# Distributed under the OSI-approved BSD 3-Clause License. See accompanying
# file Copyright.txt or https://cmake.org/licensing for details.
#.rst:
# FindMPI
# -------
#
# Find a Message Passing Interface (MPI) implementation.
#
# The Message Passing Interface (MPI) is a library used to write
# high-performance distributed-memory parallel applications, and is
# typically deployed on a cluster. MPI is a standard interface (defined
# by the MPI forum) for which many implementations are available.
#
# Variables for using MPI
# ^^^^^^^^^^^^^^^^^^^^^^^
#
# The module exposes the components ``C``, ``CXX``, ``MPICXX`` and ``Fortran``.
# Each of these controls the various MPI languages to search for.
# The difference between ``CXX`` and ``MPICXX`` is that ``CXX`` refers to the
# MPI C API being usable from C++, whereas ``MPICXX`` refers to the MPI-2 C++ API
# that was removed again in MPI-3.
#
# Depending on the enabled components the following variables will be set:
#
# ``MPI_FOUND``
# Variable indicating that MPI settings for all requested languages have been found.
# If no components are specified, this is true if MPI settings for all enabled languages
# were detected. Note that the ``MPICXX`` component does not affect this variable.
# ``MPI_VERSION``
# Minimal version of MPI detected among the requested languages, or all enabled languages
# if no components were specified.
#
# This module will set the following variables per language in your
# project, where ``<lang>`` is one of C, CXX, or Fortran:
#
# ``MPI_<lang>_FOUND``
# Variable indicating the MPI settings for ``<lang>`` were found and that
# simple MPI test programs compile with the provided settings.
# ``MPI_<lang>_COMPILER``
# MPI compiler for ``<lang>`` if such a program exists.
# ``MPI_<lang>_COMPILE_OPTIONS``
# Compilation options for MPI programs in ``<lang>``, given as a :ref:`;-list <CMake Language Lists>`.
# ``MPI_<lang>_COMPILE_DEFINITIONS``
# Compilation definitions for MPI programs in ``<lang>``, given as a :ref:`;-list <CMake Language Lists>`.
# ``MPI_<lang>_INCLUDE_DIRS``
# Include path(s) for MPI header.
# ``MPI_<lang>_LINK_FLAGS``
# Linker flags for MPI programs.
# ``MPI_<lang>_LIBRARIES``
# All libraries to link MPI programs against.
#
# Additionally, the following :prop_tgt:`IMPORTED` targets are defined:
#
# ``MPI::MPI_<lang>``
# Target for using MPI from ``<lang>``.
#
# The following variables indicating which bindings are present will be defined:
#
# ``MPI_MPICXX_FOUND``
# Variable indicating whether the MPI-2 C++ bindings are present (introduced in MPI-2, removed with MPI-3).
# ``MPI_Fortran_HAVE_F77_HEADER``
# True if the Fortran 77 header ``mpif.h`` is available.
# ``MPI_Fortran_HAVE_F90_MODULE``
# True if the Fortran 90 module ``mpi`` can be used for accessing MPI (MPI-2 and higher only).
# ``MPI_Fortran_HAVE_F08_MODULE``
# True if the Fortran 2008 ``mpi_f08`` is available to MPI programs (MPI-3 and higher only).
#
# If possible, the MPI version will be determined by this module. The facilities to detect the MPI version
# were introduced with MPI-1.2, and therefore cannot be found for older MPI versions.
#
# ``MPI_<lang>_VERSION_MAJOR``
# Major version of MPI implemented for ``<lang>`` by the MPI distribution.
# ``MPI_<lang>_VERSION_MINOR``
# Minor version of MPI implemented for ``<lang>`` by the MPI distribution.
# ``MPI_<lang>_VERSION``
# MPI version implemented for ``<lang>`` by the MPI distribution.
#
# Note that there's no variable for the C bindings being accessible through ``mpi.h``, since the MPI standards
# always have required this binding to work in both C and C++ code.
#
# For running MPI programs, the module sets the following variables
#
# ``MPIEXEC_EXECUTABLE``
# Executable for running MPI programs, if such exists.
# ``MPIEXEC_NUMPROC_FLAG``
# Flag to pass to ``mpiexec`` before giving it the number of processors to run on.
# ``MPIEXEC_MAX_NUMPROCS``
# Number of MPI processors to utilize. Defaults to the number
# of processors detected on the host system.
# ``MPIEXEC_PREFLAGS``
# Flags to pass to ``mpiexec`` directly before the executable to run.
# ``MPIEXEC_POSTFLAGS``
# Flags to pass to ``mpiexec`` after other flags.
#
# Variables for locating MPI
# ^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# This module performs a three step search for an MPI implementation:
#
# 1. Check if the compiler has MPI support built-in. This is the case if the user passed a
# compiler wrapper as ``CMAKE_<LANG>_COMPILER`` or if they're on a Cray system.
# 2. Attempt to find an MPI compiler wrapper and determine the compiler information from it.
# 3. Try to find an MPI implementation that does not ship such a wrapper by guessing settings.
# Currently, only Microsoft MPI and MPICH2 on Windows are supported.
#
# For controlling the second step, the following variables may be set:
#
# ``MPI_<lang>_COMPILER``
# Search for the specified compiler wrapper and use it.
# ``MPI_<lang>_COMPILER_FLAGS``
# Flags to pass to the MPI compiler wrapper during interrogation. Some compiler wrappers
# support linking debug or tracing libraries if a specific flag is passed and this variable
# may be used to obtain them.
# ``MPI_COMPILER_FLAGS``
# Used to initialize ``MPI_<lang>_COMPILER_FLAGS`` if no language specific flag has been given.
# Empty by default.
# ``MPI_EXECUTABLE_SUFFIX``
# A suffix which is appended to all names that are being looked for. For instance you may set this
# to ``.mpich`` or ``.openmpi`` to prefer the one or the other on Debian and its derivatives.
#
# In order to control the guessing step, the following variable may be set:
#
# ``MPI_GUESS_LIBRARY_NAME``
# Valid values are ``MSMPI`` and ``MPICH2``. If set, only the given library will be searched for.
# By default, ``MSMPI`` will be preferred over ``MPICH2`` if both are available.
# This also sets ``MPI_SKIP_COMPILER_WRAPPER`` to ``true``, which may be overridden.
#
# Each of the search steps may be skipped with the following control variables:
#
# ``MPI_ASSUME_NO_BUILTIN_MPI``
# If true, the module assumes that the compiler itself does not provide an MPI implementation and
# skips to step 2.
# ``MPI_SKIP_COMPILER_WRAPPER``
# If true, no compiler wrapper will be searched for.
# ``MPI_SKIP_GUESSING``
# If true, the guessing step will be skipped.
#
# Additionally, the following control variable is available to change search behavior:
#
# ``MPI_CXX_SKIP_MPICXX``
# Add some definitions that will disable the MPI-2 C++ bindings.
# Currently supported are MPICH, Open MPI, Platform MPI and derivatives thereof,
# for example MVAPICH or Intel MPI.
#
# If the find procedure fails for a variable ``MPI_<lang>_WORKS``, then the settings detected by or passed to
# the module did not work and even a simple MPI test program failed to compile.
#
# If all of these parameters were not sufficient to find the right MPI implementation, a user may
# disable the entire autodetection process by specifying both a list of libraries in ``MPI_<lang>_LIBRARIES``
# and a list of include directories in ``MPI_<lang>_ADDITIONAL_INCLUDE_DIRS``.
# Any other variable may be set in addition to these two. The module will then validate the MPI settings and store the
# settings in the cache.
#
# Cache variables for MPI
# ^^^^^^^^^^^^^^^^^^^^^^^
#
# The variable ``MPI_<lang>_INCLUDE_DIRS`` will be assembled from the following variables.
# For C and CXX:
#
# ``MPI_<lang>_HEADER_DIR``
# Location of the ``mpi.h`` header on disk.
#
# For Fortran:
#
# ``MPI_Fortran_F77_HEADER_DIR``
# Location of the Fortran 77 header ``mpif.h``, if it exists.
# ``MPI_Fortran_MODULE_DIR``
# Location of the ``mpi`` or ``mpi_f08`` modules, if available.
#
# For all languages the following variables are additionally considered:
#
# ``MPI_<lang>_ADDITIONAL_INCLUDE_DIRS``
# A :ref:`;-list <CMake Language Lists>` of paths needed in addition to the normal include directories.
# ``MPI_<include_name>_INCLUDE_DIR``
# Path variables for include folders referred to by ``<include_name>``.
# ``MPI_<lang>_ADDITIONAL_INCLUDE_VARS``
# A :ref:`;-list <CMake Language Lists>` of ``<include_name>`` that will be added to the include locations of ``<lang>``.
#
# The variable ``MPI_<lang>_LIBRARIES`` will be assembled from the following variables:
#
# ``MPI_<lib_name>_LIBRARY``
# The location of a library called ``<lib_name>`` for use with MPI.
# ``MPI_<lang>_LIB_NAMES``
# A :ref:`;-list <CMake Language Lists>` of ``<lib_name>`` that will be added to the include locations of ``<lang>``.
#
# Usage of mpiexec
# ^^^^^^^^^^^^^^^^
#
# When using ``MPIEXEC_EXECUTABLE`` to execute MPI applications, you should typically
# use all of the ``MPIEXEC_EXECUTABLE`` flags as follows:
#
# ::
#
# ${MPIEXEC_EXECUTABLE} ${MPIEXEC_NUMPROC_FLAG} ${MPIEXEC_MAX_NUMPROCS}
# ${MPIEXEC_PREFLAGS} EXECUTABLE ${MPIEXEC_POSTFLAGS} ARGS
#
# where ``EXECUTABLE`` is the MPI program, and ``ARGS`` are the arguments to
# pass to the MPI program.
#
# Advanced variables for using MPI
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# The module can perform some advanced feature detections upon explicit request.
#
# **Important notice:** The following checks cannot be performed without *executing* an MPI test program.
# Consider the special considerations for the behavior of :command:`try_run` during cross compilation.
# Moreover, running an MPI program can cause additional issues, like a firewall notification on some systems.
# You should only enable these detections if you absolutely need the information.
#
# If the following variables are set to true, the respective search will be performed:
#
# ``MPI_DETERMINE_Fortran_CAPABILITIES``
# Determine for all available Fortran bindings what the values of ``MPI_SUBARRAYS_SUPPORTED`` and
# ``MPI_ASYNC_PROTECTS_NONBLOCKING`` are and make their values available as ``MPI_Fortran_<binding>_SUBARRAYS``
# and ``MPI_Fortran_<binding>_ASYNCPROT``, where ``<binding>`` is one of ``F77_HEADER``, ``F90_MODULE`` and
# ``F08_MODULE``.
# ``MPI_DETERMINE_LIBRARY_VERSION``
# For each language, find the output of ``MPI_Get_library_version`` and make it available as ``MPI_<lang>_LIBRARY_VERSION``.
# This information is usually tied to the runtime component of an MPI implementation and might differ depending on ``<lang>``.
# Note that the return value is entirely implementation defined. This information might be used to identify
# the MPI vendor and for example pick the correct one of multiple third party binaries that matches the MPI vendor.
#
# Backward Compatibility
# ^^^^^^^^^^^^^^^^^^^^^^
#
# For backward compatibility with older versions of FindMPI, these
# variables are set, but deprecated:
#
# ::
#
# MPI_COMPILER MPI_LIBRARY MPI_EXTRA_LIBRARY
# MPI_COMPILE_FLAGS MPI_INCLUDE_PATH MPI_LINK_FLAGS
# MPI_LIBRARIES
#
# In new projects, please use the ``MPI_<lang>_XXX`` equivalents.
# Additionally, the following variables are deprecated:
#
# ``MPI_<lang>_COMPILE_FLAGS``
# Use ``MPI_<lang>_COMPILE_OPTIONS`` and ``MPI_<lang>_COMPILE_DEFINITIONS`` instead.
# ``MPI_<lang>_INCLUDE_PATH``
# For consumption use ``MPI_<lang>_INCLUDE_DIRS`` and for specifying folders use ``MPI_<lang>_ADDITIONAL_INCLUDE_DIRS`` instead.
