You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
400 lines
9.9 KiB
400 lines
9.9 KiB
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
/// \file lzma2_encoder.c
|
|
/// \brief LZMA2 encoder
|
|
///
|
|
// Authors: Igor Pavlov
|
|
// Lasse Collin
|
|
//
|
|
// This file has been put into the public domain.
|
|
// You can do whatever you want with this file.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "lz_encoder.h"
|
|
#include "lzma_encoder.h"
|
|
#include "fastpos.h"
|
|
#include "lzma2_encoder.h"
|
|
|
|
|
|
struct lzma_coder_s {
|
|
enum {
|
|
SEQ_INIT,
|
|
SEQ_LZMA_ENCODE,
|
|
SEQ_LZMA_COPY,
|
|
SEQ_UNCOMPRESSED_HEADER,
|
|
SEQ_UNCOMPRESSED_COPY,
|
|
} sequence;
|
|
|
|
/// LZMA encoder
|
|
lzma_coder *lzma;
|
|
|
|
/// LZMA options currently in use.
|
|
lzma_options_lzma opt_cur;
|
|
|
|
bool need_properties;
|
|
bool need_state_reset;
|
|
bool need_dictionary_reset;
|
|
|
|
/// Uncompressed size of a chunk
|
|
size_t uncompressed_size;
|
|
|
|
/// Compressed size of a chunk (excluding headers); this is also used
|
|
/// to indicate the end of buf[] in SEQ_LZMA_COPY.
|
|
size_t compressed_size;
|
|
|
|
/// Read position in buf[]
|
|
size_t buf_pos;
|
|
|
|
/// Buffer to hold the chunk header and LZMA compressed data
|
|
uint8_t buf[LZMA2_HEADER_MAX + LZMA2_CHUNK_MAX];
|
|
};
|
|
|
|
|
|
static void
|
|
lzma2_header_lzma(lzma_coder *coder)
|
|
{
|
|
size_t pos;
|
|
size_t size;
|
|
|
|
assert(coder->uncompressed_size > 0);
|
|
assert(coder->uncompressed_size <= LZMA2_UNCOMPRESSED_MAX);
|
|
assert(coder->compressed_size > 0);
|
|
assert(coder->compressed_size <= LZMA2_CHUNK_MAX);
|
|
|
|
if (coder->need_properties) {
|
|
pos = 0;
|
|
|
|
if (coder->need_dictionary_reset)
|
|
coder->buf[pos] = 0x80 + (3 << 5);
|
|
else
|
|
coder->buf[pos] = 0x80 + (2 << 5);
|
|
} else {
|
|
pos = 1;
|
|
|
|
if (coder->need_state_reset)
|
|
coder->buf[pos] = 0x80 + (1 << 5);
|
|
else
|
|
coder->buf[pos] = 0x80;
|
|
}
|
|
|
|
// Set the start position for copying.
|
|
coder->buf_pos = pos;
|
|
|
|
// Uncompressed size
|
|
size = coder->uncompressed_size - 1;
|
|
coder->buf[pos++] += size >> 16;
|
|
coder->buf[pos++] = (size >> 8) & 0xFF;
|
|
coder->buf[pos++] = size & 0xFF;
|
|
|
|
// Compressed size
|
|
size = coder->compressed_size - 1;
|
|
coder->buf[pos++] = size >> 8;
|
|
coder->buf[pos++] = size & 0xFF;
|
|
|
|
// Properties, if needed
|
|
if (coder->need_properties)
|
|
lzma_lzma_lclppb_encode(&coder->opt_cur, coder->buf + pos);
|
|
|
|
coder->need_properties = false;
|
|
coder->need_state_reset = false;
|
|
coder->need_dictionary_reset = false;
|
|
|
|
// The copying code uses coder->compressed_size to indicate the end
|
|
// of coder->buf[], so we need add the maximum size of the header here.
