You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
britney2-ubuntu/tests/test_inst_tester.py

500 lines
23 KiB

import sys
import unittest
from . import new_pkg_universe_builder
class TestInstTester(unittest.TestCase):
def test_basic_inst_test(self):
builder = new_pkg_universe_builder()
universe = builder.new_package('lintian').depends_on('perl').depends_on_any_of('awk', 'mawk').\
new_package('perl-base').is_essential().\
new_package('dpkg').is_essential(). \
new_package('perl').\
new_package('awk').not_in_testing().\
new_package('mawk').\
build()
pkg_lintian = builder.pkg_id('lintian')
pkg_awk = builder.pkg_id('awk')
pkg_mawk = builder.pkg_id('mawk')
pkg_perl = builder.pkg_id('perl')
pkg_perl_base = builder.pkg_id('perl-base')
assert universe.is_installable(pkg_lintian)
assert universe.is_installable(pkg_perl)
assert universe.any_of_these_are_in_testing((pkg_lintian, pkg_perl))
assert not universe.is_installable(pkg_awk)
assert not universe.any_of_these_are_in_testing((pkg_awk,))
universe.remove_testing_binary(pkg_perl)
assert not universe.any_of_these_are_in_testing((pkg_perl,))
assert universe.any_of_these_are_in_testing((pkg_lintian,))
assert not universe.is_installable(pkg_lintian)
assert not universe.is_installable(pkg_perl)
universe.add_testing_binary(pkg_perl)
assert universe.is_installable(pkg_lintian)
assert universe.is_installable(pkg_perl)
assert universe.reverse_dependencies_of(pkg_perl) == {pkg_lintian}
assert universe.reverse_dependencies_of(pkg_lintian) == frozenset()
# awk and mawk are equivalent, but nothing else is eqv.
assert universe.are_equivalent(pkg_awk, pkg_mawk)
assert not universe.are_equivalent(pkg_lintian, pkg_mawk)
assert not universe.are_equivalent(pkg_lintian, pkg_perl)
assert not universe.are_equivalent(pkg_mawk, pkg_perl)
# Trivial test of the special case for adding and removing an essential package
universe.remove_testing_binary(pkg_perl_base)
universe.add_testing_binary(pkg_perl_base)
universe.add_testing_binary(pkg_awk)
assert universe.is_installable(pkg_lintian)
def test_basic_essential_conflict(self):
builder = new_pkg_universe_builder()
pseudo_ess1 = builder.new_package('pseudo-essential1')
pseudo_ess2 = builder.new_package('pseudo-essential2')
essential_simple = builder.new_package('essential-simple').is_essential()
essential_with_deps = builder.new_package('essential-with-deps').is_essential().\
depends_on_any_of(pseudo_ess1, pseudo_ess2)
conflict1 = builder.new_package('conflict1').conflicts_with(essential_simple)
conflict2 = builder.new_package('conflict2').conflicts_with(pseudo_ess1, pseudo_ess2)
conflict_installable1 = builder.new_package('conflict-inst1').conflicts_with(pseudo_ess1)
conflict_installable2 = builder.new_package('conflict-inst2').conflicts_with(pseudo_ess2)
universe = builder.build()
assert universe.is_installable(essential_simple.pkg_id)
assert universe.is_installable(essential_with_deps.pkg_id)
assert universe.is_installable(conflict_installable1.pkg_id)
assert universe.is_installable(conflict_installable2.pkg_id)
assert not universe.is_installable(conflict1.pkg_id)
assert not universe.is_installable(conflict2.pkg_id)
for line in universe.stats.stats():
print(line)
assert universe.stats.conflicts_essential == 1
def test_basic_simple_choice(self):
builder = new_pkg_universe_builder()
root_pkg = builder.new_package('root')
conflicting1 = builder.new_package('conflict1')
conflicting2 = builder.new_package('conflict2')
bottom1_pkg = builder.new_package('bottom1').conflicts_with(conflicting1)
bottom2_pkg = builder.new_package('bottom2').conflicts_with(conflicting2)
pkg1 = builder.new_package('pkg1').depends_on(bottom1_pkg)
pkg2 = builder.new_package('pkg2').depends_on(bottom2_pkg)