# ``MPIEXEC``
# Use ``MPIEXEC_EXECUTABLE`` instead.
cmake_policy ( PUSH )
cmake_policy ( SET CMP0057 NEW ) # if IN_LIST
include ( ${ CMAKE_CURRENT_LIST_DIR } /FindPackageHandleStandardArgs.cmake )
# Generic compiler names
set ( _MPI_C_GENERIC_COMPILER_NAMES mpicc mpcc mpicc_r mpcc_r )
set ( _MPI_CXX_GENERIC_COMPILER_NAMES mpicxx mpiCC mpcxx mpCC mpic++ mpc++
m p i c x x _ r m p i C C _ r m p c x x _ r m p C C _ r m p i c + + _ r m p c + + _ r )
set ( _MPI_Fortran_GENERIC_COMPILER_NAMES mpif95 mpif95_r mpf95 mpf95_r
m p i f 9 0 m p i f 9 0 _ r m p f 9 0 m p f 9 0 _ r
m p i f 7 7 m p i f 7 7 _ r m p f 7 7 m p f 7 7 _ r
m p i f c )
# GNU compiler names
set ( _MPI_GNU_C_COMPILER_NAMES mpigcc mpgcc mpigcc_r mpgcc_r )
set ( _MPI_GNU_CXX_COMPILER_NAMES mpig++ mpg++ mpig++_r mpg++_r mpigxx )
set ( _MPI_GNU_Fortran_COMPILER_NAMES mpigfortran mpgfortran mpigfortran_r mpgfortran_r
m p i g 7 7 m p i g 7 7 _ r m p g 7 7 m p g 7 7 _ r )
# Intel MPI compiler names on Windows
if ( WIN32 )
list ( APPEND _MPI_C_GENERIC_COMPILER_NAMES mpicc.bat )
list ( APPEND _MPI_CXX_GENERIC_COMPILER_NAMES mpicxx.bat )
list ( APPEND _MPI_Fortran_GENERIC_COMPILER_NAMES mpifc.bat )
# Intel MPI compiler names
set ( _MPI_Intel_C_COMPILER_NAMES mpiicc.bat )
set ( _MPI_Intel_CXX_COMPILER_NAMES mpiicpc.bat )
set ( _MPI_Intel_Fortran_COMPILER_NAMES mpiifort.bat mpif77.bat mpif90.bat )
# Intel MPI compiler names for MSMPI
set ( _MPI_MSVC_C_COMPILER_NAMES mpicl.bat )
set ( _MPI_MSVC_CXX_COMPILER_NAMES mpicl.bat )
else ( )
# Intel compiler names
set ( _MPI_Intel_C_COMPILER_NAMES mpiicc )
set ( _MPI_Intel_CXX_COMPILER_NAMES mpiicpc mpiicxx mpiic++ )
set ( _MPI_Intel_Fortran_COMPILER_NAMES mpiifort mpiif95 mpiif90 mpiif77 )
endif ( )
# PGI compiler names
set ( _MPI_PGI_C_COMPILER_NAMES mpipgcc mppgcc )
set ( _MPI_PGI_CXX_COMPILER_NAMES mpipgCC mppgCC )
set ( _MPI_PGI_Fortran_COMPILER_NAMES mpipgf95 mpipgf90 mppgf95 mppgf90 mpipgf77 mppgf77 )
# XLC MPI Compiler names
set ( _MPI_XL_C_COMPILER_NAMES mpxlc mpxlc_r mpixlc mpixlc_r )
set ( _MPI_XL_CXX_COMPILER_NAMES mpixlcxx mpixlC mpixlc++ mpxlcxx mpxlc++ mpixlc++ mpxlCC
m p i x l c x x _ r m p i x l C _ r m p i x l c + + _ r m p x l c x x _ r m p x l c + + _ r m p i x l c + + _ r m p x l C C _ r )
set ( _MPI_XL_Fortran_COMPILER_NAMES mpixlf95 mpixlf95_r mpxlf95 mpxlf95_r
m p i x l f 9 0 m p i x l f 9 0 _ r m p x l f 9 0 m p x l f 9 0 _ r
m p i x l f 7 7 m p i x l f 7 7 _ r m p x l f 7 7 m p x l f 7 7 _ r
m p i x l f m p i x l f _ r m p x l f m p x l f _ r )
# Prepend vendor-specific compiler wrappers to the list. If we don't know the compiler,
# attempt all of them.
# By attempting vendor-specific compiler names first, we should avoid situations where the compiler wrapper
# stems from a proprietary MPI and won't know which compiler it's being used for. For instance, Intel MPI
# controls its settings via the I_MPI_CC environment variables if the generic name is being used.
# If we know which compiler we're working with, we can use the most specialized wrapper there is in order to
# pick up the right settings for it.
foreach ( LANG IN ITEMS C CXX Fortran )
set ( _MPI_ ${ LANG } _COMPILER_NAMES "" )
foreach ( id IN ITEMS GNU Intel MSVC PGI XL )
if ( NOT CMAKE_ ${ LANG } _COMPILER_ID OR CMAKE_ ${ LANG } _COMPILER_ID STREQUAL id )
list ( APPEND _MPI_ ${ LANG } _COMPILER_NAMES ${ _MPI_${id } _ ${ LANG } _COMPILER_NAMES} ${ MPI_EXECUTABLE_SUFFIX } )
endif ( )
unset ( _MPI_ ${ id } _ ${ LANG } _COMPILER_NAMES )
endforeach ( )
list ( APPEND _MPI_ ${ LANG } _COMPILER_NAMES ${ _MPI_${LANG } _GENERIC_COMPILER_NAMES} ${ MPI_EXECUTABLE_SUFFIX } )
unset ( _MPI_ ${ LANG } _GENERIC_COMPILER_NAMES )
endforeach ( )
# Names to try for mpiexec
# Only mpiexec commands are guaranteed to behave as described in the standard,
# mpirun commands are not covered by the standard in any way whatsoever.
# lamexec is the executable for LAM/MPI, srun is for SLURM or Open MPI with SLURM support.
# srun -n X <executable> is however a valid command, so it behaves 'like' mpiexec.
set ( _MPIEXEC_NAMES_BASE mpiexec mpiexec.hydra mpiexec.mpd mpirun lamexec srun )
unset ( _MPIEXEC_NAMES )
foreach ( _MPIEXEC_NAME IN LISTS _MPIEXEC_NAMES_BASE )
list ( APPEND _MPIEXEC_NAMES "${_MPIEXEC_NAME}${MPI_EXECUTABLE_SUFFIX}" )
endforeach ( )
unset ( _MPIEXEC_NAMES_BASE )
function ( _MPI_check_compiler LANG QUERY_FLAG OUTPUT_VARIABLE RESULT_VARIABLE )
if ( DEFINED MPI_ ${ LANG } _COMPILER_FLAGS )
separate_arguments ( _MPI_COMPILER_WRAPPER_OPTIONS NATIVE_COMMAND "${MPI_${LANG}_COMPILER_FLAGS}" )
else ( )
separate_arguments ( _MPI_COMPILER_WRAPPER_OPTIONS NATIVE_COMMAND "${MPI_COMPILER_FLAGS}" )
endif ( )
execute_process (
C O M M A N D $ { M P I _ $ { L A N G } _ C O M P I L E R } $ { _ M P I _ C O M P I L E R _ W R A P P E R _ O P T I O N S } $ { Q U E R Y _ F L A G }
O U T P U T _ V A R I A B L E W R A P P E R _ O U T P U T O U T P U T _ S T R I P _ T R A I L I N G _ W H I T E S P A C E
E R R O R _ V A R I A B L E W R A P P E R _ O U T P U T E R R O R _ S T R I P _ T R A I L I N G _ W H I T E S P A C E
R E S U L T _ V A R I A B L E W R A P P E R _ R E T U R N )
# Some compiler wrappers will yield spurious zero return values, for example
# Intel MPI tolerates unknown arguments and if the MPI wrappers loads a shared
# library that has invalid or missing version information there would be warning
# messages emitted by ld.so in the compiler output. In either case, we'll treat
# the output as invalid.
if ( "${WRAPPER_OUTPUT}" MATCHES "undefined reference|unrecognized|need to set|no version information available" )
set ( WRAPPER_RETURN 255 )
endif ( )
# Ensure that no error output might be passed upwards.
if ( NOT WRAPPER_RETURN EQUAL 0 )
unset ( WRAPPER_OUTPUT )
endif ( )
set ( ${ OUTPUT_VARIABLE } "${WRAPPER_OUTPUT}" PARENT_SCOPE )
set ( ${ RESULT_VARIABLE } "${WRAPPER_RETURN}" PARENT_SCOPE )
endfunction ( )
function ( _MPI_interrogate_compiler lang )
unset ( MPI_COMPILE_CMDLINE )
unset ( MPI_LINK_CMDLINE )
unset ( MPI_COMPILE_OPTIONS_WORK )
unset ( MPI_COMPILE_DEFINITIONS_WORK )
unset ( MPI_INCLUDE_DIRS_WORK )
unset ( MPI_LINK_FLAGS_WORK )
unset ( MPI_LIB_NAMES_WORK )
unset ( MPI_LIB_FULLPATHS_WORK )
# Check whether the -showme:compile option works. This indicates that we have either Open MPI
# or a newer version of LAM/MPI, and implies that -showme:link will also work.
# Open MPI also supports -show, but separates linker and compiler information
_MPI_check_compiler ( ${ LANG } "-showme:compile" MPI_COMPILE_CMDLINE MPI_COMPILER_RETURN )
if ( MPI_COMPILER_RETURN EQUAL 0 )
_MPI_check_compiler ( ${ LANG } "-showme:link" MPI_LINK_CMDLINE MPI_COMPILER_RETURN )
if ( NOT MPI_COMPILER_RETURN EQUAL 0 )
unset ( MPI_COMPILE_CMDLINE )
endif ( )
endif ( )
# MPICH and MVAPICH offer -compile-info and -link-info.
# For modern versions, both do the same as -show. However, for old versions, they do differ
# when called for mpicxx and mpif90 and it's necessary to use them over -show in order to find the
# removed MPI C++ bindings.
if ( NOT MPI_COMPILER_RETURN EQUAL 0 )
_MPI_check_compiler ( ${ LANG } "-compile-info" MPI_COMPILE_CMDLINE MPI_COMPILER_RETURN )
if ( MPI_COMPILER_RETURN EQUAL 0 )
_MPI_check_compiler ( ${ LANG } "-link-info" MPI_LINK_CMDLINE MPI_COMPILER_RETURN )
if ( NOT MPI_COMPILER_RETURN EQUAL 0 )
unset ( MPI_COMPILE_CMDLINE )
endif ( )
endif ( )
endif ( )
# MPICH, MVAPICH2 and Intel MPI just use "-show". Open MPI also offers this, but the
# -showme commands are more specialized.
if ( NOT MPI_COMPILER_RETURN EQUAL 0 )
_MPI_check_compiler ( ${ LANG } "-show" MPI_COMPILE_CMDLINE MPI_COMPILER_RETURN )
endif ( )
# Older versions of LAM/MPI have "-showme". Open MPI also supports this.
# Unknown to MPICH, MVAPICH and Intel MPI.
if ( NOT MPI_COMPILER_RETURN EQUAL 0 )
_MPI_check_compiler ( ${ LANG } "-showme" MPI_COMPILE_CMDLINE MPI_COMPILER_RETURN )
endif ( )
if ( NOT ( MPI_COMPILER_RETURN EQUAL 0 ) OR NOT ( DEFINED MPI_COMPILE_CMDLINE ) )
# Cannot interrogate this compiler, so exit.
set ( MPI_ ${ LANG } _WRAPPER_FOUND FALSE PARENT_SCOPE )
return ( )
endif ( )
unset ( MPI_COMPILER_RETURN )
# We have our command lines, but we might need to copy MPI_COMPILE_CMDLINE
# into MPI_LINK_CMDLINE, if we didn't find the link line.
if ( NOT DEFINED MPI_LINK_CMDLINE )
set ( MPI_LINK_CMDLINE "${MPI_COMPILE_CMDLINE}" )
endif ( )
