mirror of
https://git.launchpad.net/~ubuntu-release/britney/+git/britney2-ubuntu
synced 2025-02-24 03:41:12 +00:00
solver: Extract compute_scc into a function
Signed-off-by: Niels Thykier <niels@thykier.net>
This commit is contained in:
parent
bd375fdd85
commit
69473eefca
@ -21,6 +21,115 @@ from britney2.utils import (ifilter_only, iter_except)
|
||||
from britney2.installability.tester import InstallabilityTester
|
||||
|
||||
|
||||
def compute_scc(graph):
|
||||
"""Iterative algorithm for strongly-connected components
|
||||
|
||||
Iterative variant of Tarjan's algorithm for finding strongly-connected
|
||||
components.
|
||||
|
||||
:param graph: Table of all nodes along which their edges (in "before" and "after")
|
||||
:return: List of components (each component is a list of items)
|
||||
"""
|
||||
result = []
|
||||
low = {}
|
||||
node_stack = []
|
||||
|
||||
def _handle_succ(parent, parent_num, successors_remaining):
|
||||
while successors_remaining:
|
||||
succ = successors_remaining.pop()
|
||||
succ_num = low.get(succ, None)
|
||||
if succ_num is not None:
|
||||
if succ_num < parent_num:
|
||||
# These two nodes are part of the probably
|
||||
# same SSC (or succ is isolated
|
||||
low[parent] = parent_num = succ_num
|
||||
continue
|
||||
# It cannot be a part of a SCC if it does not have depends
|
||||
# or reverse depends.
|
||||
if not graph[succ]['before'] or not graph[succ]['after']:
|
||||
# Short-cut obviously isolated component
|
||||
result.append((succ,))
|
||||
# Set the item number so high that no other item might
|
||||
# mistakenly assume that they can form a component via
|
||||
# this item.
|
||||
# (Replaces the "is w on the stack check" for us from
|
||||
# the original algorithm)
|
||||
low[succ] = len(graph) + 1
|
||||
continue
|
||||
succ_num = len(low)
|
||||
low[succ] = succ_num
|
||||
work_stack.append((succ, len(node_stack), succ_num, graph[succ]['before']))
|
||||
node_stack.append(succ)
|
||||
# "Recurse" into the child node first
|
||||
return True
|
||||
return False
|
||||
|
||||
for n in graph:
|
||||
if n in low:
|
||||
continue
|
||||
# It cannot be a part of a SCC if it does not have depends
|
||||
# or reverse depends.
|
||||
if not graph[n]['before'] or not graph[n]['after']:
|
||||
# Short-cut obviously isolated component
|
||||
result.append((n,))
|
||||
# Set the item number so high that no other item might
|
||||
# mistakenly assume that they can form a component via
|
||||
# this item.
|
||||
# (Replaces the "is w on the stack check" for us from
|
||||
# the original algorithm)
|
||||
low[n] = len(graph) + 1
|
||||
continue
|
||||
|
||||
root_num = len(low)
|
||||
low[n] = root_num
|
||||
# DFS work-stack needed to avoid call recursion. It (more or less)
|
||||
# replaces the variables on the call stack in Tarjan's algorithm
|
||||
work_stack = [(n, len(node_stack), root_num, graph[n]['before'])]
|
||||
node_stack.append(n)
|
||||
while work_stack:
|
||||
node, stack_idx, orig_node_num, successors = work_stack[-1]
|
||||
if successors and _handle_succ(node, low[node], successors):
|
||||
# _handle_succ has pushed a new node on to work_stack
|
||||
# and we need to "restart" the loop to handle that first
|
||||
continue
|
||||
|
||||
# This node is done; remove it from the work stack
|
||||
work_stack.pop()
|
||||
|
||||
# This node is out of successor. Push up the "low" value
|
||||
# (Exception: root node has no parent)
|
||||
node_num = low[node]
|
||||
if work_stack:
|
||||
parent = work_stack[-1][0]
|
||||
parent_num = low[parent]
|
||||
if node_num <= parent_num:
|
||||
# This node is a part of a component with its parent.
|
||||
# We update the parent's node number and push the
|
||||
# responsibility of building the component unto the
|
||||
# parent.
|
||||
low[parent] = node_num
|
||||
continue
|
||||
if node_num != orig_node_num:
|
||||
# The node is a part of an SCC with a ancestor (and parent)
|
||||
continue
|
||||
# We got a component
|
||||
component = tuple(node_stack[stack_idx:])
|
||||
del node_stack[stack_idx:]
|
||||
result.append(component)