|
|
coder->compressed_size += LZMA2_HEADER_MAX;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
static void
|
|
lzma2_header_uncompressed(lzma_coder *coder)
|
|
{
|
|
assert(coder->uncompressed_size > 0);
|
|
assert(coder->uncompressed_size <= LZMA2_CHUNK_MAX);
|
|
|
|
// If this is the first chunk, we need to include dictionary
|
|
// reset indicator.
|
|
if (coder->need_dictionary_reset)
|
|
coder->buf[0] = 1;
|
|
else
|
|
coder->buf[0] = 2;
|
|
|
|
coder->need_dictionary_reset = false;
|
|
|
|
// "Compressed" size
|
|
coder->buf[1] = (coder->uncompressed_size - 1) >> 8;
|
|
coder->buf[2] = (coder->uncompressed_size - 1) & 0xFF;
|
|
|
|
// Set the start position for copying.
|
|
coder->buf_pos = 0;
|
|
return;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
lzma2_encode(lzma_coder *LZMA_RESTRICT coder, lzma_mf *LZMA_RESTRICT mf,
|
|
uint8_t *LZMA_RESTRICT out, size_t *LZMA_RESTRICT out_pos,
|
|
size_t out_size)
|
|
{
|
|
while (*out_pos < out_size)
|
|
switch (coder->sequence) {
|
|
case SEQ_INIT:
|
|
// If there's no input left and we are flushing or finishing,
|
|
// don't start a new chunk.
|
|
if (mf_unencoded(mf) == 0) {
|
|
// Write end of payload marker if finishing.
|
|
if (mf->action == LZMA_FINISH)
|
|
out[(*out_pos)++] = 0;
|
|
|
|
return mf->action == LZMA_RUN
|
|
? LZMA_OK : LZMA_STREAM_END;
|
|
}
|
|
|
|
if (coder->need_state_reset)
|
|
return_if_error(lzma_lzma_encoder_reset(
|
|
coder->lzma, &coder->opt_cur));
|
|
|
|
coder->uncompressed_size = 0;
|
|
coder->compressed_size = 0;
|
|
coder->sequence = SEQ_LZMA_ENCODE;
|
|
|
|
// Fall through
|
|
|
|
case SEQ_LZMA_ENCODE: {
|
|
uint32_t read_start;
|
|
lzma_ret ret;
|
|
|
|
// Calculate how much more uncompressed data this chunk
|
|
// could accept.
|
|
const uint32_t left = LZMA2_UNCOMPRESSED_MAX
|
|
- coder->uncompressed_size;
|
|
uint32_t limit;
|
|
|
|
if (left < mf->match_len_max) {
|
|
// Must flush immediately since the next LZMA symbol
|
|
// could make the uncompressed size of the chunk too
|
|
// big.
|
|
limit = 0;
|
|
} else {
|
|
// Calculate maximum read_limit that is OK from point
|
|
// of view of LZMA2 chunk size.
|
|
limit = mf->read_pos - mf->read_ahead
|
|
+ left - mf->match_len_max;
|
|
}
|
|
|
|
// Save the start position so that we can update
|
|
// coder->uncompressed_size.
|
|
read_start = mf->read_pos - mf->read_ahead;
|
|
|
|
// Call the LZMA encoder until the chunk is finished.
|
|
ret = lzma_lzma_encode(coder->lzma, mf,
|
|
coder->buf + LZMA2_HEADER_MAX,
|
|
&coder->compressed_size,
|
|
LZMA2_CHUNK_MAX, limit);
|
|
|
|
coder->uncompressed_size += mf->read_pos - mf->read_ahead
|
|
- read_start;
|
|
|
|
assert(coder->compressed_size <= LZMA2_CHUNK_MAX);
|
|
assert(coder->uncompressed_size <= LZMA2_UNCOMPRESSED_MAX);
|
|
|
|
if (ret != LZMA_STREAM_END)
|
|
return LZMA_OK;
|
|
|
|
// See if the chunk compressed. If it didn't, we encode it
|
|
// as uncompressed chunk. This saves a few bytes of space
|
|
// and makes decoding faster.