# At this point, we obtained some output from a compiler wrapper that works.
# We'll now try to parse it into variables with meaning to us.
if ( "${LANG}" STREQUAL "Fortran" )
# Some MPICH-1 and MVAPICH-1 versions return a three command answer for Fortran, consisting
# out of a symlink command for mpif.h, the actual compiler command and a deletion of the
# created symlink. We need to detect that case, remember the include path and drop the
# symlink/deletion operation to obtain the link/compile lines we'd usually expect.
if ( "${MPI_COMPILE_CMDLINE}" MATCHES "^ln -s ([^\" ]+|\ "[^\" ]+\ ") mpif.h" )
get_filename_component ( MPI_INCLUDE_DIRS_WORK "${CMAKE_MATCH_1}" DIRECTORY )
string ( REGEX REPLACE "^ln -s ([^\" ]+|\ "[^\" ]+\ ") mpif.h\n" "" MPI_COMPILE_CMDLINE "${MPI_COMPILE_CMDLINE}" )
string ( REGEX REPLACE "^ln -s ([^\" ]+|\ "[^\" ]+\ ") mpif.h\n" "" MPI_LINK_CMDLINE "${MPI_LINK_CMDLINE}" )
string ( REGEX REPLACE "\nrm -f mpif.h$" "" MPI_COMPILE_CMDLINE "${MPI_COMPILE_CMDLINE}" )
string ( REGEX REPLACE "\nrm -f mpif.h$" "" MPI_LINK_CMDLINE "${MPI_LINK_CMDLINE}" )
endif ( )
endif ( )
# The Intel MPI wrapper on Linux will emit some objcopy commands after its compile command
# if -static_mpi was passed to the wrapper. To avoid spurious matches, we need to drop these lines.
if ( UNIX )
string ( REGEX REPLACE "(^|\n)objcopy[^\n]+(\n|$)" "" MPI_COMPILE_CMDLINE "${MPI_COMPILE_CMDLINE}" )
string ( REGEX REPLACE "(^|\n)objcopy[^\n]+(\n|$)" "" MPI_LINK_CMDLINE "${MPI_LINK_CMDLINE}" )
endif ( )
# Extract compile options from the compile command line.
string ( REGEX MATCHALL "(^| )-f([^\" ]+|\ "[^\" ]+\ ")" MPI_ALL_COMPILE_OPTIONS "${MPI_COMPILE_CMDLINE}" )
foreach ( _MPI_COMPILE_OPTION IN LISTS MPI_ALL_COMPILE_OPTIONS )
string ( REGEX REPLACE "^ " "" _MPI_COMPILE_OPTION "${_MPI_COMPILE_OPTION}" )
# Ignore -fstack-protector directives: These occur on MPICH and MVAPICH when the libraries
# themselves were built with this flag. However, this flag is unrelated to using MPI, and
# we won't match the accompanying --param-ssp-size and -Wp,-D_FORTIFY_SOURCE flags and therefore
# produce inconsistent results with the regularly flags.
# Similarly, aliasing flags do not belong into our flag array.
if ( NOT "${_MPI_COMPILE_OPTION}" MATCHES "^-f(stack-protector|(no-|)strict-aliasing|PI[CE]|pi[ce])" )
list ( APPEND MPI_COMPILE_OPTIONS_WORK "${_MPI_COMPILE_OPTION}" )
endif ( )
endforeach ( )
# Same deal, with the definitions. We also treat arguments passed to the preprocessor directly.
string ( REGEX MATCHALL "(^| )(-Wp,|-Xpreprocessor |)[-/]D([^\" ]+|\ "[^\" ]+\ ")" MPI_ALL_COMPILE_DEFINITIONS "${MPI_COMPILE_CMDLINE}" )
foreach ( _MPI_COMPILE_DEFINITION IN LISTS MPI_ALL_COMPILE_DEFINITIONS )
string ( REGEX REPLACE "^ ?(-Wp,|-Xpreprocessor )?[-/]D" "" _MPI_COMPILE_DEFINITION "${_MPI_COMPILE_DEFINITION}" )
string ( REPLACE "\" " " " _MPI_COMPILE_DEFINITION " ${ _MPI_COMPILE_DEFINITION } " )
if ( NOT "${_MPI_COMPILE_DEFINITION}" MATCHES "^_FORTIFY_SOURCE.*" )
list ( APPEND MPI_COMPILE_DEFINITIONS_WORK "${_MPI_COMPILE_DEFINITION}" )
endif ( )
endforeach ( )
# Extract include paths from compile command line
string ( REGEX MATCHALL "(^| )[-/]I([^\" ]+|\ "[^\" ]+\ ")" MPI_ALL_INCLUDE_PATHS "${MPI_COMPILE_CMDLINE}" )
# If extracting failed to work, we'll try using -showme:incdirs.
if ( NOT MPI_ALL_INCLUDE_PATHS )
_MPI_check_compiler ( ${ LANG } "-showme:incdirs" MPI_INCDIRS_CMDLINE MPI_INCDIRS_COMPILER_RETURN )
if ( MPI_INCDIRS_COMPILER_RETURN )
separate_arguments ( MPI_ALL_INCLUDE_PATHS NATIVE_COMMAND "${MPI_INCDIRS_CMDLINE}" )
endif ( )
endif ( )
foreach ( _MPI_INCLUDE_PATH IN LISTS MPI_ALL_INCLUDE_PATHS )
string ( REGEX REPLACE "^ ?[-/]I" "" _MPI_INCLUDE_PATH "${_MPI_INCLUDE_PATH}" )
string ( REPLACE "\" " " " _MPI_INCLUDE_PATH " ${ _MPI_INCLUDE_PATH } " )
get_filename_component ( _MPI_INCLUDE_PATH "${_MPI_INCLUDE_PATH}" REALPATH )
list ( APPEND MPI_INCLUDE_DIRS_WORK "${_MPI_INCLUDE_PATH}" )
endforeach ( )
# Extract linker paths from the link command line
string ( REGEX MATCHALL "(^| )(-Wl,|-Xlinker |)(-L|[/-]LIBPATH:|[/-]libpath:)([^\" ]+|\ "[^\" ]+\ ")" MPI_ALL_LINK_PATHS "${MPI_LINK_CMDLINE}" )
# If extracting failed to work, we'll try using -showme:libdirs.
if ( NOT MPI_ALL_LINK_PATHS )
_MPI_check_compiler ( ${ LANG } "-showme:libdirs" MPI_LIBDIRS_CMDLINE MPI_LIBDIRS_COMPILER_RETURN )
if ( MPI_LIBDIRS_COMPILER_RETURN )
separate_arguments ( MPI_ALL_LINK_PATHS NATIVE_COMMAND "${MPI_LIBDIRS_CMDLINE}" )
endif ( )
endif ( )
foreach ( _MPI_LPATH IN LISTS MPI_ALL_LINK_PATHS )
string ( REGEX REPLACE "^ ?(-Wl,|-Xlinker )?(-L|[/-]LIBPATH:|[/-]libpath:)" "" _MPI_LPATH "${_MPI_LPATH}" )
string ( REPLACE "\" " " " _MPI_LPATH " ${ _MPI_LPATH } " )
get_filename_component ( _MPI_LPATH "${_MPI_LPATH}" REALPATH )
list ( APPEND MPI_LINK_DIRECTORIES_WORK "${_MPI_LPATH}" )
endforeach ( )
# Extract linker flags from the link command line
string ( REGEX MATCHALL "(^| )(-Wl,|-Xlinker )([^\" ]+|\ "[^\" ]+\ ")" MPI_ALL_LINK_FLAGS "${MPI_LINK_CMDLINE}" )
foreach ( _MPI_LINK_FLAG IN LISTS MPI_ALL_LINK_FLAGS )
string ( STRIP "${_MPI_LINK_FLAG}" _MPI_LINK_FLAG )
# MPI might be marked to build with non-executable stacks but this should not propagate.
if ( NOT "${_MPI_LINK_FLAG}" MATCHES "(-Wl,|-Xlinker )-z,noexecstack" )
if ( MPI_LINK_FLAGS_WORK )
string ( APPEND MPI_LINK_FLAGS_WORK " ${_MPI_LINK_FLAG}" )
else ( )
set ( MPI_LINK_FLAGS_WORK "${_MPI_LINK_FLAG}" )
endif ( )
endif ( )
endforeach ( )
# Extract the set of libraries to link against from the link command
# line
string ( REGEX MATCHALL "(^| )-l([^\" ]+|\ "[^\" ]+\ ")" MPI_LIBNAMES "${MPI_LINK_CMDLINE}" )
foreach ( _MPI_LIB_NAME IN LISTS MPI_LIBNAMES )
string ( REGEX REPLACE "^ ?-l" "" _MPI_LIB_NAME "${_MPI_LIB_NAME}" )
string ( REPLACE "\" " " " _MPI_LIB_NAME " ${ _MPI_LIB_NAME } " )
get_filename_component ( _MPI_LIB_PATH "${_MPI_LIB_NAME}" DIRECTORY )
if ( NOT "${_MPI_LIB_PATH}" STREQUAL "" )
list ( APPEND MPI_LIB_FULLPATHS_WORK "${_MPI_LIB_NAME}" )
else ( )
list ( APPEND MPI_LIB_NAMES_WORK "${_MPI_LIB_NAME}" )
endif ( )
endforeach ( )
if ( WIN32 )
# A compiler wrapper on Windows will just have the name of the
# library to link on its link line, potentially with a full path
string ( REGEX MATCHALL "(^| )([^\" ]+\\.lib|\ "[^\" ]+\\.lib\ ")" MPI_LIBNAMES "${MPI_LINK_CMDLINE}" )
foreach ( _MPI_LIB_NAME IN LISTS MPI_LIBNAMES )
string ( REGEX REPLACE "^ " "" _MPI_LIB_NAME "${_MPI_LIB_NAME}" )
string ( REPLACE "\" " " " _MPI_LIB_NAME " ${ _MPI_LIB_NAME } " )
get_filename_component ( _MPI_LIB_PATH "${_MPI_LIB_NAME}" DIRECTORY )
if ( NOT "${_MPI_LIB_PATH}" STREQUAL "" )
list ( APPEND MPI_LIB_FULLPATHS_WORK "${_MPI_LIB_NAME}" )
else ( )
list ( APPEND MPI_LIB_NAMES_WORK "${_MPI_LIB_NAME}" )
endif ( )
endforeach ( )
else ( )
# On UNIX platforms, archive libraries can be given with full path.
string ( REGEX MATCHALL "(^| )([^\" ]+\\.a|\ "[^\" ]+\\.a\ ")" MPI_LIBFULLPATHS "${MPI_LINK_CMDLINE}" )
foreach ( _MPI_LIB_NAME IN LISTS MPI_LIBFULLPATHS )
string ( REGEX REPLACE "^ " "" _MPI_LIB_NAME "${_MPI_LIB_NAME}" )
string ( REPLACE "\" " " " _MPI_LIB_NAME " ${ _MPI_LIB_NAME } " )
get_filename_component ( _MPI_LIB_PATH "${_MPI_LIB_NAME}" DIRECTORY )
if ( NOT "${_MPI_LIB_PATH}" STREQUAL "" )
list ( APPEND MPI_LIB_FULLPATHS_WORK "${_MPI_LIB_NAME}" )
else ( )
list ( APPEND MPI_LIB_NAMES_WORK "${_MPI_LIB_NAME}" )
endif ( )
endforeach ( )
endif ( )
# An MPI compiler wrapper could have its MPI libraries in the implictly
# linked directories of the compiler itself.
if ( DEFINED CMAKE_ ${ LANG } _IMPLICIT_LINK_DIRECTORIES )
list ( APPEND MPI_LINK_DIRECTORIES_WORK "${CMAKE_${LANG}_IMPLICIT_LINK_DIRECTORIES}" )
endif ( )
# Determine full path names for all of the libraries that one needs
# to link against in an MPI program
unset ( MPI_PLAIN_LIB_NAMES_WORK )
foreach ( _MPI_LIB_NAME IN LISTS MPI_LIB_NAMES_WORK )
get_filename_component ( _MPI_PLAIN_LIB_NAME "${_MPI_LIB_NAME}" NAME_WE )
list ( APPEND MPI_PLAIN_LIB_NAMES_WORK "${_MPI_PLAIN_LIB_NAME}" )
find_library ( MPI_ ${ _MPI_PLAIN_LIB_NAME } _LIBRARY
N A M E S " $ { _ M P I _ L I B _ N A M E } " " l i b $ { _ M P I _ L I B _ N A M E } "
H I N T S $ { M P I _ L I N K _ D I R E C T O R I E S _ W O R K }
D O C " L o c a t i o n o f t h e $ { _ M P I _ P L A I N _ L I B _ N A M E } l i b r a r y f o r M P I "
)
mark_as_advanced ( MPI_ ${ _MPI_PLAIN_LIB_NAME } _LIBRARY )
endforeach ( )
# Deal with the libraries given with full path next
unset ( MPI_DIRECT_LIB_NAMES_WORK )
foreach ( _MPI_LIB_FULLPATH IN LISTS MPI_LIB_FULLPATHS_WORK )
get_filename_component ( _MPI_PLAIN_LIB_NAME "${_MPI_LIB_FULLPATH}" NAME_WE )
get_filename_component ( _MPI_LIB_NAME "${_MPI_LIB_FULLPATH}" NAME )
get_filename_component ( _MPI_LIB_PATH "${_MPI_LIB_FULLPATH}" DIRECTORY )
list ( APPEND MPI_DIRECT_LIB_NAMES_WORK "${_MPI_PLAIN_LIB_NAME}" )
find_library ( MPI_ ${ _MPI_PLAIN_LIB_NAME } _LIBRARY
N A M E S " $ { _ M P I _ L I B _ N A M E } "
H I N T S $ { _ M P I _ L I B _ P A T H }
D O C " L o c a t i o n o f t h e $ { _ M P I _ P L A I N _ L I B _ N A M E } l i b r a r y f o r M P I "
)
mark_as_advanced ( MPI_ ${ _MPI_PLAIN_LIB_NAME } _LIBRARY )
endforeach ( )
if ( MPI_DIRECT_LIB_NAMES_WORK )
set ( MPI_PLAIN_LIB_NAMES_WORK "${MPI_DIRECT_LIB_NAMES_WORK};${MPI_PLAIN_LIB_NAMES_WORK}" )
endif ( )
