = symlink_mode;
a->follow_symlinks = follow_symlinks;
if (a->tree != NULL) {
a->tree->initial_symlink_mode = a->symlink_mode;
a->tree->symlink_mode = a->symlink_mode;
}
}
int
archive_read_disk_set_symlink_logical(struct archive *_a)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_logical");
setup_symlink_mode(a, 'L', 1);
return (ARCHIVE_OK);
}
int
archive_read_disk_set_symlink_physical(struct archive *_a)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_physical");
setup_symlink_mode(a, 'P', 0);
return (ARCHIVE_OK);
}
int
archive_read_disk_set_symlink_hybrid(struct archive *_a)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_hybrid");
setup_symlink_mode(a, 'H', 1);/* Follow symlinks initially. */
return (ARCHIVE_OK);
}
int
archive_read_disk_set_atime_restored(struct archive *_a)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_ANY, "archive_read_disk_restore_atime");
a->flags |= ARCHIVE_READDISK_RESTORE_ATIME;
if (a->tree != NULL)
a->tree->flags |= needsRestoreTimes;
return (ARCHIVE_OK);
}
int
archive_read_disk_set_behavior(struct archive *_a, int flags)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
int r = ARCHIVE_OK;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_ANY, "archive_read_disk_honor_nodump");
a->flags = flags;
if (flags & ARCHIVE_READDISK_RESTORE_ATIME)
r = archive_read_disk_set_atime_restored(_a);
else {
if (a->tree != NULL)
a->tree->flags &= ~needsRestoreTimes;
}
return (r);
}
/*
* Trivial implementations of gname/uname lookup functions.
* These are normally overridden by the client, but these stub
* versions ensure that we always have something that works.
*/
static const char *
trivial_lookup_gname(void *private_data, int64_t gid)
{
(void)private_data; /* UNUSED */
(void)gid; /* UNUSED */
return (NULL);
}
static const char *
trivial_lookup_uname(void *private_data, int64_t uid)
{
(void)private_data; /* UNUSED */
(void)uid; /* UNUSED */
return (NULL);
}
static int64_t
align_num_per_sector(struct tree *t, int64_t size)
{
int64_t surplus;
size += t->current_filesystem->bytesPerSector -1;
surplus = size % t->current_filesystem->bytesPerSector;
size -= surplus;
return (size);
}
static int
start_next_async_read(struct archive_read_disk *a, struct tree *t)
{
struct la_overlapped *olp;
DWORD buffbytes, rbytes;
if (t->ol_remaining_bytes == 0)
return (ARCHIVE_EOF);
olp = &(t->ol[t->ol_idx_doing]);
t->ol_idx_doing = (t->ol_idx_doing + 1) % MAX_OVERLAPPED;
/* Allocate read buffer. */
if (olp->buff == NULL) {
void *p;
size_t s = (size_t)align_num_per_sector(t, READ_BUFFER_SIZE);
p = VirtualAlloc(NULL, s, MEM_COMMIT, PAGE_READWRITE);
if (p == NULL) {
archive_set_error(&a->archive, ENOMEM,
"Couldn't allocate memory");
a->archive.state = ARCHIVE_STATE_FATAL;
return (ARCHIVE_FATAL);
}
olp->buff = p;
olp->buff_size = s;
olp->_a = &a->archive;
olp->ol.hEvent = CreateEventW(NULL, TRUE, FALSE, NULL);
if (olp->ol.hEvent == NULL) {
la_dosmaperr(GetLastError());
archive_set_error(&a->archive, errno,
"CreateEvent failed");
a->archive.state = ARCHIVE_STATE_FATAL;
return (ARCHIVE_FATAL);
}
} else
ResetEvent(olp->ol.hEvent);
buffbytes = (DWORD)olp->buff_size;
if (buffbytes > t->current_sparse->length)
buffbytes = (DWORD)t->current_sparse->length;
/* Skip hole. */
if (t->current_sparse->offset > t->ol_total) {
t->ol_remaining_bytes -=
t->current_sparse->offset - t->ol_total;
}
olp->offset = t->current_sparse->offset;
olp->ol.Offset = (DWORD)(olp->offset & 0xffffffff);
olp->ol.OffsetHigh = (DWORD)(olp->offset >> 32);
if (t->ol_remaining_bytes > buffbytes) {
olp->bytes_expected = buffbytes;
t->ol_remaining_bytes -= buffbytes;
} else {
olp->bytes_expected = (size_t)t->ol_remaining_bytes;
t->ol_remaining_bytes = 0;
}
olp->bytes_transferred = 0;
t->current_sparse->offset += buffbytes;
t->current_sparse->length -= buffbytes;
t->ol_total = t->current_sparse->offset;
if (t->current_sparse->length == 0 && t->ol_remaining_bytes > 0)
t->current_sparse++;
if (!ReadFile(t->entry_fh, olp->buff, buffbytes, &rbytes, &(olp->ol))) {
DWORD lasterr;
lasterr = GetLastError();
if (lasterr == ERROR_HANDLE_EOF) {
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"Reading file truncated");
a->archive.state = ARCHIVE_STATE_FATAL;
return (ARCHIVE_FATAL);
} else if (lasterr != ERROR_IO_PENDING) {
if (lasterr == ERROR_NO_DATA)
errno = EAGAIN;
else if (lasterr == ERROR_ACCESS_DENIED)
errno = EBADF;
else
la_dosmaperr(lasterr);
archive_set_error(&a->archive, errno, "Read error");
a->archive.state = ARCHIVE_STATE_FATAL;
return (ARCHIVE_FATAL);
}
} else
olp->bytes_transferred = rbytes;
t->ol_num_doing++;
return (t->ol_remaining_bytes == 0)? ARCHIVE_EOF: ARCHIVE_OK;
}
static void
cancel_async(struct tree *t)
{
if (t->ol_num_doing != t->ol_num_done) {
CancelIo(t->entry_fh);
t->ol_num_doing = t->ol_num_done = 0;
}
}
static int
_archive_read_data_block(struct archive *_a, const void **buff,
size_t *size, int64_t *offset)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
struct tree *t = a->tree;
struct la_overlapped *olp;
DWORD bytes_transferred;
int r = ARCHIVE_FATAL;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
"archive_read_data_block");
if (t->entry_eof || t->entry_remaining_bytes <= 0) {
r = ARCHIVE_EOF;
goto abort_read_data;
}
/*
* Make a request to read the file in asynchronous.