|
|
if (coder->compressed_size >= coder->uncompressed_size) {
|
|
coder->uncompressed_size += mf->read_ahead;
|
|
assert(coder->uncompressed_size
|
|
<= LZMA2_UNCOMPRESSED_MAX);
|
|
mf->read_ahead = 0;
|
|
lzma2_header_uncompressed(coder);
|
|
coder->need_state_reset = true;
|
|
coder->sequence = SEQ_UNCOMPRESSED_HEADER;
|
|
break;
|
|
}
|
|
|
|
// The chunk did compress at least by one byte, so we store
|
|
// the chunk as LZMA.
|
|
lzma2_header_lzma(coder);
|
|
|
|
coder->sequence = SEQ_LZMA_COPY;
|
|
}
|
|
|
|
// Fall through
|
|
|
|
case SEQ_LZMA_COPY:
|
|
// Copy the compressed chunk along its headers to the
|
|
// output buffer.
|
|
lzma_bufcpy(coder->buf, &coder->buf_pos,
|
|
coder->compressed_size,
|
|
out, out_pos, out_size);
|
|
if (coder->buf_pos != coder->compressed_size)
|
|
return LZMA_OK;
|
|
|
|
coder->sequence = SEQ_INIT;
|
|
break;
|
|
|
|
case SEQ_UNCOMPRESSED_HEADER:
|
|
// Copy the three-byte header to indicate uncompressed chunk.
|
|
lzma_bufcpy(coder->buf, &coder->buf_pos,
|
|
LZMA2_HEADER_UNCOMPRESSED,
|
|
out, out_pos, out_size);
|
|
if (coder->buf_pos != LZMA2_HEADER_UNCOMPRESSED)
|
|
return LZMA_OK;
|
|
|
|
coder->sequence = SEQ_UNCOMPRESSED_COPY;
|
|
|
|
// Fall through
|
|
|
|
case SEQ_UNCOMPRESSED_COPY:
|
|
// Copy the uncompressed data as is from the dictionary
|
|
// to the output buffer.
|
|
mf_read(mf, out, out_pos, out_size, &coder->uncompressed_size);
|
|
if (coder->uncompressed_size != 0)
|
|
return LZMA_OK;
|
|
|
|
coder->sequence = SEQ_INIT;
|
|
break;
|
|
}
|
|
|
|
return LZMA_OK;
|
|
}
|
|
|
|
|
|
static void
|
|
lzma2_encoder_end(lzma_coder *coder, lzma_allocator *allocator)
|
|
{
|
|
lzma_free(coder->lzma, allocator);
|
|
lzma_free(coder, allocator);
|
|
return;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
lzma2_encoder_options_update(lzma_coder *coder, const lzma_filter *filter)
|
|
{
|
|
lzma_options_lzma *opt;
|
|
|
|
// New options can be set only when there is no incomplete chunk.
|
|
// This is the case at the beginning of the raw stream and right
|
|
// after LZMA_SYNC_FLUSH.
|
|
if (filter->options == NULL || coder->sequence != SEQ_INIT)
|
|
return LZMA_PROG_ERROR;
|
|
|
|
// Look if there are new options. At least for now,
|
|
// only lc/lp/pb can be changed.
|
|
opt = filter->options;
|
|
if (coder->opt_cur.lc != opt->lc || coder->opt_cur.lp != opt->lp
|
|
|| coder->opt_cur.pb != opt->pb) {
|
|
// Validate the options.
|
|
if (opt->lc > LZMA_LCLP_MAX || opt->lp > LZMA_LCLP_MAX
|
|
|| opt->lc + opt->lp > LZMA_LCLP_MAX
|
|
|| opt->pb > LZMA_PB_MAX)
|
|
return LZMA_OPTIONS_ERROR;
|
|
|
|
// The new options will be used when the encoder starts
|
|
// a new LZMA2 chunk.