# MPI might require pthread to work. The above mechanism wouldn't detect it, but we need to
# link it in that case. -lpthread is covered by the normal library treatment on the other hand.
if ( "${MPI_COMPILE_CMDLINE}" MATCHES "-pthread" )
list ( APPEND MPI_COMPILE_OPTIONS_WORK "-pthread" )
if ( MPI_LINK_FLAGS_WORK )
string ( APPEND MPI_LINK_FLAGS_WORK " -pthread" )
else ( )
set ( MPI_LINK_FLAGS_WORK "-pthread" )
endif ( )
endif ( )
if ( MPI_ ${ LANG } _EXTRA_COMPILE_DEFINITIONS )
list ( APPEND MPI_COMPILE_DEFINITIONS_WORK "${MPI_${LANG}_EXTRA_COMPILE_DEFINITIONS}" )
endif ( )
if ( MPI_ ${ LANG } _EXTRA_COMPILE_OPTIONS )
list ( APPEND MPI_COMPILE_OPTIONS_WORK "${MPI_${LANG}_EXTRA_COMPILE_OPTIONS}" )
endif ( )
if ( MPI_ ${ LANG } _EXTRA_LIB_NAMES )
list ( APPEND MPI_PLAIN_LIB_NAMES_WORK "${MPI_${LANG}_EXTRA_LIB_NAMES}" )
endif ( )
# If we found MPI, set up all of the appropriate cache entries
if ( NOT MPI_ ${ LANG } _COMPILE_OPTIONS )
set ( MPI_ ${ LANG } _COMPILE_OPTIONS ${ MPI_COMPILE_OPTIONS_WORK } CACHE STRING "MPI ${LANG} compilation options" FORCE )
endif ( )
if ( NOT MPI_ ${ LANG } _COMPILE_DEFINITIONS )
set ( MPI_ ${ LANG } _COMPILE_DEFINITIONS ${ MPI_COMPILE_DEFINITIONS_WORK } CACHE STRING "MPI ${LANG} compilation definitions" FORCE )
endif ( )
if ( NOT MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS )
set ( MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS ${ MPI_INCLUDE_DIRS_WORK } CACHE STRING "MPI ${LANG} additional include directories" FORCE )
endif ( )
if ( NOT MPI_ ${ LANG } _LINK_FLAGS )
set ( MPI_ ${ LANG } _LINK_FLAGS ${ MPI_LINK_FLAGS_WORK } CACHE STRING "MPI ${LANG} linker flags" FORCE )
endif ( )
if ( NOT MPI_ ${ LANG } _LIB_NAMES )
set ( MPI_ ${ LANG } _LIB_NAMES ${ MPI_PLAIN_LIB_NAMES_WORK } CACHE STRING "MPI ${LANG} libraries to link against" FORCE )
endif ( )
set ( MPI_ ${ LANG } _WRAPPER_FOUND TRUE PARENT_SCOPE )
endfunction ( )
function ( _MPI_guess_settings LANG )
set ( MPI_GUESS_FOUND FALSE )
# Currently only MSMPI and MPICH2 on Windows are supported, so we can skip this search if we're not targeting that.
if ( WIN32 )
# MSMPI
# The environment variables MSMPI_INC and MSMPILIB32/64 are the only ways of locating the MSMPI_SDK,
# which is installed separately from the runtime. Thus it's possible to have mpiexec but not MPI headers
# or import libraries and vice versa.
if ( NOT MPI_GUESS_LIBRARY_NAME OR "${MPI_GUESS_LIBRARY_NAME}" STREQUAL "MSMPI" )
# We first attempt to locate the msmpi.lib. Should be find it, we'll assume that the MPI present is indeed
# Microsoft MPI.
if ( "${CMAKE_SIZEOF_VOID_P}" EQUAL 8 )
set ( MPI_MSMPI_LIB_PATH "$ENV{MSMPI_LIB64}" )
set ( MPI_MSMPI_INC_PATH_EXTRA "$ENV{MSMPI_INC}/x64" )
else ( )
set ( MPI_MSMPI_LIB_PATH "$ENV{MSMPI_LIB32}" )
set ( MPI_MSMPI_INC_PATH_EXTRA "$ENV{MSMPI_INC}/x86" )
endif ( )
find_library ( MPI_msmpi_LIBRARY
N A M E S m s m p i
H I N T S $ { M P I _ M S M P I _ L I B _ P A T H }
D O C " L o c a t i o n o f t h e m s m p i l i b r a r y f o r M i c r o s o f t M P I " )
mark_as_advanced ( MPI_msmpi_LIBRARY )
if ( MPI_msmpi_LIBRARY )
# Next, we attempt to locate the MPI header. Note that for Fortran we know that mpif.h is a way
# MSMPI can be used and therefore that header has to be present.
if ( NOT MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS )
get_filename_component ( MPI_MSMPI_INC_DIR "$ENV{MSMPI_INC}" REALPATH )
set ( MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS "${MPI_MSMPI_INC_DIR}" CACHE STRING "MPI ${LANG} additional include directories" FORCE )
unset ( MPI_MSMPI_INC_DIR )
endif ( )
# For MSMPI, one can compile the MPI module by building the mpi.f90 shipped with the MSMPI SDK,
# thus it might be present or provided by the user. Figuring out which is supported is done later on.
# The PGI Fortran compiler for instance ships a prebuilt set of modules in its own include folder.
# Should a user be employing PGI or have built its own set and provided it via cache variables, the
# splitting routine would have located the module files.
# For C and C++, we're done here (MSMPI does not ship the MPI-2 C++ bindings) - however, for Fortran
# we need some extra library to glue Fortran support together:
# MSMPI ships 2-4 Fortran libraries, each for different Fortran compiler behaviors. The library names
# ending with a c are using the cdecl calling convention, whereas those ending with an s are for Fortran
# implementations using stdcall. Therefore, the 64-bit MSMPI only ships those ending in 'c', whereas the 32-bit
# has both variants available.
# The second difference is the last but one letter, if it's an e(nd), the length of a string argument is
# passed by the Fortran compiler after all other arguments on the parameter list, if it's an m(ixed),
# it's passed immediately after the string address.
# To summarize:
# - msmpifec: CHARACTER length passed after the parameter list and using cdecl calling convention
# - msmpifmc: CHARACTER length passed directly after string address and using cdecl calling convention
# - msmpifes: CHARACTER length passed after the parameter list and using stdcall calling convention
# - msmpifms: CHARACTER length passed directly after string address and using stdcall calling convention
# 32-bit MSMPI ships all four libraries, 64-bit MSMPI ships only the first two.
# As is, Intel Fortran and PGI Fortran both use the 'ec' variant of the calling convention, whereas
# the old Compaq Visual Fortran compiler defaulted to the 'ms' version. It's possible to make Intel Fortran
# use the CVF calling convention using /iface:cvf, but we assume - and this is also assumed in FortranCInterface -
# this isn't the case. It's also possible to make CVF use the 'ec' variant, using /iface=(cref,nomixed_str_len_arg).
# Our strategy is now to locate all libraries, but enter msmpifec into the LIB_NAMES array.
# Should this not be adequate it's a straightforward way for a user to change the LIB_NAMES array and
# have his library found. Still, this should not be necessary outside of exceptional cases, as reasoned.
if ( "${LANG}" STREQUAL "Fortran" )
set ( MPI_MSMPI_CALLINGCONVS c )
if ( "${CMAKE_SIZEOF_VOID_P}" EQUAL 4 )
list ( APPEND MPI_MSMPI_CALLINGCONVS s )
endif ( )
foreach ( mpistrlenpos IN ITEMS e m )
foreach ( mpicallingconv IN LISTS MPI_MSMPI_CALLINGCONVS )
find_library ( MPI_msmpif ${ mpistrlenpos } ${ mpicallingconv } _LIBRARY
N A M E S m s m p i f $ { m p i s t r l e n p o s } $ { m p i c a l l i n g c o n v }
H I N T S " $ { M P I _ M S M P I _ L I B _ P A T H } "
D O C " L o c a t i o n o f t h e m s m p i $ { m p i s t r l e n p o s } $ { m p i c a l l i n g c o n v } l i b r a r y f o r M i c r o s o f t M P I " )
mark_as_advanced ( MPI_msmpif ${ mpistrlenpos } ${ mpicallingconv } _LIBRARY )
endforeach ( )
endforeach ( )
if ( NOT MPI_ ${ LANG } _LIB_NAMES )
set ( MPI_ ${ LANG } _LIB_NAMES "msmpi;msmpifec" CACHE STRING "MPI ${LANG} libraries to link against" FORCE )
endif ( )
# At this point we're *not* done. MSMPI requires an additional include file for Fortran giving the value
# of MPI_AINT. This file is called mpifptr.h located in the x64 and x86 subfolders, respectively.
find_path ( MPI_mpifptr_INCLUDE_DIR
N A M E S " m p i f p t r . h "
H I N T S " $ { M P I _ M S M P I _ I N C _ P A T H _ E X T R A } "
D O C " L o c a t i o n o f t h e m p i f p t r . h e x t r a h e a d e r f o r M i c r o s o f t M P I " )
if ( NOT MPI_ ${ LANG } _ADDITIONAL_INCLUDE_VARS )
set ( MPI_ ${ LANG } _ADDITIONAL_INCLUDE_VARS "mpifptr" CACHE STRING "MPI ${LANG} additional include directory variables, given in the form MPI_<name>_INCLUDE_DIR." FORCE )
endif ( )
mark_as_advanced ( MPI_ ${ LANG } _ADDITIONAL_INCLUDE_VARS MPI_mpifptr_INCLUDE_DIR )
else ( )
if ( NOT MPI_ ${ LANG } _LIB_NAMES )
set ( MPI_ ${ LANG } _LIB_NAMES "msmpi" CACHE STRING "MPI ${LANG} libraries to link against" FORCE )
endif ( )
endif ( )
mark_as_advanced ( MPI_ ${ LANG } _LIB_NAMES )
set ( MPI_GUESS_FOUND TRUE )
endif ( )
endif ( )
# At this point there's not many MPIs that we could still consider.
# OpenMPI 1.6.x and below supported Windows, but these ship compiler wrappers that still work.
# The only other relevant MPI implementation without a wrapper is MPICH2, which had Windows support in 1.4.1p1 and older.