*/
if (t->ol_num_doing == 0) {
do {
r = start_next_async_read(a, t);
if (r == ARCHIVE_FATAL)
goto abort_read_data;
if (!t->async_io)
break;
} while (r == ARCHIVE_OK && t->ol_num_doing < MAX_OVERLAPPED);
} else {
if ((r = start_next_async_read(a, t)) == ARCHIVE_FATAL)
goto abort_read_data;
}
olp = &(t->ol[t->ol_idx_done]);
t->ol_idx_done = (t->ol_idx_done + 1) % MAX_OVERLAPPED;
if (olp->bytes_transferred)
bytes_transferred = (DWORD)olp->bytes_transferred;
else if (!GetOverlappedResult(t->entry_fh, &(olp->ol),
&bytes_transferred, TRUE)) {
la_dosmaperr(GetLastError());
archive_set_error(&a->archive, errno,
"GetOverlappedResult failed");
a->archive.state = ARCHIVE_STATE_FATAL;
r = ARCHIVE_FATAL;
goto abort_read_data;
}
t->ol_num_done++;
if (bytes_transferred == 0 ||
olp->bytes_expected != bytes_transferred) {
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"Reading file truncated");
a->archive.state = ARCHIVE_STATE_FATAL;
r = ARCHIVE_FATAL;
goto abort_read_data;
}
*buff = olp->buff;
*size = bytes_transferred;
*offset = olp->offset;
if (olp->offset > t->entry_total)
t->entry_remaining_bytes -= olp->offset - t->entry_total;
t->entry_total = olp->offset + *size;
t->entry_remaining_bytes -= *size;
if (t->entry_remaining_bytes == 0) {
/* Close the current file descriptor */
close_and_restore_time(t->entry_fh, t, &t->restore_time);
t->entry_fh = INVALID_HANDLE_VALUE;
t->entry_eof = 1;
}
return (ARCHIVE_OK);
abort_read_data:
*buff = NULL;
*size = 0;
*offset = t->entry_total;
if (t->entry_fh != INVALID_HANDLE_VALUE) {
cancel_async(t);
/* Close the current file descriptor */
close_and_restore_time(t->entry_fh, t, &t->restore_time);
t->entry_fh = INVALID_HANDLE_VALUE;
}
return (r);
}
static int
next_entry(struct archive_read_disk *a, struct tree *t,
struct archive_entry *entry)
{
const BY_HANDLE_FILE_INFORMATION *st;
const BY_HANDLE_FILE_INFORMATION *lst;
const char*name;
int descend, r;
st = NULL;
lst = NULL;
t->descend = 0;
do {
switch (tree_next(t)) {
case TREE_ERROR_FATAL:
archive_set_error(&a->archive, t->tree_errno,
"%ls: Unable to continue traversing directory tree",
tree_current_path(t));
a->archive.state = ARCHIVE_STATE_FATAL;
return (ARCHIVE_FATAL);
case TREE_ERROR_DIR:
archive_set_error(&a->archive, t->tree_errno,
"%ls: Couldn't visit directory",
tree_current_path(t));
return (ARCHIVE_FAILED);
case 0:
return (ARCHIVE_EOF);
case TREE_POSTDESCENT:
case TREE_POSTASCENT:
break;
case TREE_REGULAR:
lst = tree_current_lstat(t);
if (lst == NULL) {
archive_set_error(&a->archive, t->tree_errno,
"%ls: Cannot stat",
tree_current_path(t));
return (ARCHIVE_FAILED);
}
break;
}
} while (lst == NULL);
archive_entry_copy_pathname_w(entry, tree_current_path(t));
/*
* Perform path matching.
*/
if (a->matching) {
r = archive_match_path_excluded(a->matching, entry);
if (r < 0) {
archive_set_error(&(a->archive), errno,
"Failed : %s", archive_error_string(a->matching));
return (r);
}
if (r) {
if (a->excluded_cb_func)
a->excluded_cb_func(&(a->archive),
a->excluded_cb_data, entry);
return (ARCHIVE_RETRY);
}
}
/*
* Distinguish 'L'/'P'/'H' symlink following.
*/
switch(t->symlink_mode) {
case 'H':
/* 'H': After the first item, rest like 'P'. */
t->symlink_mode = 'P';
/* 'H': First item (from command line) like 'L'. */
/* FALLTHROUGH */
case 'L':
/* 'L': Do descend through a symlink to dir. */
descend = tree_current_is_dir(t);
/* 'L': Follow symlinks to files. */
a->symlink_mode = 'L';
a->follow_symlinks = 1;
/* 'L': Archive symlinks as targets, if we can. */
st = tree_current_stat(t);
if (st != NULL && !tree_target_is_same_as_parent(t, st))
break;
/* If stat fails, we have a broken symlink;
* in that case, don't follow the link. */
/* FALLTHROUGH */
default:
/* 'P': Don't descend through a symlink to dir. */
descend = tree_current_is_physical_dir(t);
/* 'P': Don't follow symlinks to files. */
a->symlink_mode = 'P';
a->follow_symlinks = 0;
/* 'P': Archive symlinks as symlinks. */
st = lst;
break;
}
if (update_current_filesystem(a, bhfi_dev(st)) != ARCHIVE_OK) {
a->archive.state = ARCHIVE_STATE_FATAL;
return (ARCHIVE_FATAL);
}
if (t->initial_filesystem_id == -1)
t->initial_filesystem_id = t->current_filesystem_id;
if (a->flags & ARCHIVE_READDISK_NO_TRAVERSE_MOUNTS) {
if (t->initial_filesystem_id != t->current_filesystem_id)
return (ARCHIVE_RETRY);
}
t->descend = descend;
tree_archive_entry_copy_bhfi(entry, t, st);
/* Save the times to be restored. This must be in before
* calling archive_read_disk_descend() or any chance of it,
* especially, invoking a callback. */
t->restore_time.lastWriteTime = st->ftLastWriteTime;
t->restore_time.lastAccessTime = st->ftLastAccessTime;
t->restore_time.filetype = archive_entry_filetype(entry);
/*
* Perform time matching.
*/
if (a->matching) {
r = archive_match_time_excluded(a->matching, entry);
if (r < 0) {
archive_set_error(&(a->archive), errno,
"Failed : %s", archive_error_string(a->matching));
return (r);
}
if (r) {
if (a->excluded_cb_func)
a->excluded_cb_func(&(a->archive),
a->excluded_cb_data, entry);
return (ARCHIVE_RETRY);
}
}
/* Lookup uname/gname */
name = archive_read_disk_uname(&(a->archive), archive_entry_uid(entry));
if (name != NULL)
archive_entry_copy_uname(entry, name);
name = archive_read_disk_gname(&(a->archive), archive_entry_gid(entry));
if (name != NULL)
archive_entry_copy_gname(entry, name);
/*
* Perform owner matching.
*/
if (a->matching) {
r = archive_match_owner_excluded(a->matching, entry);
if (r < 0) {
archive_set_error(&(a->archive), errno,
"Failed : %s", archive_error_string(a->matching));
return (r);
}
if (r) {
if (a->excluded_cb_func)
a->excluded_cb_func(&(a->archive),
a->excluded_cb_data, entry);
return (ARCHIVE_RETRY);
}
}
/*
* File attributes
*/
if ((a->flags & ARCHIVE_READDISK_NO_FFLAGS) == 0) {
const int supported_attrs =
FILE_ATTRIBUTE_READONLY |
FILE_ATTRIBUTE_HIDDEN |
FILE_ATTRIBUTE_SYSTEM;
DWORD file_attrs = st->dwFileAttributes & supported_attrs;
if (file_attrs != 0)
archive_entry_set_fflags(entry, file_attrs, 0);
}
/*
* Invoke a meta data filter callback.