root_pkg.depends_on_any_of(pkg1, pkg2)
universe = builder.build()
# The dependencies of "root" are not equivalent (if they were, we would trigger
# an optimization, which takes another code path)
assert not universe.are_equivalent(pkg1.pkg_id, pkg2.pkg_id)
assert universe.is_installable(root_pkg.pkg_id)
for line in universe.stats.stats():
print(line)
assert universe.stats.eqv_table_times_used == 0
assert universe.stats.eqv_table_total_number_of_alternatives_eliminated == 0
assert universe.stats.eqv_table_reduced_to_one == 0
assert universe.stats.eqv_table_reduced_by_zero == 0
def test_basic_simple_choice_deadend(self):
builder = new_pkg_universe_builder()
root_pkg = builder.new_package('root')
bottom1_pkg = builder.new_package('bottom1').conflicts_with(root_pkg)
bottom2_pkg = builder.new_package('bottom2').conflicts_with(root_pkg)
pkg1 = builder.new_package('pkg1').depends_on(bottom1_pkg)
pkg2 = builder.new_package('pkg2').depends_on(bottom2_pkg)
root_pkg.depends_on_any_of(pkg1, pkg2)
universe = builder.build()
# The dependencies of "root" are not equivalent (if they were, we would trigger
# an optimization, which takes another code path)
assert not universe.are_equivalent(pkg1.pkg_id, pkg2.pkg_id)
assert not universe.is_installable(root_pkg.pkg_id)
for line in universe.stats.stats():
print(line)
assert universe.stats.eqv_table_times_used == 0
assert universe.stats.eqv_table_total_number_of_alternatives_eliminated == 0
assert universe.stats.eqv_table_reduced_to_one == 0
assert universe.stats.eqv_table_reduced_by_zero == 0
# This case is simple enough that the installability tester will assert it does not
# need to recurse to reject the first option
assert universe.stats.backtrace_restore_point_used == 0
assert universe.stats.backtrace_last_option == 1
def test_basic_simple_choice_opt_no_restore_needed(self):
builder = new_pkg_universe_builder()
conflicting = builder.new_package('conflict')
root_pkg = builder.new_package('root').conflicts_with(conflicting)
bottom1_pkg = builder.new_package('bottom1').conflicts_with(conflicting)
bottom2_pkg = builder.new_package('bottom2').conflicts_with(conflicting)
# These two packages have (indirect) conflicts, so they cannot trigger the
# safe set optimization. However, since "root" already have the same conflict
# it can use the "no restore point needed" optimization.
pkg1 = builder.new_package('pkg1').depends_on(bottom1_pkg)
pkg2 = builder.new_package('pkg2').depends_on(bottom2_pkg)
root_pkg.depends_on_any_of(pkg1, pkg2)
universe = builder.build()
# The dependencies of "root" are not equivalent (if they were, we would trigger
# an optimization, which takes another code path)
assert not universe.are_equivalent(pkg1.pkg_id, pkg2.pkg_id)
assert universe.is_installable(root_pkg.pkg_id)
for line in universe.stats.stats():
print(line)
assert universe.stats.eqv_table_times_used == 0
assert universe.stats.eqv_table_total_number_of_alternatives_eliminated == 0
assert universe.stats.eqv_table_reduced_to_one == 0
assert universe.stats.eqv_table_reduced_by_zero == 0
assert universe.stats.backtrace_restore_point_used == 0
assert universe.stats.backtrace_last_option == 0
assert universe.stats.choice_resolved_without_restore_point == 1
def test_basic_simple_choice_opt_no_restore_needed_deadend(self):
builder = new_pkg_universe_builder()
conflicting1 = builder.new_package('conflict1').conflicts_with('conflict2')
conflicting2 = builder.new_package('conflict2').conflicts_with('conflict1')
root_pkg = builder.new_package('root')
bottom_pkg = builder.new_package('bottom').depends_on(conflicting1).depends_on(conflicting2)
mid1_pkg = builder.new_package('mid1').depends_on(bottom_pkg)
mid2_pkg = builder.new_package('mid2').depends_on(bottom_pkg)