if ( NOT MPI_GUESS_LIBRARY_NAME OR "${MPI_GUESS_LIBRARY_NAME}" STREQUAL "MPICH2" )
set ( MPI_MPICH_PREFIX_PATHS
" $ E N V { P r o g r a m W 6 4 3 2 } / M P I C H 2 / l i b "
" [ H K E Y _ L O C A L _ M A C H I N E \ \ S O F T W A R E \ \ M P I C H \ \ S M P D ; b i n a r y ] / . . / l i b "
" [ H K E Y _ L O C A L _ M A C H I N E \ \ S O F T W A R E \ \ M P I C H 2 ; P a t h ] / l i b "
)
# All of C, C++ and Fortran will need mpi.lib, so we'll look for this first
find_library ( MPI_mpi_LIBRARY
N A M E S m p i
H I N T S $ { M P I _ M P I C H _ P R E F I X _ P A T H S } )
mark_as_advanced ( MPI_mpi_LIBRARY )
# If we found mpi.lib, we detect the rest of MPICH2
if ( MPI_mpi_LIBRARY )
set ( MPI_MPICH_LIB_NAMES "mpi" )
# If MPI-2 C++ bindings are requested, we need to locate cxx.lib as well.
# Otherwise, MPICH_SKIP_MPICXX will be defined and these bindings aren't needed.
if ( "${LANG}" STREQUAL "CXX" AND NOT MPI_CXX_SKIP_MPICXX )
find_library ( MPI_cxx_LIBRARY
N A M E S c x x
H I N T S $ { M P I _ M P I C H _ P R E F I X _ P A T H S } )
mark_as_advanced ( MPI_cxx_LIBRARY )
list ( APPEND MPI_MPICH_LIB_NAMES "cxx" )
# For Fortran, MPICH2 provides three different libraries:
# fmpich2.lib which uses uppercase symbols and cdecl,
# fmpich2s.lib which uses uppercase symbols and stdcall (32-bit only),
# fmpich2g.lib which uses lowercase symbols with double underscores and cdecl.
# fmpich2s.lib would be useful for Compaq Visual Fortran, fmpich2g.lib has to be used with GNU g77 and is also
# provided in the form of an .a archive for MinGW and Cygwin. From our perspective, fmpich2.lib is the only one
# we need to try, and if it doesn't work with the given Fortran compiler we'd find out later on during validation
elseif ( "${LANG}" STREQUAL "Fortran" )
find_library ( MPI_fmpich2_LIBRARY
N A M E S f m p i c h 2
H I N T S $ { M P I _ M P I C H _ P R E F I X _ P A T H S } )
find_library ( MPI_fmpich2s_LIBRARY
N A M E S f m p i c h 2 s
H I N T S $ { M P I _ M P I C H _ P R E F I X _ P A T H S } )
find_library ( MPI_fmpich2g_LIBRARY
N A M E S f m p i c h 2 g
H I N T S $ { M P I _ M P I C H _ P R E F I X _ P A T H S } )
mark_as_advanced ( MPI_fmpich2_LIBRARY MPI_fmpich2s_LIBRARY MPI_fmpich2g_LIBRARY )
list ( APPEND MPI_MPICH_LIB_NAMES "fmpich2" )
endif ( )
if ( NOT MPI_ ${ LANG } _LIB_NAMES )
set ( MPI_ ${ LANG } _LIB_NAMES "${MPI_MPICH_LIB_NAMES}" CACHE STRING "MPI ${LANG} libraries to link against" FORCE )
endif ( )
unset ( MPI_MPICH_LIB_NAMES )
if ( NOT MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS )
# For MPICH2, the include folder would be in ../include relative to the library folder.
get_filename_component ( MPI_MPICH_ROOT_DIR "${MPI_mpi_LIBRARY}" DIRECTORY )
get_filename_component ( MPI_MPICH_ROOT_DIR "${MPI_MPICH_ROOT_DIR}" DIRECTORY )
if ( IS_DIRECTORY "${MPI_MPICH_ROOT_DIR}/include" )
set ( MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS "${MPI_MPICH_ROOT_DIR}/include" CACHE STRING "MPI ${LANG} additional include directory variables, given in the form MPI_<name>_INCLUDE_DIR." FORCE )
endif ( )
unset ( MPI_MPICH_ROOT_DIR )
endif ( )
set ( MPI_GUESS_FOUND TRUE )
endif ( )
unset ( MPI_MPICH_PREFIX_PATHS )
endif ( )
endif ( )
set ( MPI_ ${ LANG } _GUESS_FOUND "${MPI_GUESS_FOUND}" PARENT_SCOPE )
endfunction ( )
function ( _MPI_adjust_compile_definitions LANG )
if ( "${LANG}" STREQUAL "CXX" )
# To disable the C++ bindings, we need to pass some definitions since the mpi.h header has to deal with both C and C++
# bindings in MPI-2.
if ( MPI_CXX_SKIP_MPICXX AND NOT MPI_ ${ LANG } _COMPILE_DEFINITIONS MATCHES "SKIP_MPICXX" )
# MPICH_SKIP_MPICXX is being used in MPICH and derivatives like MVAPICH or Intel MPI
# OMPI_SKIP_MPICXX is being used in Open MPI
# _MPICC_H is being used for IBM Platform MPI
list ( APPEND MPI_ ${ LANG } _COMPILE_DEFINITIONS "MPICH_SKIP_MPICXX" "OMPI_SKIP_MPICXX" "_MPICC_H" )
set ( MPI_ ${ LANG } _COMPILE_DEFINITIONS "${MPI_${LANG}_COMPILE_DEFINITIONS}" CACHE STRING "MPI ${LANG} compilation definitions" FORCE )
endif ( )
endif ( )
endfunction ( )
macro ( _MPI_assemble_libraries LANG )
set ( MPI_ ${ LANG } _LIBRARIES "" )
# Only for libraries do we need to check whether the compiler's linking stage is separate.
if ( NOT "${MPI_${LANG}_COMPILER}" STREQUAL "${CMAKE_${LANG}_COMPILER}" OR NOT MPI_ ${ LANG } _WORKS_IMPLICIT )
foreach ( mpilib IN LISTS MPI_ ${ LANG } _LIB_NAMES )
list ( APPEND MPI_ ${ LANG } _LIBRARIES ${ MPI_${mpilib } _LIBRARY} )
endforeach ( )
endif ( )
endmacro ( )
macro ( _MPI_assemble_include_dirs LANG )
if ( "${MPI_${LANG}_COMPILER}" STREQUAL "${CMAKE_${LANG}_COMPILER}" )
set ( MPI_ ${ LANG } _INCLUDE_DIRS "" )
else ( )
set ( MPI_ ${ LANG } _INCLUDE_DIRS "${MPI_${LANG}_ADDITIONAL_INCLUDE_DIRS}" )
if ( "${LANG}" MATCHES "(C|CXX)" )
if ( MPI_ ${ LANG } _HEADER_DIR )
list ( APPEND MPI_ ${ LANG } _INCLUDE_DIRS "${MPI_${LANG}_HEADER_DIR}" )
endif ( )
else ( ) # Fortran
if ( MPI_ ${ LANG } _F77_HEADER_DIR )
list ( APPEND MPI_ ${ LANG } _INCLUDE_DIRS "${MPI_${LANG}_F77_HEADER_DIR}" )
endif ( )
if ( MPI_ ${ LANG } _MODULE_DIR AND NOT "${MPI_${LANG}_MODULE_DIR}" IN_LIST MPI_ ${ LANG } _INCLUDE_DIRS )
list ( APPEND MPI_ ${ LANG } _INCLUDE_DIRS "${MPI_${LANG}_MODULE_DIR}" )
endif ( )
endif ( )
if ( MPI_ ${ LANG } _ADDITIONAL_INCLUDE_VARS )
foreach ( MPI_ADDITIONAL_INC_DIR IN LISTS MPI_ ${ LANG } _ADDITIONAL_INCLUDE_VARS )
list ( APPEND MPI_ ${ LANG } _INCLUDE_DIRS "${MPI_${MPI_ADDITIONAL_INC_DIR}_INCLUDE_DIR}" )
endforeach ( )
endif ( )
endif ( )
endmacro ( )
function ( _MPI_split_include_dirs LANG )
if ( "${MPI_${LANG}_COMPILER}" STREQUAL "${CMAKE_${LANG}_COMPILER}" )
return ( )
endif ( )
# Backwards compatibility: Search INCLUDE_PATH if given.
if ( MPI_ ${ LANG } _INCLUDE_PATH )
list ( APPEND MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS "${MPI_${LANG}_INCLUDE_PATH}" )
endif ( )
# We try to find the headers/modules among those paths (and system paths)
# For C/C++, we just need to have a look for mpi.h.
if ( "${LANG}" MATCHES "(C|CXX)" )
find_path ( MPI_ ${ LANG } _HEADER_DIR "mpi.h"
H I N T S $ { M P I _ $ { L A N G } _ A D D I T I O N A L _ I N C L U D E _ D I R S }
)
mark_as_advanced ( MPI_ ${ LANG } _HEADER_DIR )
if ( MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS )
list ( REMOVE_ITEM MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS "${MPI_${LANG}_HEADER_DIR}" )
endif ( )
# Fortran is more complicated here: An implementation could provide
# any of the Fortran 77/90/2008 APIs for MPI. For example, MSMPI
# only provides Fortran 77 and - if mpi.f90 is built - potentially
# a Fortran 90 module.
elseif ( "${LANG}" STREQUAL "Fortran" )
find_path ( MPI_ ${ LANG } _F77_HEADER_DIR "mpif.h"
H I N T S $ { M P I _ $ { L A N G } _ A D D I T I O N A L _ I N C L U D E _ D I R S }
)
find_path ( MPI_ ${ LANG } _MODULE_DIR
N A M E S " m p i . m o d " " m p i _ f 0 8 . m o d "
H I N T S $ { M P I _ $ { L A N G } _ A D D I T I O N A L _ I N C L U D E _ D I R S }
)
if ( MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS )
list ( REMOVE_ITEM MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS
" $ { M P I _ $ { L A N G } _ F 7 7 _ H E A D E R _ D I R } "
" $ { M P I _ $ { L A N G } _ M O D U L E _ D I R } "
)
endif ( )
mark_as_advanced ( MPI_ ${ LANG } _F77_HEADER_DIR MPI_ ${ LANG } _MODULE_DIR )
endif ( )
# Remove duplicates and default system directories from the list.
if ( MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS )
list ( REMOVE_DUPLICATES MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS )
foreach ( MPI_IMPLICIT_INC_DIR IN LISTS CMAKE_ ${ LANG } _IMPLICIT_LINK_DIRECTORIES )
list ( REMOVE_ITEM MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS ${ MPI_IMPLICIT_INC_DIR } )
endforeach ( )
endif ( )
set ( MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS ${ MPI_${LANG } _ADDITIONAL_INCLUDE_DIRS} CACHE STRING "MPI ${LANG} additional include directories" FORCE )
endfunction ( )
macro ( _MPI_create_imported_target LANG )
if ( NOT TARGET MPI::MPI_ ${ LANG } )
add_library ( MPI::MPI_ ${ LANG } INTERFACE IMPORTED )
endif ( )
set_property ( TARGET MPI::MPI_ ${ LANG } PROPERTY INTERFACE_COMPILE_OPTIONS "${MPI_${LANG}_COMPILE_OPTIONS}" )
set_property ( TARGET MPI::MPI_ ${ LANG } PROPERTY INTERFACE_COMPILE_DEFINITIONS "${MPI_${LANG}_COMPILE_DEFINITIONS}" )
set_property ( TARGET MPI::MPI_ ${ LANG } PROPERTY INTERFACE_LINK_LIBRARIES "" )
if ( MPI_ ${ LANG } _LINK_FLAGS )
set_property ( TARGET MPI::MPI_ ${ LANG } APPEND PROPERTY INTERFACE_LINK_LIBRARIES "${MPI_${LANG}_LINK_FLAGS}" )
endif ( )
# If the compiler links MPI implicitly, no libraries will be found as they're contained within
# CMAKE_<LANG>_IMPLICIT_LINK_LIBRARIES already.
if ( MPI_ ${ LANG } _LIBRARIES )
set_property ( TARGET MPI::MPI_ ${ LANG } APPEND PROPERTY INTERFACE_LINK_LIBRARIES "${MPI_${LANG}_LIBRARIES}" )
endif ( )