*/
if (a->metadata_filter_func) {
if (!a->metadata_filter_func(&(a->archive),
a->metadata_filter_data, entry))
return (ARCHIVE_RETRY);
}
archive_entry_copy_sourcepath_w(entry, tree_current_access_path(t));
r = ARCHIVE_OK;
if (archive_entry_filetype(entry) == AE_IFREG &&
archive_entry_size(entry) > 0) {
DWORD flags = FILE_FLAG_BACKUP_SEMANTICS;
if (t->async_io)
flags |= FILE_FLAG_OVERLAPPED;
if (t->direct_io)
flags |= FILE_FLAG_NO_BUFFERING;
else
flags |= FILE_FLAG_SEQUENTIAL_SCAN;
t->entry_fh = CreateFileW(tree_current_access_path(t),
GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, flags, NULL);
if (t->entry_fh == INVALID_HANDLE_VALUE) {
la_dosmaperr(GetLastError());
archive_set_error(&a->archive, errno,
"Couldn't open %ls", tree_current_path(a->tree));
return (ARCHIVE_FAILED);
}
/* Find sparse data from the disk. */
if ((a->flags & ARCHIVE_READDISK_NO_SPARSE) == 0) {
if (archive_entry_hardlink(entry) == NULL &&
(st->dwFileAttributes & FILE_ATTRIBUTE_SPARSE_FILE) != 0)
r = setup_sparse_from_disk(a, entry, t->entry_fh);
}
}
return (r);
}
static int
_archive_read_next_header(struct archive *_a, struct archive_entry **entryp)
{
int ret;
struct archive_read_disk *a = (struct archive_read_disk *)_a;
*entryp = NULL;
ret = _archive_read_next_header2(_a, a->entry);
*entryp = a->entry;
return ret;
}
static int
_archive_read_next_header2(struct archive *_a, struct archive_entry *entry)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
struct tree *t;
int r;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
"archive_read_next_header2");
t = a->tree;
if (t->entry_fh != INVALID_HANDLE_VALUE) {
cancel_async(t);
close_and_restore_time(t->entry_fh, t, &t->restore_time);
t->entry_fh = INVALID_HANDLE_VALUE;
}
archive_entry_clear(entry);
while ((r = next_entry(a, t, entry)) == ARCHIVE_RETRY)
archive_entry_clear(entry);
/*
* EOF and FATAL are persistent at this layer. By
* modifying the state, we guarantee that future calls to
* read a header or read data will fail.
*/
switch (r) {
case ARCHIVE_EOF:
a->archive.state = ARCHIVE_STATE_EOF;
break;
case ARCHIVE_OK:
case ARCHIVE_WARN:
t->entry_total = 0;
if (archive_entry_filetype(entry) == AE_IFREG) {
t->entry_remaining_bytes = archive_entry_size(entry);
t->entry_eof = (t->entry_remaining_bytes == 0)? 1: 0;
if (!t->entry_eof &&
setup_sparse(a, entry) != ARCHIVE_OK)
return (ARCHIVE_FATAL);
} else {
t->entry_remaining_bytes = 0;
t->entry_eof = 1;
}
t->ol_idx_doing = t->ol_idx_done = 0;
t->ol_num_doing = t->ol_num_done = 0;
t->ol_remaining_bytes = t->entry_remaining_bytes;
t->ol_total = 0;
a->archive.state = ARCHIVE_STATE_DATA;
break;
case ARCHIVE_RETRY:
break;
case ARCHIVE_FATAL:
a->archive.state = ARCHIVE_STATE_FATAL;
break;
}
__archive_reset_read_data(&a->archive);
return (r);
}
static int
setup_sparse(struct archive_read_disk *a, struct archive_entry *entry)
{
struct tree *t = a->tree;
int64_t aligned, length, offset;
int i;
t->sparse_count = archive_entry_sparse_reset(entry);
if (t->sparse_count+1 > t->sparse_list_size) {
free(t->sparse_list);
t->sparse_list_size = t->sparse_count + 1;
t->sparse_list = malloc(sizeof(t->sparse_list[0]) *
t->sparse_list_size);
if (t->sparse_list == NULL) {
t->sparse_list_size = 0;
archive_set_error(&a->archive, ENOMEM,
"Can't allocate data");
a->archive.state = ARCHIVE_STATE_FATAL;
return (ARCHIVE_FATAL);
}
}
/*
* Get sparse list and make sure those offsets and lengths are
* aligned by a sector size.
*/
for (i = 0; i < t->sparse_count; i++) {
archive_entry_sparse_next(entry, &offset, &length);
aligned = align_num_per_sector(t, offset);
if (aligned != offset) {
aligned -= t->current_filesystem->bytesPerSector;
length += offset - aligned;
}
t->sparse_list[i].offset = aligned;
aligned = align_num_per_sector(t, length);
t->sparse_list[i].length = aligned;
}
aligned = align_num_per_sector(t, archive_entry_size(entry));
if (i == 0) {
t->sparse_list[i].offset = 0;
t->sparse_list[i].length = aligned;
} else {
int j, last = i;
t->sparse_list[i].offset = aligned;
t->sparse_list[i].length = 0;
for (i = 0; i < last; i++) {
if ((t->sparse_list[i].offset +
t->sparse_list[i].length) <=
t->sparse_list[i+1].offset)
continue;
/*
* Now sparse_list[i+1] is overlapped by sparse_list[i].
* Merge those two.
*/
length = t->sparse_list[i+1].offset -
t->sparse_list[i].offset;
t->sparse_list[i+1].offset = t->sparse_list[i].offset;
t->sparse_list[i+1].length += length;
/* Remove sparse_list[i]. */
for (j = i; j < last; j++) {
t->sparse_list[j].offset =
t->sparse_list[j+1].offset;
t->sparse_list[j].length =
t->sparse_list[j+1].length;
}
last--;
}
}
t->current_sparse = t->sparse_list;
return (ARCHIVE_OK);
}
int
archive_read_disk_set_matching(struct archive *_a, struct archive *_ma,
void (*_excluded_func)(struct archive *, void *, struct archive_entry *),
void *_client_data)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_ANY, "archive_read_disk_set_matching");
a->matching = _ma;
a->excluded_cb_func = _excluded_func;
a->excluded_cb_data = _client_data;
return (ARCHIVE_OK);
}
int
archive_read_disk_set_metadata_filter_callback(struct archive *_a,
int (*_metadata_filter_func)(struct archive *, void *,
struct archive_entry *), void *_client_data)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY,
"archive_read_disk_set_metadata_filter_callback");
a->metadata_filter_func = _metadata_filter_func;
a->metadata_filter_data = _client_data;
return (ARCHIVE_OK);
}
int
archive_read_disk_can_descend(struct archive *_a)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
struct tree *t = a->tree;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
"archive_read_disk_can_descend");
return (t->visit_type == TREE_REGULAR && t->descend);
}
/*
* Called by the client to mark the directory just returned from
* tree_next() as needing to be visited.