# These two packages have (indirect) conflicts, so they cannot trigger the
# safe set optimization. However, since "root" already have the same conflict
# it can use the "no restore point needed" optimization.
pkg1 = builder.new_package('pkg1').depends_on(mid1_pkg)
pkg2 = builder.new_package('pkg2').depends_on(mid2_pkg)
root_pkg.depends_on_any_of(pkg1, pkg2)
universe = builder.build()
# The dependencies of "root" are not equivalent (if they were, we would trigger
# an optimization, which takes another code path)
assert not universe.are_equivalent(pkg1.pkg_id, pkg2.pkg_id)
assert not universe.is_installable(root_pkg.pkg_id)
for line in universe.stats.stats():
print(line)
assert universe.stats.eqv_table_times_used == 0
assert universe.stats.eqv_table_total_number_of_alternatives_eliminated == 0
assert universe.stats.eqv_table_reduced_to_one == 0
assert universe.stats.eqv_table_reduced_by_zero == 0
assert universe.stats.backtrace_restore_point_used == 0
assert universe.stats.choice_resolved_without_restore_point == 0
assert universe.stats.backtrace_last_option == 1
def test_basic_choice_deadend_restore_point_needed(self):
builder = new_pkg_universe_builder()
root_pkg = builder.new_package('root')
bottom1_pkg = builder.new_package('bottom1').depends_on_any_of('bottom2', 'bottom3')
bottom2_pkg = builder.new_package('bottom2').conflicts_with(root_pkg)
bottom3_pkg = builder.new_package('bottom3').depends_on_any_of('bottom1', 'bottom2')
pkg1 = builder.new_package('pkg1').depends_on_any_of(bottom1_pkg, bottom2_pkg).conflicts_with('bottom3')
pkg2 = builder.new_package('pkg2').depends_on_any_of(bottom2_pkg, bottom3_pkg).conflicts_with('bottom1')
root_pkg.depends_on_any_of(pkg1, pkg2)
universe = builder.build()
# The dependencies of "root" are not equivalent (if they were, we would trigger
# an optimization, which takes another code path)
assert not universe.are_equivalent(pkg1.pkg_id, pkg2.pkg_id)
assert not universe.is_installable(root_pkg.pkg_id)
for line in universe.stats.stats():
print(line)
assert universe.stats.eqv_table_times_used == 0
assert universe.stats.eqv_table_total_number_of_alternatives_eliminated == 0
assert universe.stats.eqv_table_reduced_to_one == 0
assert universe.stats.eqv_table_reduced_by_zero == 0
# This case is simple enough that the installability tester will assert it does not
# need to recurse to reject the first option
assert universe.stats.backtrace_restore_point_used == 1
assert universe.stats.backtrace_last_option == 1
def test_corner_case_dependencies_inter_conflict(self):
builder = new_pkg_universe_builder()
root_pkg = builder.new_package('root').depends_on('conflict1').depends_on('conflict2')
conflicting1 = builder.new_package('conflict1').conflicts_with('conflict2')
conflicting2 = builder.new_package('conflict2').conflicts_with('conflict1')
universe = builder.build()
# They should not be eqv.
assert not universe.are_equivalent(conflicting1.pkg_id, conflicting2.pkg_id)
# "root" should not be installable and we should trigger a special code path where
# the installability tester has both conflicting packages in its "check" set
# Technically, we cannot assert we hit that path with this test, but we can at least
# check it does not regress
assert not universe.is_installable(root_pkg.pkg_id)
def test_basic_choice_deadend_pre_solvable(self):
builder = new_pkg_universe_builder()
# This test is complicated by the fact that the inst-tester has a non-deterministic ordering.
# To ensure that it becomes predictable, we have to force it to see the choice before
# the part that eliminates it. In practise, this is easiest to do by creating a symmetric
# graph where one solving one choice eliminates the other.
root_pkg = builder.new_package('root')
# These two packages are used to make options distinct; otherwise the eqv. optimisation will just
# collapse the choices.
nodep1 = builder.new_package('nodep1')
nodep2 = builder.new_package('nodep2')
path1a = builder.new_package('path1a').depends_on(nodep1).depends_on('end1')
path1b = builder.new_package('path1b').depends_on(nodep2).depends_on('end1')
path2a = builder.new_package('path2a').depends_on(nodep1).depends_on('end2')
path2b = builder.new_package('path2b').depends_on(nodep2).depends_on('end2')
builder.new_package('end1').conflicts_with(path2a, path2b)
builder.new_package('end2').conflicts_with(path1a, path1b)
root_pkg.depends_on_any_of(path1a, path1b).depends_on_any_of(path2a, path2b)
universe = builder.build()
assert not universe.is_installable(root_pkg.pkg_id)
for line in universe.stats.stats():
print(line)
assert universe.stats.eqv_table_times_used == 0
assert universe.stats.eqv_table_total_number_of_alternatives_eliminated == 0
assert universe.stats.eqv_table_reduced_to_one == 0
assert universe.stats.eqv_table_reduced_by_zero == 0
# The following numbers are observed due to:
# * Pick an option from (pathXa | pathXb)
# * First option -> obviously unsolvable
# * Undo and do "last option" on the remaining
# * "last option" -> obviously unsolvable
# * unsolvable
assert universe.stats.backtrace_restore_point_used == 1
assert universe.stats.backtrace_last_option == 1
assert universe.stats.choice_presolved == 2
def test_basic_choice_pre_solvable(self):
builder = new_pkg_universe_builder()