|
||||
# Re-number all items, so no other item might
|
||||
# mistakenly assume that they can form a component via
|
||||
# one of these items.
|
||||
# (Replaces the "is w on the stack check" for us from
|
||||
# the original algorithm)
|
||||
new_num = len(graph) + 1
|
||||
for item in component:
|
||||
low[item] = new_num
|
||||
|
||||
assert not node_stack
|
||||
|
||||
return result
|
||||
|
||||
|
||||
class InstallabilitySolver(InstallabilityTester):
|
||||
|
||||
def __init__(self, universe, revuniverse, testing, broken, essentials,
|
||||
@ -182,7 +291,7 @@ class InstallabilitySolver(InstallabilityTester):
|
||||
#
|
||||
# Each one of those components will become an "easy" hint.
|
||||
|
||||
comps = self._compute_scc(order)
|
||||
comps = compute_scc(order)
|
||||
merged = {}
|
||||
scc = {}
|
||||
# Now that we got the SSCs (in comps), we select on item from
|
||||
@ -269,93 +378,6 @@ class InstallabilitySolver(InstallabilityTester):
|
||||
|
||||
return result
|
||||
|
||||
def _compute_scc(self, order):
|
||||
"""Iterative algorithm for strongly-connected components
|
||||
|
||||
Iterative variant of Tarjan's algorithm for finding strongly-connected
|
||||
components.
|
||||
|
||||
:param order: Table of all nodes along which their ordering constraints
|
||||
:return: List of components (each component is a list of items)
|
||||
"""
|
||||
result = []
|
||||
low = {}
|
||||
node_stack = []
|
||||
|
||||
def _handle_succ(parent, parent_num, successors_remaining):
|
||||
while successors_remaining:
|
||||
succ = successors_remaining.pop()
|
||||
succ_num = low.get(succ, None)
|
||||
if succ_num is not None:
|
||||
if succ_num < parent_num:
|
||||
low[parent] = parent_num = succ_num
|
||||
continue
|
||||
succ_num = len(low)
|
||||
low[succ] = succ_num
|
||||
# It cannot be a part of a SCC if it does not have depends
|
||||
# or reverse depends.
|
||||
if not order[succ]['before'] or not order[succ]['after']:
|
||||
# Short-cut obviously isolated component
|
||||
result.append((succ,))
|
||||
continue
|
||||
work_stack.append((succ, len(node_stack), succ_num, order[succ]['before']))
|
||||
node_stack.append(succ)
|
||||
# "Recurse" into the child node first
|
||||
return True
|
||||
return False
|
||||
|
||||
for n in order:
|
||||
if n in low:
|
||||
continue
|
||||
root_num = len(low)
|
||||
low[n] = root_num
|
||||
# It cannot be a part of a SCC if it does not have depends
|
||||
# or reverse depends.
|
||||
if not order[n]['before'] or not order[n]['after']:
|
||||
# Short-cut obviously isolated component
|
||||
result.append((n,))
|
||||
continue
|
||||
# DFS work-stack needed to avoid call recursion. It (more or less)
|
||||
# replaces the variables on the call stack in Tarjan's algorithm
|
||||
work_stack = [(n, len(node_stack), root_num, order[n]['before'])]
|
||||
node_stack.append(n)
|
||||
while work_stack:
|
||||
node, stack_idx, orig_node_num, successors = work_stack[-1]
|
||||
if successors and _handle_succ(node, low[node], successors):
|
||||
# _handle_succ has pushed a new node on to work_stack
|
||||
# and we need to "restart" the loop to handle that first
|
||||
continue
|
||||
|
||||
# This node is done; remove it from the work stack
|
||||
work_stack.pop()
|
||||
|
||||
# This node is out of successor. Push up the "low" value
|
||||
# (Exception: root node has no parent)
|
||||
node_num = low[node]
|
||||
if work_stack:
|
||||
parent = work_stack[-1][0]
|
||||
parent_num = low[parent]
|
||||
if node_num <= parent_num:
|
||||
# This node is a part of a component with its parent.
|
||||
# We update the parent's node number and push the
|
||||
# responsibility of building the component unto the
|
||||
# parent.
|
||||
low[parent] = node_num
|
||||
continue
|
||||
if node_num != orig_node_num:
|
||||
# The node is a part of an SCC with a ancestor (and parent)
|
||||
continue
|
||||
# We got a component
|
||||
component = tuple(node_stack[stack_idx:])
|
||||
del node_stack[stack_idx:]
|
||||
result.append(component)
|
||||
for item in component:
|
||||
low[item] = node_num
|
||||
|
||||
assert not node_stack
|
||||
|
||||
return result
|
||||
|
||||
def _dump_groups(self, groups): # pragma: no cover
|
||||
print("N: === Groups ===")
|
||||
for (item, adds, rms) in groups:
|
||||
|
Loading…
x
Reference in New Issue
Block a user