*/
int
archive_read_disk_descend(struct archive *_a)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
struct tree *t = a->tree;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
"archive_read_disk_descend");
if (!archive_read_disk_can_descend(_a))
return (ARCHIVE_OK);
if (tree_current_is_physical_dir(t)) {
tree_push(t, t->basename, t->full_path.s,
t->current_filesystem_id,
bhfi_dev(&(t->lst)), bhfi_ino(&(t->lst)),
&t->restore_time);
t->stack->flags |= isDir;
} else if (tree_current_is_dir(t)) {
tree_push(t, t->basename, t->full_path.s,
t->current_filesystem_id,
bhfi_dev(&(t->st)), bhfi_ino(&(t->st)),
&t->restore_time);
t->stack->flags |= isDirLink;
}
t->descend = 0;
return (ARCHIVE_OK);
}
int
archive_read_disk_open(struct archive *_a, const char *pathname)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
struct archive_wstring wpath;
int ret;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
"archive_read_disk_open");
archive_clear_error(&a->archive);
/* Make a wchar_t string from a char string. */
archive_string_init(&wpath);
if (archive_wstring_append_from_mbs(&wpath, pathname,
strlen(pathname)) != 0) {
if (errno == ENOMEM)
archive_set_error(&a->archive, ENOMEM,
"Can't allocate memory");
else
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"Can't convert a path to a wchar_t string");
a->archive.state = ARCHIVE_STATE_FATAL;
ret = ARCHIVE_FATAL;
} else
ret = _archive_read_disk_open_w(_a, wpath.s);
archive_wstring_free(&wpath);
return (ret);
}
int
archive_read_disk_open_w(struct archive *_a, const wchar_t *pathname)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
"archive_read_disk_open_w");
archive_clear_error(&a->archive);
return (_archive_read_disk_open_w(_a, pathname));
}
static int
_archive_read_disk_open_w(struct archive *_a, const wchar_t *pathname)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
if (a->tree != NULL)
a->tree = tree_reopen(a->tree, pathname,
a->flags & ARCHIVE_READDISK_RESTORE_ATIME);
else
a->tree = tree_open(pathname, a->symlink_mode,
a->flags & ARCHIVE_READDISK_RESTORE_ATIME);
if (a->tree == NULL) {
archive_set_error(&a->archive, ENOMEM,
"Can't allocate directory traversal data");
a->archive.state = ARCHIVE_STATE_FATAL;
return (ARCHIVE_FATAL);
}
a->archive.state = ARCHIVE_STATE_HEADER;
return (ARCHIVE_OK);
}
/*
* Return a current filesystem ID which is index of the filesystem entry
* you've visited through archive_read_disk.
*/
int
archive_read_disk_current_filesystem(struct archive *_a)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
"archive_read_disk_current_filesystem");
return (a->tree->current_filesystem_id);
}
static int
update_current_filesystem(struct archive_read_disk *a, int64_t dev)
{
struct tree *t = a->tree;
int i, fid;
if (t->current_filesystem != NULL &&
t->current_filesystem->dev == dev)
return (ARCHIVE_OK);
for (i = 0; i < t->max_filesystem_id; i++) {
if (t->filesystem_table[i].dev == dev) {
/* There is the filesystem ID we've already generated. */
t->current_filesystem_id = i;
t->current_filesystem = &(t->filesystem_table[i]);
return (ARCHIVE_OK);
}
}
/*
* There is a new filesystem, we generate a new ID for.
*/
fid = t->max_filesystem_id++;
if (t->max_filesystem_id > t->allocated_filesystem) {
size_t s;
void *p;
s = t->max_filesystem_id * 2;
p = realloc(t->filesystem_table,
s * sizeof(*t->filesystem_table));
if (p == NULL) {
archive_set_error(&a->archive, ENOMEM,
"Can't allocate tar data");
return (ARCHIVE_FATAL);
}
t->filesystem_table = (struct filesystem *)p;
t->allocated_filesystem = (int)s;
}
t->current_filesystem_id = fid;
t->current_filesystem = &(t->filesystem_table[fid]);
t->current_filesystem->dev = dev;
return (setup_current_filesystem(a));
}
/*
* Returns 1 if current filesystem is generated filesystem, 0 if it is not
* or -1 if it is unknown.
*/
int
archive_read_disk_current_filesystem_is_synthetic(struct archive *_a)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
"archive_read_disk_current_filesystem");
return (a->tree->current_filesystem->synthetic);
}
/*
* Returns 1 if current filesystem is remote filesystem, 0 if it is not
* or -1 if it is unknown.
*/
int
archive_read_disk_current_filesystem_is_remote(struct archive *_a)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
"archive_read_disk_current_filesystem");
return (a->tree->current_filesystem->remote);
}
/*
* If symlink is broken, statfs or statvfs will fail.
* Use its directory path instead.
*/
static wchar_t *
safe_path_for_statfs(struct tree *t)
{
const wchar_t *path;
wchar_t *cp, *p = NULL;
path = tree_current_access_path(t);
if (tree_current_stat(t) == NULL) {
p = _wcsdup(path);
cp = wcsrchr(p, '/');
if (cp != NULL && wcslen(cp) >= 2) {
cp[1] = '.';
cp[2] = '\0';
path = p;
}
} else
p = _wcsdup(path);
return (p);
}
/*
* Get conditions of synthetic and remote on Windows
*/
static int
setup_current_filesystem(struct archive_read_disk *a)
{
struct tree *t = a->tree;
wchar_t vol[256];
wchar_t *path;
t->current_filesystem->synthetic = -1;/* Not supported */
path = safe_path_for_statfs(t);
if (!GetVolumePathNameW(path, vol, sizeof(vol)/sizeof(vol[0]))) {
free(path);
t->current_filesystem->remote = -1;
t->current_filesystem->bytesPerSector = 0;
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"GetVolumePathName failed: %d", (int)GetLastError());
return (ARCHIVE_FAILED);
}
free(path);
switch (GetDriveTypeW(vol)) {
case DRIVE_UNKNOWN:
case DRIVE_NO_ROOT_DIR:
t->current_filesystem->remote = -1;
break;
case DRIVE_REMOTE:
t->current_filesystem->remote = 1;
break;
default:
t->current_filesystem->remote = 0;
break;
}
if (!GetDiskFreeSpaceW(vol, NULL,
&(t->current_filesystem->bytesPerSector), NULL, NULL)) {
t->current_filesystem->bytesPerSector = 0;
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"GetDiskFreeSpace failed: %d", (int)GetLastError());
return (ARCHIVE_FAILED);
}
return (ARCHIVE_OK);
}
static int
close_and_restore_time(HANDLE h, struct tree *t, struct restore_time *rt)
{
HANDLE handle;
int r = 0;
if (h == INVALID_HANDLE_VALUE && AE_IFLNK == rt->filetype)
return (0);
/* Close a file descriptor.
* It will not be used for SetFileTime() because it has been opened
* by a read only mode.
*/
if (h != INVALID_HANDLE_VALUE)
CloseHandle(h);
if ((t->flags & needsRestoreTimes) == 0)
return (r);
handle = CreateFileW(rt->full_path, FILE_WRITE_ATTRIBUTES,
0, NULL, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, NULL);
if (handle == INVALID_HANDLE_VALUE) {
errno = EINVAL;
return (-1);
}
if (SetFileTime(handle, NULL, &rt->lastAccessTime,
&rt->lastWriteTime) == 0) {
errno = EINVAL;
r = -1;
} else
r = 0;
CloseHandle(handle);
return (r);
}
/*
* Add a directory path to the current stack.