|
|
coder->opt_cur.lc = opt->lc;
|
|
coder->opt_cur.lp = opt->lp;
|
|
coder->opt_cur.pb = opt->pb;
|
|
coder->need_properties = true;
|
|
coder->need_state_reset = true;
|
|
}
|
|
|
|
return LZMA_OK;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
lzma2_encoder_init(lzma_lz_encoder *lz, lzma_allocator *allocator,
|
|
const void *options, lzma_lz_options *lz_options)
|
|
{
|
|
if (options == NULL)
|
|
return LZMA_PROG_ERROR;
|
|
|
|
if (lz->coder == NULL) {
|
|
lz->coder = lzma_alloc(sizeof(lzma_coder), allocator);
|
|
if (lz->coder == NULL)
|
|
return LZMA_MEM_ERROR;
|
|
|
|
lz->code = &lzma2_encode;
|
|
lz->end = &lzma2_encoder_end;
|
|
lz->options_update = &lzma2_encoder_options_update;
|
|
|
|
lz->coder->lzma = NULL;
|
|
}
|
|
|
|
lz->coder->opt_cur = *(const lzma_options_lzma *)(options);
|
|
|
|
lz->coder->sequence = SEQ_INIT;
|
|
lz->coder->need_properties = true;
|
|
lz->coder->need_state_reset = false;
|
|
lz->coder->need_dictionary_reset
|
|
= lz->coder->opt_cur.preset_dict == NULL
|
|
|| lz->coder->opt_cur.preset_dict_size == 0;
|
|
|
|
// Initialize LZMA encoder
|
|
return_if_error(lzma_lzma_encoder_create(&lz->coder->lzma, allocator,
|
|
&lz->coder->opt_cur, lz_options));
|
|
|
|
// Make sure that we will always have enough history available in
|
|
// case we need to use uncompressed chunks. They are used when the
|
|
// compressed size of a chunk is not smaller than the uncompressed
|
|
// size, so we need to have at least LZMA2_COMPRESSED_MAX bytes
|
|
// history available.
|
|
if (lz_options->before_size + lz_options->dict_size < LZMA2_CHUNK_MAX)
|
|
lz_options->before_size
|
|
= LZMA2_CHUNK_MAX - lz_options->dict_size;
|
|
|
|
return LZMA_OK;
|
|
}
|
|
|
|
|
|
extern lzma_ret
|
|
lzma_lzma2_encoder_init(lzma_next_coder *next, lzma_allocator *allocator,
|
|
const lzma_filter_info *filters)
|
|
{
|
|
return lzma_lz_encoder_init(
|
|
next, allocator, filters, &lzma2_encoder_init);
|
|
}
|
|
|
|
|
|
extern uint64_t
|
|
lzma_lzma2_encoder_memusage(const void *options)
|
|
{
|
|
const uint64_t lzma_mem = lzma_lzma_encoder_memusage(options);
|
|
if (lzma_mem == UINT64_MAX)
|
|
return UINT64_MAX;
|
|
|
|
return sizeof(lzma_coder) + lzma_mem;
|
|
}
|
|
|
|
|
|
extern lzma_ret
|
|
lzma_lzma2_props_encode(const void *options, uint8_t *out)
|
|
{
|
|
const lzma_options_lzma *const opt = options;
|
|
uint32_t d = my_max(opt->dict_size, LZMA_DICT_SIZE_MIN);
|
|
|
|
// Round up to the next 2^n - 1 or 2^n + 2^(n - 1) - 1 depending
|
|
// on which one is the next:
|
|
--d;
|
|
d |= d >> 2;
|
|
d |= d >> 3;
|
|
d |= d >> 4;
|
|
d |= d >> 8;
|
|
d |= d >> 16;
|
|
|
|
// Get the highest two bits using the proper encoding:
|
|
if (d == UINT32_MAX)
|
|
out[0] = 40;
|
|
else
|
|
out[0] = get_pos_slot(d + 1) - 24;
|
|
|
|
return LZMA_OK;
|
|
}
|