# Given the new design of FindMPI, INCLUDE_DIRS will always be located, even under implicit linking.
set_property ( TARGET MPI::MPI_ ${ LANG } PROPERTY INTERFACE_INCLUDE_DIRECTORIES "${MPI_${LANG}_INCLUDE_DIRS}" )
endmacro ( )
function ( _MPI_try_staged_settings LANG MPI_TEST_FILE_NAME MODE RUN_BINARY )
set ( WORK_DIR "${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/FindMPI" )
set ( SRC_DIR "${CMAKE_ROOT}/Modules/FindMPI" )
set ( BIN_FILE "${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/FindMPI/${MPI_TEST_FILE_NAME}_${LANG}.bin" )
unset ( MPI_TEST_COMPILE_DEFINITIONS )
if ( "${LANG}" STREQUAL "Fortran" )
if ( "${MODE}" STREQUAL "F90_MODULE" )
set ( MPI_Fortran_INCLUDE_LINE "use mpi\n implicit none" )
elseif ( "${MODE}" STREQUAL "F08_MODULE" )
set ( MPI_Fortran_INCLUDE_LINE "use mpi_f08\n implicit none" )
else ( ) # F77 header
set ( MPI_Fortran_INCLUDE_LINE "implicit none\n include 'mpif.h'" )
endif ( )
configure_file ( "${SRC_DIR}/${MPI_TEST_FILE_NAME}.f90.in" "${WORK_DIR}/${MPI_TEST_FILE_NAME}.f90" @ONLY )
set ( MPI_TEST_SOURCE_FILE "${WORK_DIR}/${MPI_TEST_FILE_NAME}.f90" )
elseif ( "${LANG}" STREQUAL "CXX" )
configure_file ( "${SRC_DIR}/${MPI_TEST_FILE_NAME}.c" "${WORK_DIR}/${MPI_TEST_FILE_NAME}.cpp" COPYONLY )
set ( MPI_TEST_SOURCE_FILE "${WORK_DIR}/${MPI_TEST_FILE_NAME}.cpp" )
if ( "${MODE}" STREQUAL "TEST_MPICXX" )
set ( MPI_TEST_COMPILE_DEFINITIONS TEST_MPI_MPICXX )
endif ( )
else ( ) # C
set ( MPI_TEST_SOURCE_FILE "${SRC_DIR}/${MPI_TEST_FILE_NAME}.c" )
endif ( )
if ( RUN_BINARY )
try_run ( MPI_RUN_RESULT_ ${ LANG } _ ${ MPI_TEST_FILE_NAME } _ ${ MODE } MPI_RESULT_ ${ LANG } _ ${ MPI_TEST_FILE_NAME } _ ${ MODE }
" $ { C M A K E _ B I N A R Y _ D I R } " S O U R C E S " $ { M P I _ T E S T _ S O U R C E _ F I L E } "
C O M P I L E _ D E F I N I T I O N S $ { M P I _ T E S T _ C O M P I L E _ D E F I N I T I O N S }
L I N K _ L I B R A R I E S M P I : : M P I _ $ { L A N G }
R U N _ O U T P U T _ V A R I A B L E M P I _ R U N _ O U T P U T _ $ { L A N G } _ $ { M P I _ T E S T _ F I L E _ N A M E } _ $ { M O D E } )
set ( MPI_RUN_OUTPUT_ ${ LANG } _ ${ MPI_TEST_FILE_NAME } _ ${ MODE } "${MPI_RUN_OUTPUT_${LANG}_${MPI_TEST_FILE_NAME}_${MODE}}" PARENT_SCOPE )
else ( )
try_compile ( MPI_RESULT_ ${ LANG } _ ${ MPI_TEST_FILE_NAME } _ ${ MODE }
" $ { C M A K E _ B I N A R Y _ D I R } " S O U R C E S " $ { M P I _ T E S T _ S O U R C E _ F I L E } "
C O M P I L E _ D E F I N I T I O N S $ { M P I _ T E S T _ C O M P I L E _ D E F I N I T I O N S }
L I N K _ L I B R A R I E S M P I : : M P I _ $ { L A N G }
C O P Y _ F I L E " $ { B I N _ F I L E } " )
endif ( )
endfunction ( )
macro ( _MPI_check_lang_works LANG )
# For Fortran we may have by the MPI-3 standard an implementation that provides:
# - the mpi_f08 module
# - *both*, the mpi module and 'mpif.h'
# Since older MPI standards (MPI-1) did not define anything but 'mpif.h', we need to check all three individually.
if ( NOT MPI_ ${ LANG } _WORKS )
if ( "${LANG}" STREQUAL "Fortran" )
set ( MPI_Fortran_INTEGER_LINE "(kind=MPI_INTEGER_KIND)" )
_MPI_try_staged_settings ( ${ LANG } test_mpi F77_HEADER FALSE )
_MPI_try_staged_settings ( ${ LANG } test_mpi F90_MODULE FALSE )
_MPI_try_staged_settings ( ${ LANG } test_mpi F08_MODULE FALSE )
set ( MPI_ ${ LANG } _WORKS FALSE )
foreach ( mpimethod IN ITEMS F77_HEADER F08_MODULE F90_MODULE )
if ( MPI_RESULT_ ${ LANG } _test_mpi_ ${ mpimethod } )
set ( MPI_ ${ LANG } _WORKS TRUE )
set ( MPI_ ${ LANG } _HAVE_ ${ mpimethod } TRUE )
else ( )
set ( MPI_ ${ LANG } _HAVE_ ${ mpimethod } FALSE )
endif ( )
endforeach ( )
# MPI-1 versions had no MPI_INTGER_KIND defined, so we need to try without it.
# However, MPI-1 also did not define the Fortran 90 and 08 modules, so we only try the F77 header.
unset ( MPI_Fortran_INTEGER_LINE )
if ( NOT MPI_ ${ LANG } _WORKS )
_MPI_try_staged_settings ( ${ LANG } test_mpi F77_HEADER_NOKIND FALSE )
if ( MPI_RESULT_ ${ LANG } _test_mpi_F77_HEADER_NOKIND )
set ( MPI_ ${ LANG } _WORKS TRUE )
set ( MPI_ ${ LANG } _HAVE_F77_HEADER TRUE )
endif ( )
endif ( )
else ( )
_MPI_try_staged_settings ( ${ LANG } test_mpi normal FALSE )
# If 'test_mpi' built correctly, we've found valid MPI settings. There might not be MPI-2 C++ support, but there can't
# be MPI-2 C++ support without the C bindings being present, so checking for them is sufficient.
set ( MPI_ ${ LANG } _WORKS "${MPI_RESULT_${LANG}_test_mpi_normal}" )
endif ( )
endif ( )
endmacro ( )
# Some systems install various MPI implementations in separate folders in some MPI prefix
# This macro enumerates all such subfolders and adds them to the list of hints that will be searched.
macro ( MPI_search_mpi_prefix_folder PREFIX_FOLDER )
if ( EXISTS "${PREFIX_FOLDER}" )
file ( GLOB _MPI_folder_children RELATIVE "${PREFIX_FOLDER}" "${PREFIX_FOLDER}/*" )
foreach ( _MPI_folder_child IN LISTS _MPI_folder_children )
if ( IS_DIRECTORY "${PREFIX_FOLDER}/${_MPI_folder_child}" )
list ( APPEND MPI_HINT_DIRS "${PREFIX_FOLDER}/${_MPI_folder_child}" )
endif ( )
endforeach ( )
endif ( )
endmacro ( )
set ( MPI_HINT_DIRS ${ MPI_HOME } $ENV{ MPI_HOME } $ENV{ I_MPI_ROOT } )
if ( "${CMAKE_HOST_SYSTEM_NAME}" STREQUAL "Linux" )
# SUSE Linux Enterprise Server stores its MPI implementations under /usr/lib64/mpi/gcc/<name>
# We enumerate the subfolders and append each as a prefix
MPI_search_mpi_prefix_folder ( "/usr/lib64/mpi/gcc" )
elseif ( "${CMAKE_HOST_SYSTEM_NAME}" STREQUAL "Windows" )
# MSMPI stores its runtime in a special folder, this adds the possible locations to the hints.
list ( APPEND MPI_HINT_DIRS $ENV{ MSMPI_BIN } "[HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPI;InstallRoot]" )
elseif ( "${CMAKE_HOST_SYSTEM_NAME}" STREQUAL "FreeBSD" )
# FreeBSD ships mpich under the normal system paths - but available openmpi implementations
# will be found in /usr/local/mpi/<name>
MPI_search_mpi_prefix_folder ( "/usr/local/mpi" )
endif ( )
# Most MPI distributions have some form of mpiexec or mpirun which gives us something we can look for.
# The MPI standard does not mandate the existence of either, but instead only makes requirements if a distribution
# ships an mpiexec program (mpirun executables are not regulated by the standard).
find_program ( MPIEXEC_EXECUTABLE
N A M E S $ { _ M P I E X E C _ N A M E S }
P A T H _ S U F F I X E S b i n s b i n
H I N T S $ { M P I _ H I N T _ D I R S }
D O C " E x e c u t a b l e f o r r u n n i n g M P I p r o g r a m s . " )
# call get_filename_component twice to remove mpiexec and the directory it exists in (typically bin).
# This gives us a fairly reliable base directory to search for /bin /lib and /include from.
get_filename_component ( _MPI_BASE_DIR "${MPIEXEC_EXECUTABLE}" PATH )
get_filename_component ( _MPI_BASE_DIR "${_MPI_BASE_DIR}" PATH )
# According to the MPI standard, section 8.8 -n is a guaranteed, and the only guaranteed way to
# launch an MPI process using mpiexec if such a program exists.
set ( MPIEXEC_NUMPROC_FLAG "-n" CACHE STRING "Flag used by MPI to specify the number of processes for mpiexec; the next option will be the number of processes." )
set ( MPIEXEC_PREFLAGS "" CACHE STRING "These flags will be directly before the executable that is being run by mpiexec." )
set ( MPIEXEC_POSTFLAGS "" CACHE STRING "These flags will be placed after all flags passed to mpiexec." )
# Set the number of processes to the physical processor count
cmake_host_system_information ( RESULT _MPIEXEC_NUMPROCS QUERY NUMBER_OF_PHYSICAL_CORES )
set ( MPIEXEC_MAX_NUMPROCS "${_MPIEXEC_NUMPROCS}" CACHE STRING "Maximum number of processors available to run MPI applications." )
unset ( _MPIEXEC_NUMPROCS )
mark_as_advanced ( MPIEXEC_EXECUTABLE MPIEXEC_NUMPROC_FLAG MPIEXEC_PREFLAGS MPIEXEC_POSTFLAGS MPIEXEC_MAX_NUMPROCS )
#=============================================================================
# Backward compatibility input hacks. Propagate the FindMPI hints to C and
# CXX if the respective new versions are not defined. Translate the old
# MPI_LIBRARY and MPI_EXTRA_LIBRARY to respective MPI_${LANG}_LIBRARIES.
#
# Once we find the new variables, we translate them back into their old
# equivalents below.
if ( NOT MPI_IGNORE_LEGACY_VARIABLES )
foreach ( LANG IN ITEMS C CXX )
# Old input variables.
set ( _MPI_OLD_INPUT_VARS COMPILER COMPILE_FLAGS INCLUDE_PATH LINK_FLAGS )
# Set new vars based on their old equivalents, if the new versions are not already set.
foreach ( var ${ _MPI_OLD_INPUT_VARS } )
if ( NOT MPI_ ${ LANG } _ ${ var } AND MPI_ ${ var } )
set ( MPI_ ${ LANG } _ ${ var } "${MPI_${var}}" )
endif ( )
endforeach ( )
# Chop the old compile flags into options and definitions
unset ( MPI_ ${ LANG } _EXTRA_COMPILE_DEFINITIONS )
unset ( MPI_ ${ LANG } _EXTRA_COMPILE_OPTIONS )
if ( MPI_ ${ LANG } _COMPILE_FLAGS )
separate_arguments ( MPI_SEPARATE_FLAGS NATIVE_COMMAND "${MPI_${LANG}_COMPILE_FLAGS}" )
foreach ( _MPI_FLAG IN LISTS MPI_SEPARATE_FLAGS )
if ( "${_MPI_FLAG}" MATCHES "^ *[-/D]([^ ]+)" )
list ( APPEND MPI_ ${ LANG } _EXTRA_COMPILE_DEFINITIONS "${CMAKE_MATCH_1}" )
else ( )
list ( APPEND MPI_ ${ LANG } _EXTRA_COMPILE_OPTIONS "${_MPI_FLAG}" )
endif ( )
endforeach ( )
unset ( MPI_SEPARATE_FLAGS )
endif ( )
# If a list of libraries was given, we'll split it into new-style cache variables
unset ( MPI_ ${ LANG } _EXTRA_LIB_NAMES )
if ( NOT MPI_ ${ LANG } _LIB_NAMES )
foreach ( _MPI_LIB IN LISTS MPI_ ${ LANG } _LIBRARIES MPI_LIBRARY MPI_EXTRA_LIBRARY )
if ( _MPI_LIB )
get_filename_component ( _MPI_PLAIN_LIB_NAME "${_MPI_LIB}" NAME_WE )
get_filename_component ( _MPI_LIB_NAME "${_MPI_LIB}" NAME )
get_filename_component ( _MPI_LIB_DIR "${_MPI_LIB}" DIRECTORY )
list ( APPEND MPI_ ${ LANG } _EXTRA_LIB_NAMES "${_MPI_PLAIN_LIB_NAME}" )
find_library ( MPI_ ${ _MPI_PLAIN_LIB_NAME } _LIBRARY
N A M E S " $ { _ M P I _ L I B _ N A M E } " " l i b $ { _ M P I _ L I B _ N A M E } "
H I N T S $ { _ M P I _ L I B _ D I R } $ E N V { M P I _ L I B }
D O C " L o c a t i o n o f t h e $ { _ M P I _ P L A I N _ L I B _ N A M E } l i b r a r y f o r M P I "
)
mark_as_advanced ( MPI_ ${ _MPI_PLAIN_LIB_NAME } _LIBRARY )
endif ( )
endforeach ( )
endif ( )
endforeach ( )
endif ( )
#=============================================================================
unset ( MPI_VERSION )
unset ( MPI_VERSION_MAJOR )
unset ( MPI_VERSION_MINOR )
unset ( _MPI_MIN_VERSION )
# If the user specified a library name we assume they prefer that library over a wrapper. If not, they can disable skipping manually.