*/
static void
tree_push(struct tree *t, const wchar_t *path, const wchar_t *full_path,
int filesystem_id, int64_t dev, int64_t ino, struct restore_time *rt)
{
struct tree_entry *te;
te = calloc(1, sizeof(*te));
te->next = t->stack;
te->parent = t->current;
if (te->parent)
te->depth = te->parent->depth + 1;
t->stack = te;
archive_string_init(&te->name);
archive_wstrcpy(&te->name, path);
archive_string_init(&te->full_path);
archive_wstrcpy(&te->full_path, full_path);
te->flags = needsDescent | needsOpen | needsAscent;
te->filesystem_id = filesystem_id;
te->dev = dev;
te->ino = ino;
te->dirname_length = t->dirname_length;
te->full_path_dir_length = t->full_path_dir_length;
te->restore_time.full_path = te->full_path.s;
if (rt != NULL) {
te->restore_time.lastWriteTime = rt->lastWriteTime;
te->restore_time.lastAccessTime = rt->lastAccessTime;
te->restore_time.filetype = rt->filetype;
}
}
/*
* Append a name to the current dir path.
*/
static void
tree_append(struct tree *t, const wchar_t *name, size_t name_length)
{
size_t size_needed;
t->path.s[t->dirname_length] = L'\0';
t->path.length = t->dirname_length;
/* Strip trailing '/' from name, unless entire name is "/". */
while (name_length > 1 && name[name_length - 1] == L'/')
name_length--;
/* Resize pathname buffer as needed. */
size_needed = name_length + t->dirname_length + 2;
archive_wstring_ensure(&t->path, size_needed);
/* Add a separating '/' if it's needed. */
if (t->dirname_length > 0 &&
t->path.s[archive_strlen(&t->path)-1] != L'/')
archive_wstrappend_wchar(&t->path, L'/');
t->basename = t->path.s + archive_strlen(&t->path);
archive_wstrncat(&t->path, name, name_length);
t->restore_time.full_path = t->basename;
if (t->full_path_dir_length > 0) {
t->full_path.s[t->full_path_dir_length] = L'\0';
t->full_path.length = t->full_path_dir_length;
size_needed = name_length + t->full_path_dir_length + 2;
archive_wstring_ensure(&t->full_path, size_needed);
/* Add a separating '\' if it's needed. */
if (t->full_path.s[archive_strlen(&t->full_path)-1] != L'\\')
archive_wstrappend_wchar(&t->full_path, L'\\');
archive_wstrncat(&t->full_path, name, name_length);
t->restore_time.full_path = t->full_path.s;
}
}
/*
* Open a directory tree for traversal.
*/
static struct tree *
tree_open(const wchar_t *path, int symlink_mode, int restore_time)
{
struct tree *t;
t = calloc(1, sizeof(*t));
archive_string_init(&(t->full_path));
archive_string_init(&t->path);
archive_wstring_ensure(&t->path, 15);
t->initial_symlink_mode = symlink_mode;
return (tree_reopen(t, path, restore_time));
}
static struct tree *
tree_reopen(struct tree *t, const wchar_t *path, int restore_time)
{
struct archive_wstring ws;
wchar_t *pathname, *p, *base;
t->flags = (restore_time != 0)?needsRestoreTimes:0;
t->visit_type = 0;
t->tree_errno = 0;
t->full_path_dir_length = 0;
t->dirname_length = 0;
t->depth = 0;
t->descend = 0;
t->current = NULL;
t->d = INVALID_HANDLE_VALUE;
t->symlink_mode = t->initial_symlink_mode;
archive_string_empty(&(t->full_path));
archive_string_empty(&t->path);
t->entry_fh = INVALID_HANDLE_VALUE;
t->entry_eof = 0;
t->entry_remaining_bytes = 0;
t->initial_filesystem_id = -1;
/* Get wchar_t strings from char strings. */
archive_string_init(&ws);
archive_wstrcpy(&ws, path);
pathname = ws.s;
/* Get a full-path-name. */
p = __la_win_permissive_name_w(pathname);
if (p == NULL)
goto failed;
archive_wstrcpy(&(t->full_path), p);
free(p);
/* Convert path separators from '\' to '/' */
for (p = pathname; *p != L'\0'; ++p) {
if (*p == L'\\')
*p = L'/';
}
base = pathname;
/* First item is set up a lot like a symlink traversal. */
/* printf("Looking for wildcard in %s\n", path); */
if ((base[0] == L'/' && base[1] == L'/' &&
base[2] == L'?' && base[3] == L'/' &&
(wcschr(base+4, L'*') || wcschr(base+4, L'?'))) ||
(!(base[0] == L'/' && base[1] == L'/' &&
base[2] == L'?' && base[3] == L'/') &&
(wcschr(base, L'*') || wcschr(base, L'?')))) {
// It has a wildcard in it...
// Separate the last element.
p = wcsrchr(base, L'/');
if (p != NULL) {
*p = L'\0';
tree_append(t, base, p - base);
t->dirname_length = archive_strlen(&t->path);
base = p + 1;
}
p = wcsrchr(t->full_path.s, L'\\');
if (p != NULL) {
*p = L'\0';
t->full_path.length = wcslen(t->full_path.s);
t->full_path_dir_length = archive_strlen(&t->full_path);
}
}
tree_push(t, base, t->full_path.s, 0, 0, 0, NULL);
archive_wstring_free(&ws);
t->stack->flags = needsFirstVisit;
/*
* Debug flag for Direct IO(No buffering) or Async IO.
* Those dependent on environment variable switches
* will be removed until next release.
*/
{
const char *e;
if ((e = getenv("LIBARCHIVE_DIRECT_IO")) != NULL) {
if (e[0] == '0')
t->direct_io = 0;
else
t->direct_io = 1;
fprintf(stderr, "LIBARCHIVE_DIRECT_IO=%s\n",
(t->direct_io)?"Enabled":"Disabled");
} else
t->direct_io = DIRECT_IO;
if ((e = getenv("LIBARCHIVE_ASYNC_IO")) != NULL) {
if (e[0] == '0')
t->async_io = 0;
else
t->async_io = 1;
fprintf(stderr, "LIBARCHIVE_ASYNC_IO=%s\n",
(t->async_io)?"Enabled":"Disabled");
} else
t->async_io = ASYNC_IO;
}
return (t);
failed:
archive_wstring_free(&ws);
tree_free(t);
return (NULL);
}
static int
tree_descent(struct tree *t)
{
t->dirname_length = archive_strlen(&t->path);
t->full_path_dir_length = archive_strlen(&t->full_path);
t->depth++;
return (0);
}
/*
* We've finished a directory; ascend back to the parent.
*/
static int
tree_ascend(struct tree *t)
{
struct tree_entry *te;
te = t->stack;
t->depth--;
close_and_restore_time(INVALID_HANDLE_VALUE, t, &te->restore_time);
return (0);
}
/*
* Pop the working stack.