# This test is complicated by the fact that the inst-tester has a non-deterministic ordering.
# To ensure that it becomes predictable, we have to force it to see the choice before
# the part that eliminates it. In practise, this is easiest to do by creating a symmetric
# graph where one solving one choice eliminates the other.
root_pkg = builder.new_package('root')
nodep1 = builder.new_package('nodep1').conflicts_with('path1b', 'path2b')
nodep2 = builder.new_package('nodep2').conflicts_with('path1b', 'path2b')
end1 = builder.new_package('end1')
end2 = builder.new_package('end2')
path1a = builder.new_package('path1a').depends_on(nodep1).depends_on(end1)
path1b = builder.new_package('path1b').depends_on(nodep2).depends_on(end1)
path2a = builder.new_package('path2a').depends_on(nodep1).depends_on(end2)
path2b = builder.new_package('path2b').depends_on(nodep2).depends_on(end2)
root_pkg.depends_on_any_of(path1a, path1b).depends_on_any_of(path2a, path2b)
universe = builder.build()
assert universe.is_installable(root_pkg.pkg_id)
for line in universe.stats.stats():
print(line)
assert universe.stats.eqv_table_times_used == 0
assert universe.stats.eqv_table_total_number_of_alternatives_eliminated == 0
assert universe.stats.eqv_table_reduced_to_one == 0
assert universe.stats.eqv_table_reduced_by_zero == 0
# After its first guess, the tester can pre-solve remaining choice
assert universe.stats.backtrace_restore_point_used == 0
assert universe.stats.choice_presolved == 1
def test_optimisation_simple_full_eqv_reduction(self):
builder = new_pkg_universe_builder()
root_pkg = builder.new_package('root')
conflicting = builder.new_package('conflict')
bottom1_pkg = builder.new_package('bottom1').conflicts_with(conflicting)
# Row 1 is simple enough that it collapse into a single option immediately
# (Ergo eqv_table_reduced_to_one == 1)
row1 = ['pkg-%s' % x for x in range(1000)]
root_pkg.depends_on_any_of(*row1)
for pkg in row1:
builder.new_package(pkg).depends_on(bottom1_pkg)
universe = builder.build()
pkg_row1 = builder.pkg_id(row1[0])
# all items in a row are eqv.
for pkg in row1:
assert universe.are_equivalent(builder.pkg_id(pkg), pkg_row1)
assert universe.is_installable(root_pkg.pkg_id)
for line in universe.stats.stats():
print(line)
assert universe.stats.eqv_table_times_used == 1
assert universe.stats.eqv_table_total_number_of_alternatives_eliminated == 999
assert universe.stats.eqv_table_reduced_to_one == 1
def test_optimisation_simple_partial_eqv_reduction(self):
builder = new_pkg_universe_builder()
root_pkg = builder.new_package('root')
conflicting = builder.new_package('conflict')
another_pkg = builder.new_package('another-pkg')
bottom1_pkg = builder.new_package('bottom1').conflicts_with(conflicting)
# Row 1 is simple enough that it collapse into a single option immediately
# but due to "another_pkg" the entire choice is only reduced into two
row1 = ['pkg-%s' % x for x in range(1000)]
root_pkg.depends_on_any_of(another_pkg, *row1)
for pkg in row1:
builder.new_package(pkg).depends_on(bottom1_pkg)
universe = builder.build()
pkg_row1 = builder.pkg_id(row1[0])