if ( NOT DEFINED MPI_SKIP_COMPILER_WRAPPER AND MPI_GUESS_LIBRARY_NAME )
set ( MPI_SKIP_COMPILER_WRAPPER TRUE )
endif ( )
# This loop finds the compilers and sends them off for interrogation.
foreach ( LANG IN ITEMS C CXX Fortran )
if ( CMAKE_ ${ LANG } _COMPILER_LOADED )
if ( NOT MPI_FIND_COMPONENTS )
set ( _MPI_FIND_ ${ LANG } TRUE )
elseif ( ${ LANG } IN_LIST MPI_FIND_COMPONENTS )
set ( _MPI_FIND_ ${ LANG } TRUE )
elseif ( ${ LANG } STREQUAL CXX AND NOT MPI_CXX_SKIP_MPICXX AND MPICXX IN_LIST MPI_FIND_COMPONENTS )
set ( _MPI_FIND_ ${ LANG } TRUE )
else ( )
set ( _MPI_FIND_ ${ LANG } FALSE )
endif ( )
else ( )
set ( _MPI_FIND_ ${ LANG } FALSE )
endif ( )
if ( _MPI_FIND_ ${ LANG } )
if ( ${ LANG } STREQUAL CXX AND NOT MPICXX IN_LIST MPI_FIND_COMPONENTS )
set ( MPI_CXX_SKIP_MPICXX FALSE CACHE BOOL "If true, the MPI-2 C++ bindings are disabled using definitions." )
mark_as_advanced ( MPI_CXX_SKIP_MPICXX )
endif ( )
if ( NOT ( MPI_ ${ LANG } _LIB_NAMES AND ( MPI_ ${ LANG } _INCLUDE_PATH OR MPI_ ${ LANG } _INCLUDE_DIRS OR MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS ) ) )
set ( MPI_ ${ LANG } _TRIED_IMPLICIT FALSE )
set ( MPI_ ${ LANG } _WORKS_IMPLICIT FALSE )
if ( NOT MPI_ ${ LANG } _COMPILER AND NOT MPI_ASSUME_NO_BUILTIN_MPI )
# Should the imported targets be empty, we effectively try whether the compiler supports MPI on its own, which is the case on e.g.
# Cray PrgEnv.
_MPI_create_imported_target ( ${ LANG } )
_MPI_check_lang_works ( ${ LANG } )
# If the compiler can build MPI code on its own, it functions as an MPI compiler and we'll set the variable to point to it.
if ( MPI_ ${ LANG } _WORKS )
set ( MPI_ ${ LANG } _COMPILER "${CMAKE_${LANG}_COMPILER}" CACHE FILEPATH "MPI compiler for ${LANG}" FORCE )
set ( MPI_ ${ LANG } _WORKS_IMPLICIT TRUE )
endif ( )
set ( MPI_ ${ LANG } _TRIED_IMPLICIT TRUE )
endif ( )
if ( NOT "${MPI_${LANG}_COMPILER}" STREQUAL "${CMAKE_${LANG}_COMPILER}" OR NOT MPI_ ${ LANG } _WORKS )
set ( MPI_ ${ LANG } _WRAPPER_FOUND FALSE )
set ( MPI_PINNED_COMPILER FALSE )
if ( NOT MPI_SKIP_COMPILER_WRAPPER )
if ( MPI_ ${ LANG } _COMPILER )
# If the user supplies a compiler *name* instead of an absolute path, assume that we need to find THAT compiler.
if ( NOT IS_ABSOLUTE "${MPI_${LANG}_COMPILER}" )
# Get rid of our default list of names and just search for the name the user wants.
set ( _MPI_ ${ LANG } _COMPILER_NAMES "${MPI_${LANG}_COMPILER}" )
unset ( MPI_ ${ LANG } _COMPILER CACHE )
endif ( )
# If the user specifies a compiler, we don't want to try to search libraries either.
set ( MPI_PINNED_COMPILER TRUE )
endif ( )
# If we have an MPI base directory, we'll try all compiler names in that one first.
# This should prevent mixing different MPI environments
if ( _MPI_BASE_DIR )
find_program ( MPI_ ${ LANG } _COMPILER
N A M E S $ { _ M P I _ $ { L A N G } _ C O M P I L E R _ N A M E S }
P A T H _ S U F F I X E S b i n s b i n
H I N T S $ { _ M P I _ B A S E _ D I R }
N O _ D E F A U L T _ P A T H
D O C " M P I c o m p i l e r f o r $ { L A N G } "
)
endif ( )
# If the base directory did not help (for example because the mpiexec isn't in the same directory as the compilers),
# we shall try searching in the default paths.
find_program ( MPI_ ${ LANG } _COMPILER
N A M E S $ { _ M P I _ $ { L A N G } _ C O M P I L E R _ N A M E S }
P A T H _ S U F F I X E S b i n s b i n
D O C " M P I c o m p i l e r f o r $ { L A N G } "
)
if ( "${MPI_${LANG}_COMPILER}" STREQUAL "${CMAKE_${LANG}_COMPILER}" )
set ( MPI_PINNED_COMPILER TRUE )
# If we haven't made the implicit compiler test yet, perform it now.
if ( NOT MPI_ ${ LANG } _TRIED_IMPLICIT )
_MPI_create_imported_target ( ${ LANG } )
_MPI_check_lang_works ( ${ LANG } )
endif ( )
# Should the MPI compiler not work implicitly for MPI, still interrogate it.
# Otherwise, MPI compilers for which CMake has separate linking stages, e.g. Intel MPI on Windows where link.exe is being used
# directly during linkage instead of CMAKE_<LANG>_COMPILER will not work.
if ( NOT MPI_ ${ LANG } _WORKS )
set ( MPI_ ${ LANG } _WORKS_IMPLICIT FALSE )
_MPI_interrogate_compiler ( ${ LANG } )
else ( )
set ( MPI_ ${ LANG } _WORKS_IMPLICIT TRUE )
endif ( )
elseif ( MPI_ ${ LANG } _COMPILER )
_MPI_interrogate_compiler ( ${ LANG } )
endif ( )
endif ( )
if ( NOT MPI_SKIP_GUESSING AND NOT MPI_ ${ LANG } _WRAPPER_FOUND AND NOT MPI_PINNED_COMPILER )
# For C++, we may use the settings for C. Should a given compiler wrapper for C++ not exist, but one for C does, we copy over the
# settings for C. An MPI distribution that is in this situation would be IBM Platform MPI.
if ( "${LANG}" STREQUAL "CXX" AND MPI_C_WRAPPER_FOUND )
set ( MPI_ ${ LANG } _COMPILE_OPTIONS ${ MPI_C_COMPILE_OPTIONS } CACHE STRING "MPI ${LANG} compilation options" )
set ( MPI_ ${ LANG } _COMPILE_DEFINITIONS ${ MPI_C_COMPILE_DEFINITIONS } CACHE STRING "MPI ${LANG} compilation definitions" )
set ( MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS ${ MPI_C_INCLUDE_DIRS } CACHE STRING "MPI ${LANG} additional include directories" )
set ( MPI_ ${ LANG } _LINK_FLAGS ${ MPI_C_LINK_FLAGS } CACHE STRING "MPI ${LANG} linker flags" )
set ( MPI_ ${ LANG } _LIB_NAMES ${ MPI_C_LIB_NAMES } CACHE STRING "MPI ${LANG} libraries to link against" )
else ( )
_MPI_guess_settings ( ${ LANG } )
endif ( )
endif ( )
endif ( )
endif ( )
_MPI_split_include_dirs ( ${ LANG } )
_MPI_assemble_include_dirs ( ${ LANG } )
_MPI_assemble_libraries ( ${ LANG } )
_MPI_adjust_compile_definitions ( ${ LANG } )
# We always create imported targets even if they're empty
_MPI_create_imported_target ( ${ LANG } )
if ( NOT MPI_ ${ LANG } _WORKS )
_MPI_check_lang_works ( ${ LANG } )
endif ( )
# Next, we'll initialize the MPI variables that have not been previously set.
set ( MPI_ ${ LANG } _COMPILE_OPTIONS "" CACHE STRING "MPI ${LANG} compilation flags" )
set ( MPI_ ${ LANG } _COMPILE_DEFINITIONS "" CACHE STRING "MPI ${LANG} compilation definitions" )
set ( MPI_ ${ LANG } _ADDITIONAL_INCLUDE_DIRS "" CACHE STRING "MPI ${LANG} additional include directories" )
set ( MPI_ ${ LANG } _LINK_FLAGS "" CACHE STRING "MPI ${LANG} linker flags" )
if ( NOT MPI_ ${ LANG } _COMPILER STREQUAL CMAKE_ ${ LANG } _COMPILER )
set ( MPI_ ${ LANG } _LIB_NAMES "" CACHE STRING "MPI ${LANG} libraries to link against" )
endif ( )
mark_as_advanced ( MPI_ ${ LANG } _COMPILE_OPTIONS MPI_ ${ LANG } _COMPILE_DEFINITIONS MPI_ ${ LANG } _LINK_FLAGS
M P I _ $ { L A N G } _ L I B _ N A M E S M P I _ $ { L A N G } _ A D D I T I O N A L _ I N C L U D E _ D I R S M P I _ $ { L A N G } _ C O M P I L E R )
# If we've found MPI, then we'll perform additional analysis: Determine the MPI version, MPI library version, supported
# MPI APIs (i.e. MPI-2 C++ bindings). For Fortran we also need to find specific parameters if we're under MPI-3.
if ( MPI_ ${ LANG } _WORKS )
if ( "${LANG}" STREQUAL "CXX" AND NOT DEFINED MPI_MPICXX_FOUND )
if ( NOT MPI_CXX_SKIP_MPICXX AND NOT MPI_CXX_VALIDATE_SKIP_MPICXX )
_MPI_try_staged_settings ( ${ LANG } test_mpi MPICXX FALSE )
if ( MPI_RESULT_ ${ LANG } _test_mpi_MPICXX )
set ( MPI_MPICXX_FOUND TRUE )
else ( )
set ( MPI_MPICXX_FOUND FALSE )
endif ( )
else ( )
set ( MPI_MPICXX_FOUND FALSE )
endif ( )
endif ( )
# At this point, we know the bindings present but not the MPI version or anything else.
if ( NOT DEFINED MPI_ ${ LANG } _VERSION )
unset ( MPI_ ${ LANG } _VERSION_MAJOR )
unset ( MPI_ ${ LANG } _VERSION_MINOR )
endif ( )
set ( MPI_BIN_FOLDER ${ CMAKE_BINARY_DIR } ${ CMAKE_FILES_DIRECTORY } /FindMPI )
# For Fortran, we'll want to use the most modern MPI binding to test capabilities other than the
# Fortran parameters, since those depend on the method of consumption.
# For C++, we can always use the C bindings, and should do so, since the C++ bindings do not exist in MPI-3
# whereas the C bindings do, and the C++ bindings never offered any feature advantage over their C counterparts.
if ( "${LANG}" STREQUAL "Fortran" )
if ( MPI_ ${ LANG } _HAVE_F08_MODULE )
set ( MPI_ ${ LANG } _HIGHEST_METHOD F08_MODULE )
elseif ( MPI_ ${ LANG } _HAVE_F90_MODULE )
set ( MPI_ ${ LANG } _HIGHEST_METHOD F90_MODULE )
else ( )
set ( MPI_ ${ LANG } _HIGHEST_METHOD F77_HEADER )
endif ( )
# Another difference between C and Fortran is that we can't use the preprocessor to determine whether MPI_VERSION
# and MPI_SUBVERSION are provided. These defines did not exist in MPI 1.0 and 1.1 and therefore might not
# exist. For C/C++, test_mpi.c will handle the MPI_VERSION extraction, but for Fortran, we need mpiver.f90.
if ( NOT DEFINED MPI_ ${ LANG } _VERSION )
_MPI_try_staged_settings ( ${ LANG } mpiver ${ MPI_${LANG } _HIGHEST_METHOD} FALSE )
if ( MPI_RESULT_ ${ LANG } _mpiver_ ${ MPI_${LANG } _HIGHEST_METHOD} )
file ( STRINGS ${ MPI_BIN_FOLDER } /mpiver_ ${ LANG } .bin _MPI_VERSION_STRING LIMIT_COUNT 1 REGEX "INFO:MPI-VER" )
if ( "${_MPI_VERSION_STRING}" MATCHES ".*INFO:MPI-VER\\[([0-9]+)\\.([0-9]+)\\].*" )
set ( MPI_ ${ LANG } _VERSION_MAJOR "${CMAKE_MATCH_1}" )
set ( MPI_ ${ LANG } _VERSION_MINOR "${CMAKE_MATCH_2}" )
set ( MPI_ ${ LANG } _VERSION "${MPI_${LANG}_VERSION_MAJOR}.${MPI_${LANG}_VERSION_MINOR}" )
endif ( )
endif ( )
endif ( )