*/
static void
tree_pop(struct tree *t)
{
struct tree_entry *te;
t->full_path.s[t->full_path_dir_length] = L'\0';
t->full_path.length = t->full_path_dir_length;
t->path.s[t->dirname_length] = L'\0';
t->path.length = t->dirname_length;
if (t->stack == t->current && t->current != NULL)
t->current = t->current->parent;
te = t->stack;
t->stack = te->next;
t->dirname_length = te->dirname_length;
t->basename = t->path.s + t->dirname_length;
t->full_path_dir_length = te->full_path_dir_length;
while (t->basename[0] == L'/')
t->basename++;
archive_wstring_free(&te->name);
archive_wstring_free(&te->full_path);
free(te);
}
/*
* Get the next item in the tree traversal.
*/
static int
tree_next(struct tree *t)
{
int r;
while (t->stack != NULL) {
/* If there's an open dir, get the next entry from there. */
if (t->d != INVALID_HANDLE_VALUE) {
r = tree_dir_next_windows(t, NULL);
if (r == 0)
continue;
return (r);
}
if (t->stack->flags & needsFirstVisit) {
wchar_t *d = t->stack->name.s;
t->stack->flags &= ~needsFirstVisit;
if (!(d[0] == L'/' && d[1] == L'/' &&
d[2] == L'?' && d[3] == L'/') &&
(wcschr(d, L'*') || wcschr(d, L'?'))) {
r = tree_dir_next_windows(t, d);
if (r == 0)
continue;
return (r);
} else {
HANDLE h = FindFirstFileW(t->stack->full_path.s, &t->_findData);
if (h == INVALID_HANDLE_VALUE) {
la_dosmaperr(GetLastError());
t->tree_errno = errno;
t->visit_type = TREE_ERROR_DIR;
return (t->visit_type);
}
t->findData = &t->_findData;
FindClose(h);
}
/* Top stack item needs a regular visit. */
t->current = t->stack;
tree_append(t, t->stack->name.s,
archive_strlen(&(t->stack->name)));
//t->dirname_length = t->path_length;
//tree_pop(t);
t->stack->flags &= ~needsFirstVisit;
return (t->visit_type = TREE_REGULAR);
} else if (t->stack->flags & needsDescent) {
/* Top stack item is dir to descend into. */
t->current = t->stack;
tree_append(t, t->stack->name.s,
archive_strlen(&(t->stack->name)));
t->stack->flags &= ~needsDescent;
r = tree_descent(t);
if (r != 0) {
tree_pop(t);
t->visit_type = r;
} else
t->visit_type = TREE_POSTDESCENT;
return (t->visit_type);
} else if (t->stack->flags & needsOpen) {
t->stack->flags &= ~needsOpen;
r = tree_dir_next_windows(t, L"*");
if (r == 0)
continue;
return (r);
} else if (t->stack->flags & needsAscent) {
/* Top stack item is dir and we're done with it. */
r = tree_ascend(t);
tree_pop(t);
t->visit_type = r != 0 ? r : TREE_POSTASCENT;
return (t->visit_type);
} else {
/* Top item on stack is dead. */
tree_pop(t);
t->flags &= ~hasLstat;
t->flags &= ~hasStat;
}
}
return (t->visit_type = 0);
}
static int
tree_dir_next_windows(struct tree *t, const wchar_t *pattern)
{
const wchar_t *name;
size_t namelen;
int r;
for (;;) {
if (pattern != NULL) {
struct archive_wstring pt;
archive_string_init(&pt);
archive_wstring_ensure(&pt,
archive_strlen(&(t->full_path))
+ 2 + wcslen(pattern));
archive_wstring_copy(&pt, &(t->full_path));
archive_wstrappend_wchar(&pt, L'\\');
archive_wstrcat(&pt, pattern);
t->d = FindFirstFileW(pt.s, &t->_findData);
archive_wstring_free(&pt);
if (t->d == INVALID_HANDLE_VALUE) {
la_dosmaperr(GetLastError());
t->tree_errno = errno;
r = tree_ascend(t); /* Undo "chdir" */
tree_pop(t);
t->visit_type = r != 0 ? r : TREE_ERROR_DIR;
return (t->visit_type);
}
t->findData = &t->_findData;
pattern = NULL;
} else if (!FindNextFileW(t->d, &t->_findData)) {
FindClose(t->d);
t->d = INVALID_HANDLE_VALUE;
t->findData = NULL;
return (0);
}
name = t->findData->cFileName;
namelen = wcslen(name);
t->flags &= ~hasLstat;
t->flags &= ~hasStat;
if (name[0] == L'.' && name[1] == L'\0')
continue;
if (name[0] == L'.' && name[1] == L'.' && name[2] == L'\0')
continue;
tree_append(t, name, namelen);
return (t->visit_type = TREE_REGULAR);
}
}
#define EPOC_TIME ARCHIVE_LITERAL_ULL(116444736000000000)
static void
fileTimeToUtc(const FILETIME *filetime, time_t *t, long *ns)
{
ULARGE_INTEGER utc;
utc.HighPart = filetime->dwHighDateTime;
utc.LowPart = filetime->dwLowDateTime;
if (utc.QuadPart >= EPOC_TIME) {
utc.QuadPart -= EPOC_TIME;
/* milli seconds base */
*t = (time_t)(utc.QuadPart / 10000000);
/* nano seconds base */
*ns = (long)(utc.QuadPart % 10000000) * 100;
} else {
*t = 0;
*ns = 0;
}
}
static void
entry_copy_bhfi(struct archive_entry *entry, const wchar_t *path,
const WIN32_FIND_DATAW *findData,
const BY_HANDLE_FILE_INFORMATION *bhfi)
{
time_t secs;
long nsecs;
mode_t mode;
fileTimeToUtc(&bhfi->ftLastAccessTime, &secs, &nsecs);
archive_entry_set_atime(entry, secs, nsecs);
fileTimeToUtc(&bhfi->ftLastWriteTime, &secs, &nsecs);
archive_entry_set_mtime(entry, secs, nsecs);
fileTimeToUtc(&bhfi->ftCreationTime, &secs, &nsecs);
archive_entry_set_birthtime(entry, secs, nsecs);
archive_entry_set_ctime(entry, secs, nsecs);
archive_entry_set_dev(entry, bhfi_dev(bhfi));
archive_entry_set_ino64(entry, bhfi_ino(bhfi));
if (bhfi->dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)
archive_entry_set_nlink(entry, bhfi->nNumberOfLinks + 1);
else
archive_entry_set_nlink(entry, bhfi->nNumberOfLinks);
archive_entry_set_size(entry,
(((int64_t)bhfi->nFileSizeHigh) << 32)
+ bhfi->nFileSizeLow);
archive_entry_set_uid(entry, 0);
archive_entry_set_gid(entry, 0);
archive_entry_set_rdev(entry, 0);
mode = S_IRUSR | S_IRGRP | S_IROTH;
if ((bhfi->dwFileAttributes & FILE_ATTRIBUTE_READONLY) == 0)
mode |= S_IWUSR | S_IWGRP | S_IWOTH;
if ((bhfi->dwFileAttributes & FILE_ATTRIBUTE_REPARSE_POINT) &&
findData != NULL &&
findData->dwReserved0 == IO_REPARSE_TAG_SYMLINK) {
mode |= S_IFLNK;
entry_symlink_from_pathw(entry, path);
} else if (bhfi->dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)
mode |= S_IFDIR | S_IXUSR | S_IXGRP | S_IXOTH;
else {
const wchar_t *p;
mode |= S_IFREG;
p = wcsrchr(path, L'.');
if (p != NULL && wcslen(p) == 4) {
switch (p[1]) {
case L'B': case L'b':
if ((p[2] == L'A' || p[2] == L'a' ) &&
(p[3] == L'T' || p[3] == L't' ))
mode |= S_IXUSR | S_IXGRP | S_IXOTH;
break;
case L'C': case L'c':
if (((p[2] == L'M' || p[2] == L'm' ) &&
(p[3] == L'D' || p[3] == L'd' )))
mode |= S_IXUSR | S_IXGRP | S_IXOTH;
break;
case L'E': case L'e':
if ((p[2] == L'X' || p[2] == L'x' ) &&
(p[3] == L'E' || p[3] == L'e' ))
mode |= S_IXUSR | S_IXGRP | S_IXOTH;
break;
default:
break;
}
}
}
archive_entry_set_mode(entry, mode);
}
static void
tree_archive_entry_copy_bhfi(struct archive_entry *entry, struct tree *t,
const BY_HANDLE_FILE_INFORMATION *bhfi)
{
entry_copy_bhfi(entry, tree_current_path(t), t->findData, bhfi);
}
static int
tree_current_file_information(struct tree *t, BY_HANDLE_FILE_INFORMATION *st,
int sim_lstat)
{
HANDLE h;
int r;
DWORD flag = FILE_FLAG_BACKUP_SEMANTICS;
if (sim_lstat && tree_current_is_physical_link(t))
flag |= FILE_FLAG_OPEN_REPARSE_POINT;
h = CreateFileW(tree_current_access_path(t), 0, FILE_SHARE_READ, NULL,
OPEN_EXISTING, flag, NULL);
if (h == INVALID_HANDLE_VALUE) {
la_dosmaperr(GetLastError());
t->tree_errno = errno;
return (0);
}
r = GetFileInformationByHandle(h, st);
CloseHandle(h);
return (r);
}
/*
* Get the stat() data for the entry just returned from tree_next().