# all items in a row are eqv.
for pkg in row1:
assert universe.are_equivalent(builder.pkg_id(pkg), pkg_row1)
assert universe.is_installable(root_pkg.pkg_id)
for line in universe.stats.stats():
print(line)
assert universe.stats.eqv_table_times_used == 1
assert universe.stats.eqv_table_total_number_of_alternatives_eliminated == 999
assert universe.stats.eqv_table_reduced_to_one == 0
def test_optimisation_simple_zero_eqv_reduction(self):
builder = new_pkg_universe_builder()
root_pkg = builder.new_package('root')
conflicting1 = builder.new_package('conflict1')
conflicting2 = builder.new_package('conflict2')
bottom1_pkg = builder.new_package('bottom1').conflicts_with(conflicting1)
bottom2_pkg = builder.new_package('bottom2').conflicts_with(conflicting2)
# To trigger a failed reduction, we have to create eqv. packages and ensure that only one
# of them are in testing. Furthermore, the choice has to remain, so we create two pairs
# of them
pkg1_v1 = builder.new_package('pkg1', version='1.0-1').depends_on(bottom1_pkg)
pkg1_v2 = builder.new_package('pkg1', version='2.0-1').depends_on(bottom1_pkg).not_in_testing()
pkg2_v1 = builder.new_package('pkg2', version='1.0-1').depends_on(bottom2_pkg)
pkg2_v2 = builder.new_package('pkg2', version='2.0-1').depends_on(bottom2_pkg).not_in_testing()
root_pkg.depends_on_any_of(pkg1_v1, pkg1_v2, pkg2_v1, pkg2_v2)
universe = builder.build()
# The packages in the pairs are equivalent, but the two pairs are not
assert universe.are_equivalent(pkg1_v1.pkg_id, pkg1_v2.pkg_id)
assert universe.are_equivalent(pkg2_v1.pkg_id, pkg2_v2.pkg_id)
assert not universe.are_equivalent(pkg1_v1.pkg_id, pkg2_v1.pkg_id)
assert universe.is_installable(root_pkg.pkg_id)
for line in universe.stats.stats():
print(line)
assert universe.stats.eqv_table_times_used == 1
assert universe.stats.eqv_table_total_number_of_alternatives_eliminated == 0
assert universe.stats.eqv_table_reduced_to_one == 0
assert universe.stats.eqv_table_reduced_by_zero == 1
def test_solver_recursion_limit(self):
builder = new_pkg_universe_builder()
recursion_limit = 200
pkg_limit = recursion_limit + 20
orig_limit = sys.getrecursionlimit()
pkgs = [builder.new_package('pkg-%d' % i) for i in range(pkg_limit)]
for i, pkg in enumerate(pkgs):
# Intentionally -1 for the first package (wrap-around)
ni = i - 1
pkg.not_in_testing()
pkg.depends_on(pkgs[ni])
try:
sys.setrecursionlimit(recursion_limit)
universe = builder.build()
groups = []
for pkg in pkgs:
group = (pkg.pkg_id.package_name, {pkg.pkg_id}, set())
groups.append(group)
expected = {g[0] for g in groups}
actual = universe.solve_groups(groups)
assert actual
assert expected == set(actual[0])
assert len(actual) == 1
finally:
sys.setrecursionlimit(orig_limit)
def test_solver_simple_scc(self):
builder = new_pkg_universe_builder()
# SCC 1
pkga = builder.new_package('pkg-a').not_in_testing()
pkgb = builder.new_package('pkg-b').not_in_testing()
pkgc = builder.new_package('pkg-c').not_in_testing()
# SSC 2
pkgd = builder.new_package('pkg-d').not_in_testing()
pkge = builder.new_package('pkg-e').not_in_testing()
pkgf = builder.new_package('pkg-f').not_in_testing()
pkgg = builder.new_package('pkg-g').not_in_testing()
pkgh = builder.new_package('pkg-h').not_in_testing()
# SSC 3
pkgi = builder.new_package('pkg-i').not_in_testing()
# SSC 1 dependencies
pkga.depends_on(pkgb)
pkgb.depends_on(pkgc).depends_on(pkgd)
pkgc.depends_on(pkga).depends_on(pkge)
# SSC 2 dependencies
pkgd.depends_on(pkgf)
pkge.depends_on(pkgg).depends_on(pkgd)
pkgf.depends_on(pkgh)
pkgg.depends_on(pkgh)
pkgh.depends_on(pkge).depends_on(pkgi)
universe = builder.build()
expected = [
# SSC 3 first
{pkgi.pkg_id.package_name},
# Then SSC 2
{pkgd.pkg_id.package_name, pkge.pkg_id.package_name, pkgf.pkg_id.package_name,
pkgg.pkg_id.package_name, pkgh.pkg_id.package_name},
# Finally SSC 1
{pkga.pkg_id.package_name, pkgb.pkg_id.package_name, pkgc.pkg_id.package_name},
]
groups = []
for ssc in expected:
for node in ssc:
groups.append((node, {builder.pkg_id(node)}, {}))
actual = [set(x) for x in universe.solve_groups(groups)]
print("EXPECTED: %s" % str(expected))
print("ACTUAL : %s" % str(actual))
assert expected == actual
if __name__ == '__main__':
unittest.main()