# Finally, we want to find out which capabilities a given interface supports, compare the MPI-3 standard.
# This is determined by interface specific parameters MPI_SUBARRAYS_SUPPORTED and MPI_ASYNC_PROTECTS_NONBLOCKING
# and might vary between the different methods of consumption.
if ( MPI_DETERMINE_Fortran_CAPABILITIES AND NOT MPI_Fortran_CAPABILITIES_DETERMINED )
foreach ( mpimethod IN ITEMS F08_MODULE F90_MODULE F77_HEADER )
if ( MPI_ ${ LANG } _HAVE_ ${ mpimethod } )
set ( MPI_ ${ LANG } _ ${ mpimethod } _SUBARRAYS FALSE )
set ( MPI_ ${ LANG } _ ${ mpimethod } _ASYNCPROT FALSE )
_MPI_try_staged_settings ( ${ LANG } fortranparam_mpi ${ mpimethod } TRUE )
if ( MPI_RESULT_ ${ LANG } _fortranparam_mpi_ ${ mpimethod } AND
N O T " $ { M P I _ R U N _ R E S U L T _ $ { L A N G } _ f o r t r a n p a r a m _ m p i _ $ { m p i m e t h o d } } " S T R E Q U A L " F A I L E D _ T O _ R U N " )
if ( "${MPI_RUN_OUTPUT_${LANG}_fortranparam_mpi_${mpimethod}}" MATCHES
" . * I N F O : S U B A R R A Y S \ \ [ * ( [ T F ] ) * \ \ ] - A S Y N C P R O T \ \ [ * ( [ T F ] ) * \ \ ] . * " )
if ( "${CMAKE_MATCH_1}" STREQUAL "T" )
set ( MPI_ ${ LANG } _ ${ mpimethod } _SUBARRAYS TRUE )
endif ( )
if ( "${CMAKE_MATCH_2}" STREQUAL "T" )
set ( MPI_ ${ LANG } _ ${ mpimethod } _ASYNCPROT TRUE )
endif ( )
endif ( )
endif ( )
endif ( )
endforeach ( )
set ( MPI_Fortran_CAPABILITIES_DETERMINED TRUE )
endif ( )
else ( )
set ( MPI_ ${ LANG } _HIGHEST_METHOD normal )
# By the MPI-2 standard, MPI_VERSION and MPI_SUBVERSION are valid for both C and C++ bindings.
if ( NOT DEFINED MPI_ ${ LANG } _VERSION )
file ( STRINGS ${ MPI_BIN_FOLDER } /test_mpi_ ${ LANG } .bin _MPI_VERSION_STRING LIMIT_COUNT 1 REGEX "INFO:MPI-VER" )
if ( "${_MPI_VERSION_STRING}" MATCHES ".*INFO:MPI-VER\\[([0-9]+)\\.([0-9]+)\\].*" )
set ( MPI_ ${ LANG } _VERSION_MAJOR "${CMAKE_MATCH_1}" )
set ( MPI_ ${ LANG } _VERSION_MINOR "${CMAKE_MATCH_2}" )
set ( MPI_ ${ LANG } _VERSION "${MPI_${LANG}_VERSION_MAJOR}.${MPI_${LANG}_VERSION_MINOR}" )
endif ( )
endif ( )
endif ( )
unset ( MPI_BIN_FOLDER )
# At this point, we have dealt with determining the MPI version and parameters for each Fortran method available.
# The one remaining issue is to determine which MPI library is installed.
# Determining the version and vendor of the MPI library is only possible via MPI_Get_library_version() at runtime,
# and therefore we cannot do this while cross-compiling (a user may still define MPI_<lang>_LIBRARY_VERSION_STRING
# themselves and we'll attempt splitting it, which is equivalent to provide the try_run output).
# It's also worth noting that the installed version string can depend on the language, or on the system the binary
# runs on if MPI is not statically linked.
if ( MPI_DETERMINE_LIBRARY_VERSION AND NOT MPI_ ${ LANG } _LIBRARY_VERSION_STRING )
_MPI_try_staged_settings ( ${ LANG } libver_mpi ${ MPI_${LANG } _HIGHEST_METHOD} TRUE )
if ( MPI_RESULT_ ${ LANG } _libver_mpi_ ${ MPI_${LANG } _HIGHEST_METHOD} AND
" $ { M P I _ R U N _ R E S U L T _ $ { L A N G } _ l i b v e r _ m p i _ $ { M P I _ $ { L A N G } _ H I G H E S T _ M E T H O D } } " E Q U A L " 0 " )
string ( STRIP "${MPI_RUN_OUTPUT_${LANG}_libver_mpi_${MPI_${LANG}_HIGHEST_METHOD}}"
M P I _ $ { L A N G } _ L I B R A R Y _ V E R S I O N _ S T R I N G )
else ( )
set ( MPI_ ${ LANG } _LIBRARY_VERSION_STRING "NOTFOUND" )
endif ( )
endif ( )
endif ( )
set ( MPI_ ${ LANG } _FIND_QUIETLY ${ MPI_FIND_QUIETLY } )
set ( MPI_ ${ LANG } _FIND_VERSION ${ MPI_FIND_VERSION } )
set ( MPI_ ${ LANG } _FIND_VERSION_EXACT ${ MPI_FIND_VERSION_EXACT } )
unset ( MPI_ ${ LANG } _REQUIRED_VARS )
if ( NOT "${MPI_${LANG}_COMPILER}" STREQUAL "${CMAKE_${LANG}_COMPILER}" )
foreach ( mpilibname IN LISTS MPI_ ${ LANG } _LIB_NAMES )
list ( APPEND MPI_ ${ LANG } _REQUIRED_VARS "MPI_${mpilibname}_LIBRARY" )
endforeach ( )
list ( APPEND MPI_ ${ LANG } _REQUIRED_VARS "MPI_${LANG}_LIB_NAMES" )
if ( "${LANG}" STREQUAL "Fortran" )
# For Fortran we only need one of the module or header directories to have *some* support for MPI.
if ( NOT MPI_ ${ LANG } _MODULE_DIR )
list ( APPEND MPI_ ${ LANG } _REQUIRED_VARS "MPI_${LANG}_F77_HEADER_DIR" )
endif ( )
if ( NOT MPI_ ${ LANG } _F77_HEADER_DIR )
list ( APPEND MPI_ ${ LANG } _REQUIRED_VARS "MPI_${LANG}_MODULE_DIR" )
endif ( )
else ( )
list ( APPEND MPI_ ${ LANG } _REQUIRED_VARS "MPI_${LANG}_HEADER_DIR" )
endif ( )
if ( MPI_ ${ LANG } _ADDITIONAL_INCLUDE_VARS )
foreach ( mpiincvar IN LISTS MPI_ ${ LANG } _ADDITIONAL_INCLUDE_VARS )
list ( APPEND MPI_ ${ LANG } _REQUIRED_VARS "MPI_${mpiincvar}_INCLUDE_DIR" )
endforeach ( )
endif ( )
# Append the works variable now. If the settings did not work, this will show up properly.
list ( APPEND MPI_ ${ LANG } _REQUIRED_VARS "MPI_${LANG}_WORKS" )
else ( )
# If the compiler worked implicitly, use its path as output.
# Should the compiler variable be set, we also require it to work.
list ( APPEND MPI_ ${ LANG } _REQUIRED_VARS "MPI_${LANG}_COMPILER" )
if ( MPI_ ${ LANG } _COMPILER )
list ( APPEND MPI_ ${ LANG } _REQUIRED_VARS "MPI_${LANG}_WORKS" )
endif ( )
endif ( )
find_package_handle_standard_args ( MPI_ ${ LANG } REQUIRED_VARS ${ MPI_${LANG } _REQUIRED_VARS}
V E R S I O N _ V A R M P I _ $ { L A N G } _ V E R S I O N )
if ( DEFINED MPI_ ${ LANG } _VERSION )
if ( NOT _MPI_MIN_VERSION OR _MPI_MIN_VERSION VERSION_GREATER MPI_ ${ LANG } _VERSION )
set ( _MPI_MIN_VERSION MPI_ ${ LANG } _VERSION )
endif ( )
endif ( )
endif ( )
endforeach ( )
unset ( _MPI_REQ_VARS )
foreach ( LANG IN ITEMS C CXX Fortran )
if ( ( NOT MPI_FIND_COMPONENTS AND CMAKE_ ${ LANG } _COMPILER_LOADED ) OR LANG IN_LIST MPI_FIND_COMPONENTS )
list ( APPEND _MPI_REQ_VARS "MPI_${LANG}_FOUND" )
endif ( )
endforeach ( )
if ( MPICXX IN_LIST MPI_FIND_COMPONENTS )
list ( APPEND _MPI_REQ_VARS "MPI_MPICXX_FOUND" )
endif ( )
find_package_handle_standard_args ( MPI
R E Q U I R E D _ V A R S $ { _ M P I _ R E Q _ V A R S }
V E R S I O N _ V A R $ { _ M P I _ M I N _ V E R S I O N }
H A N D L E _ C O M P O N E N T S )
#=============================================================================
# More backward compatibility stuff
# For compatibility reasons, we also define MPIEXEC
set ( MPIEXEC "${MPIEXEC_EXECUTABLE}" )
# Copy over MPI_<LANG>_INCLUDE_PATH from the assembled INCLUDE_DIRS.
foreach ( LANG IN ITEMS C CXX Fortran )
if ( MPI_ ${ LANG } _FOUND )
set ( MPI_ ${ LANG } _INCLUDE_PATH "${MPI_${LANG}_INCLUDE_DIRS}" )
unset ( MPI_ ${ LANG } _COMPILE_FLAGS )
if ( MPI_ ${ LANG } _COMPILE_OPTIONS )
set ( MPI_ ${ LANG } _COMPILE_FLAGS "${MPI_${LANG}_COMPILE_OPTIONS}" )
endif ( )
if ( MPI_ ${ LANG } _COMPILE_DEFINITIONS )
foreach ( _MPI_DEF IN LISTS MPI_ ${ LANG } _COMPILE_DEFINITIONS )
string ( APPEND MPI_ ${ LANG } _COMPILE_FLAGS " -D${_MPI_DEF}" )
endforeach ( )
endif ( )
endif ( )
endforeach ( )
# Bare MPI sans ${LANG} vars are set to CXX then C, depending on what was found.
# This mimics the behavior of the old language-oblivious FindMPI.
set ( _MPI_OLD_VARS COMPILER INCLUDE_PATH COMPILE_FLAGS LINK_FLAGS LIBRARIES )
if ( MPI_CXX_FOUND )
foreach ( var ${ _MPI_OLD_VARS } )
set ( MPI_ ${ var } ${ MPI_CXX_${var } } )
endforeach ( )
elseif ( MPI_C_FOUND )
foreach ( var ${ _MPI_OLD_VARS } )
set ( MPI_ ${ var } ${ MPI_C_${var } } )
endforeach ( )
endif ( )
# Chop MPI_LIBRARIES into the old-style MPI_LIBRARY and MPI_EXTRA_LIBRARY, and set them in cache.
if ( MPI_LIBRARIES )
list ( GET MPI_LIBRARIES 0 MPI_LIBRARY_WORK )
set ( MPI_LIBRARY "${MPI_LIBRARY_WORK}" )
unset ( MPI_LIBRARY_WORK )
else ( )
set ( MPI_LIBRARY "MPI_LIBRARY-NOTFOUND" )
endif ( )
list ( LENGTH MPI_LIBRARIES MPI_NUMLIBS )
if ( MPI_NUMLIBS GREATER 1 )
set ( MPI_EXTRA_LIBRARY_WORK "${MPI_LIBRARIES}" )
list ( REMOVE_AT MPI_EXTRA_LIBRARY_WORK 0 )
set ( MPI_EXTRA_LIBRARY "${MPI_EXTRA_LIBRARY_WORK}" )
unset ( MPI_EXTRA_LIBRARY_WORK )
else ( )
set ( MPI_EXTRA_LIBRARY "MPI_EXTRA_LIBRARY-NOTFOUND" )
endif ( )
set ( MPI_IGNORE_LEGACY_VARIABLES TRUE )
#=============================================================================
# unset these vars to cleanup namespace
unset ( _MPI_OLD_VARS )
unset ( _MPI_PREFIX_PATH )
unset ( _MPI_BASE_DIR )
foreach ( lang C CXX Fortran )
unset ( _MPI_ ${ LANG } _COMPILER_NAMES )
endforeach ( )
cmake_policy ( POP )