*/
static const BY_HANDLE_FILE_INFORMATION *
tree_current_stat(struct tree *t)
{
if (!(t->flags & hasStat)) {
if (!tree_current_file_information(t, &t->st, 0))
return NULL;
t->flags |= hasStat;
}
return (&t->st);
}
/*
* Get the lstat() data for the entry just returned from tree_next().
*/
static const BY_HANDLE_FILE_INFORMATION *
tree_current_lstat(struct tree *t)
{
if (!(t->flags & hasLstat)) {
if (!tree_current_file_information(t, &t->lst, 1))
return NULL;
t->flags |= hasLstat;
}
return (&t->lst);
}
/*
* Test whether current entry is a dir or link to a dir.
*/
static int
tree_current_is_dir(struct tree *t)
{
if (t->findData)
return (t->findData->dwFileAttributes
& FILE_ATTRIBUTE_DIRECTORY);
return (0);
}
/*
* Test whether current entry is a physical directory. Usually, we
* already have at least one of stat() or lstat() in memory, so we
* use tricks to try to avoid an extra trip to the disk.
*/
static int
tree_current_is_physical_dir(struct tree *t)
{
if (tree_current_is_physical_link(t))
return (0);
return (tree_current_is_dir(t));
}
/*
* Test whether current entry is a symbolic link.
*/
static int
tree_current_is_physical_link(struct tree *t)
{
if (t->findData)
return ((t->findData->dwFileAttributes
& FILE_ATTRIBUTE_REPARSE_POINT) &&
(t->findData->dwReserved0
== IO_REPARSE_TAG_SYMLINK));
return (0);
}
/*
* Test whether the same file has been in the tree as its parent.
*/
static int
tree_target_is_same_as_parent(struct tree *t,
const BY_HANDLE_FILE_INFORMATION *st)
{
struct tree_entry *te;
int64_t dev = bhfi_dev(st);
int64_t ino = bhfi_ino(st);
for (te = t->current->parent; te != NULL; te = te->parent) {
if (te->dev == dev && te->ino == ino)
return (1);
}
return (0);
}
/*
* Return the access path for the entry just returned from tree_next().
*/
static const wchar_t *
tree_current_access_path(struct tree *t)
{
return (t->full_path.s);
}
/*
* Return the full path for the entry just returned from tree_next().
*/
static const wchar_t *
tree_current_path(struct tree *t)
{
return (t->path.s);
}
/*
* Terminate the traversal.
*/
static void
tree_close(struct tree *t)
{
if (t == NULL)
return;
if (t->entry_fh != INVALID_HANDLE_VALUE) {
cancel_async(t);
close_and_restore_time(t->entry_fh, t, &t->restore_time);
t->entry_fh = INVALID_HANDLE_VALUE;
}
/* Close the handle of FindFirstFileW */
if (t->d != INVALID_HANDLE_VALUE) {
FindClose(t->d);
t->d = INVALID_HANDLE_VALUE;
t->findData = NULL;
}
/* Release anything remaining in the stack. */
while (t->stack != NULL)
tree_pop(t);
}
/*
* Release any resources.
*/
static void
tree_free(struct tree *t)
{
int i;
if (t == NULL)
return;
archive_wstring_free(&t->path);
archive_wstring_free(&t->full_path);
free(t->sparse_list);
free(t->filesystem_table);
for (i = 0; i < MAX_OVERLAPPED; i++) {
if (t->ol[i].buff)
VirtualFree(t->ol[i].buff, 0, MEM_RELEASE);
CloseHandle(t->ol[i].ol.hEvent);
}
free(t);
}
/*
* Populate the archive_entry with metadata from the disk.
*/
int
archive_read_disk_entry_from_file(struct archive *_a,
struct archive_entry *entry, int fd, const struct stat *st)
{
struct archive_read_disk *a = (struct archive_read_disk *)_a;
const wchar_t *path;
const wchar_t *wname;
const char *name;
HANDLE h;
BY_HANDLE_FILE_INFORMATION bhfi;
DWORD fileAttributes = 0;
int r;
archive_clear_error(_a);
wname = archive_entry_sourcepath_w(entry);
if (wname == NULL)
wname = archive_entry_pathname_w(entry);
if (wname == NULL) {
archive_set_error(&a->archive, EINVAL,
"Can't get a wide character version of the path");
return (ARCHIVE_FAILED);
}
path = __la_win_permissive_name_w(wname);
if (st == NULL) {
/*
* Get metadata through GetFileInformationByHandle().
*/
if (fd >= 0) {
h = (HANDLE)_get_osfhandle(fd);
r = GetFileInformationByHandle(h, &bhfi);
if (r == 0) {
la_dosmaperr(GetLastError());
archive_set_error(&a->archive, errno,
"Can't GetFileInformationByHandle");
return (ARCHIVE_FAILED);
}
entry_copy_bhfi(entry, path, NULL, &bhfi);
} else {
WIN32_FIND_DATAW findData;
DWORD flag, desiredAccess;
h = FindFirstFileW(path, &findData);
if (h == INVALID_HANDLE_VALUE) {
la_dosmaperr(GetLastError());
archive_set_error(&a->archive, errno,
"Can't FindFirstFileW");
return (ARCHIVE_FAILED);
}
FindClose(h);
flag = FILE_FLAG_BACKUP_SEMANTICS;
if (!a->follow_symlinks &&
(findData.dwFileAttributes
& FILE_ATTRIBUTE_REPARSE_POINT) &&
(findData.dwReserved0 == IO_REPARSE_TAG_SYMLINK)) {
flag |= FILE_FLAG_OPEN_REPARSE_POINT;
desiredAccess = 0;
} else if (findData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
desiredAccess = 0;
} else
desiredAccess = GENERIC_READ;
h = CreateFileW(path, desiredAccess, FILE_SHARE_READ, NULL,
OPEN_EXISTING, flag, NULL);
if (h == INVALID_HANDLE_VALUE) {
la_dosmaperr(GetLastError());
archive_set_error(&a->archive, errno,
"Can't CreateFileW");
return (ARCHIVE_FAILED);
}
r = GetFileInformationByHandle(h, &bhfi);
if (r == 0) {
la_dosmaperr(GetLastError());
archive_set_error(&a->archive, errno,
"Can't GetFileInformationByHandle");
CloseHandle(h);
return (ARCHIVE_FAILED);
}
entry_copy_bhfi(entry, path, &findData, &bhfi);
}
fileAttributes = bhfi.dwFileAttributes;
} else {
archive_entry_copy_stat(entry, st);
if (st->st_mode & S_IFLNK)
entry_symlink_from_pathw(entry, path);
h = INVALID_HANDLE_VALUE;
}
/* Lookup uname/gname */
name = archive_read_disk_uname(_a, archive_entry_uid(entry));
if (name != NULL)
archive_entry_copy_uname(entry, name);
name = archive_read_disk_gname(_a, archive_entry_gid(entry));
if (name != NULL)
archive_entry_copy_gname(entry, name);
/*
* File attributes
*/
if ((a->flags & ARCHIVE_READDISK_NO_FFLAGS) == 0) {
const int supported_attrs =
FILE_ATTRIBUTE_READONLY |
FILE_ATTRIBUTE_HIDDEN |
FILE_ATTRIBUTE_SYSTEM;
DWORD file_attrs = fileAttributes & supported_attrs;
if (file_attrs != 0)
archive_entry_set_fflags(entry, file_attrs, 0);
}
/*
* Can this file be sparse file ?
*/
if (archive_entry_filetype(entry) != AE_IFREG
|| archive_entry_size(entry) <= 0
|| archive_entry_hardlink(entry) != NULL) {
if (h != INVALID_HANDLE_VALUE && fd < 0)
CloseHandle(h);
return (ARCHIVE_OK);
}
if (h == INVALID_HANDLE_VALUE) {
if (fd >= 0) {
h = (HANDLE)_get_osfhandle(fd);
} else {
h = CreateFileW(path, GENERIC_READ, FILE_SHARE_READ, NULL,
OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, NULL);
if (h == INVALID_HANDLE_VALUE) {
la_dosmaperr(GetLastError());
archive_set_error(&a->archive, errno,
"Can't CreateFileW");
return (ARCHIVE_FAILED);
}
}
r = GetFileInformationByHandle(h, &bhfi);
if (r == 0) {
la_dosmaperr(GetLastError());
archive_set_error(&a->archive, errno,
"Can't GetFileInformationByHandle");
if (h != INVALID_HANDLE_VALUE && fd < 0)
CloseHandle(h);
return (ARCHIVE_FAILED);
}
fileAttributes = bhfi.dwFileAttributes;
}
/* Sparse file must be set a mark, FILE_ATTRIBUTE_SPARSE_FILE */
if ((fileAttributes & FILE_ATTRIBUTE_SPARSE_FILE) == 0) {
if (fd < 0)
CloseHandle(h);
return (ARCHIVE_OK);
}
if ((a->flags & ARCHIVE_READDISK_NO_SPARSE) == 0) {
r = setup_sparse_from_disk(a, entry, h);
if (fd < 0)
CloseHandle(h);
}
return (r);
}
/*
* Windows sparse interface.
*/
#if defined(__MINGW32__) && !defined(FSCTL_QUERY_ALLOCATED_RANGES)
#define FSCTL_QUERY_ALLOCATED_RANGES 0x940CF
typedef struct {
LARGE_INTEGER FileOffset;
LARGE_INTEGER Length;
} FILE_ALLOCATED_RANGE_BUFFER;
#endif
static int
setup_sparse_from_disk(struct archive_read_disk *a,
struct archive_entry *entry, HANDLE handle)
{
FILE_ALLOCATED_RANGE_BUFFER range, *outranges = NULL;
size_t outranges_size;
int64_t entry_size = archive_entry_size(entry);
int exit_sts = ARCHIVE_OK;
range.FileOffset.QuadPart = 0;
range.Length.QuadPart = entry_size;
outranges_size = 2048;
outranges = (FILE_ALLOCATED_RANGE_BUFFER *)malloc(outranges_size);
if (outranges == NULL) {
archive_set_error(&a->archive, ENOMEM,
"Couldn't allocate memory");
exit_sts = ARCHIVE_FATAL;
goto exit_setup_sparse;
}
for (;;) {
DWORD retbytes;
BOOL ret;
for (;;) {
ret = DeviceIoControl(handle,
FSCTL_QUERY_ALLOCATED_RANGES,
&range, sizeof(range), outranges,
(DWORD)outranges_size, &retbytes, NULL);
if (ret == 0 && GetLastError() == ERROR_MORE_DATA) {
free(outranges);
outranges_size *= 2;
outranges = (FILE_ALLOCATED_RANGE_BUFFER *)
malloc(outranges_size);
if (outranges == NULL) {
archive_set_error(&a->archive, ENOMEM,
"Couldn't allocate memory");
exit_sts = ARCHIVE_FATAL;
goto exit_setup_sparse;
}
continue;
} else
break;
}
if (ret != 0) {
if (retbytes > 0) {
DWORD i, n;
n = retbytes / sizeof(outranges[0]);
if (n == 1 &&
outranges[0].FileOffset.QuadPart == 0 &&
outranges[0].Length.QuadPart == entry_size)
break;/* This is not sparse. */
for (i = 0; i < n; i++)
archive_entry_sparse_add_entry(entry,
outranges[i].FileOffset.QuadPart,
outranges[i].Length.QuadPart);
range.FileOffset.QuadPart =
outranges[n-1].FileOffset.QuadPart
+ outranges[n-1].Length.QuadPart;
range.Length.QuadPart =
entry_size - range.FileOffset.QuadPart;
if (range.Length.QuadPart > 0)
continue;
} else {
/* The entire file is a hole. Add one data block of size 0 at the end. */
archive_entry_sparse_add_entry(entry,
entry_size,
0);
}
break;
} else {
la_dosmaperr(GetLastError());
archive_set_error(&a->archive, errno,
"DeviceIoControl Failed: %lu", GetLastError());
exit_sts = ARCHIVE_FAILED;
goto exit_setup_sparse;
}
}
exit_setup_sparse:
free(outranges);
return (exit_sts);
}
#endif