You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5609 lines
152 KiB
5609 lines
152 KiB
/* Distributed under the OSI-approved BSD 3-Clause License. See accompanying
|
|
file Copyright.txt or https://cmake.org/licensing#kwsys for details. */
|
|
#if defined(_WIN32)
|
|
# define NOMINMAX // use our min,max
|
|
# if !defined(_WIN32_WINNT) && defined(_MSC_VER) && _MSC_VER >= 1800
|
|
# define _WIN32_WINNT 0x0600 // vista
|
|
# endif
|
|
# if !defined(_WIN32_WINNT) && !(defined(_MSC_VER) && _MSC_VER < 1300)
|
|
# define _WIN32_WINNT 0x0501
|
|
# endif
|
|
# include <winsock.h> // WSADATA, include before sys/types.h
|
|
#endif
|
|
|
|
#if (defined(__GNUC__) || defined(__PGI)) && !defined(_GNU_SOURCE)
|
|
# define _GNU_SOURCE
|
|
#endif
|
|
|
|
// TODO:
|
|
// We need an alternative implementation for many functions in this file
|
|
// when USE_ASM_INSTRUCTIONS gets defined as 0.
|
|
//
|
|
// Consider using these on Win32/Win64 for some of them:
|
|
//
|
|
// IsProcessorFeaturePresent
|
|
// http://msdn.microsoft.com/en-us/library/ms724482(VS.85).aspx
|
|
//
|
|
// GetProcessMemoryInfo
|
|
// http://msdn.microsoft.com/en-us/library/ms683219(VS.85).aspx
|
|
|
|
#include "kwsysPrivate.h"
|
|
#include KWSYS_HEADER(SystemInformation.hxx)
|
|
#include KWSYS_HEADER(Process.h)
|
|
|
|
// Work-around CMake dependency scanning limitation. This must
|
|
// duplicate the above list of headers.
|
|
#if 0
|
|
# include "Process.h.in"
|
|
# include "SystemInformation.hxx.in"
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <bitset>
|
|
#include <cassert>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <set>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#if defined(_WIN32)
|
|
# include <windows.h>
|
|
# if defined(_MSC_VER) && _MSC_VER >= 1800
|
|
# define KWSYS_WINDOWS_DEPRECATED_GetVersionEx
|
|
# endif
|
|
# include <errno.h>
|
|
# if defined(KWSYS_SYS_HAS_PSAPI)
|
|
# include <psapi.h>
|
|
# endif
|
|
# if !defined(siginfo_t)
|
|
typedef int siginfo_t;
|
|
# endif
|
|
#else
|
|
# include <sys/types.h>
|
|
|
|
# include <cerrno> // extern int errno;
|
|
# include <csignal>
|
|
# include <fcntl.h>
|
|
# include <sys/resource.h> // getrlimit
|
|
# include <sys/time.h>
|
|
# include <sys/utsname.h> // int uname(struct utsname *buf);
|
|
# include <unistd.h>
|
|
#endif
|
|
|
|
#if defined(__CYGWIN__) && !defined(_WIN32)
|
|
# include <windows.h>
|
|
# undef _WIN32
|
|
#endif
|
|
|
|
#if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \
|
|
defined(__DragonFly__)
|
|
# include <netdb.h>
|
|
# include <netinet/in.h>
|
|
# include <sys/param.h>
|
|
# include <sys/socket.h>
|
|
# include <sys/sysctl.h>
|
|
# if defined(KWSYS_SYS_HAS_IFADDRS_H)
|
|
# include <ifaddrs.h>
|
|
# include <net/if.h>
|
|
# define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN
|
|
# endif
|
|
#endif
|
|
|
|
#if defined(KWSYS_SYS_HAS_MACHINE_CPU_H)
|
|
# include <machine/cpu.h>
|
|
#endif
|
|
|
|
#ifdef __APPLE__
|
|
# include <mach/host_info.h>
|
|
# include <mach/mach.h>
|
|
# include <mach/mach_types.h>
|
|
# include <mach/vm_statistics.h>
|
|
# include <netdb.h>
|
|
# include <netinet/in.h>
|
|
# include <sys/socket.h>
|
|
# include <sys/sysctl.h>
|
|
# if defined(KWSYS_SYS_HAS_IFADDRS_H)
|
|
# include <ifaddrs.h>
|
|
# include <net/if.h>
|
|
# define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN
|
|
# endif
|
|
# if !(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ - 0 >= 1050)
|
|
# undef KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE
|
|
# endif
|
|
#endif
|
|
|
|
#if defined(__linux) || defined(__sun) || defined(_SCO_DS) || \
|
|
defined(__GLIBC__) || defined(__GNU__)
|
|
# include <netdb.h>
|
|
# include <netinet/in.h>
|
|
# include <sys/socket.h>
|
|
# if defined(KWSYS_SYS_HAS_IFADDRS_H)
|
|
# include <ifaddrs.h>
|
|
# include <net/if.h>
|
|
# if defined(__LSB_VERSION__)
|
|
/* LSB has no getifaddrs */
|
|
# elif defined(__ANDROID_API__) && __ANDROID_API__ < 24
|
|
/* Android has no getifaddrs prior to API 24. */
|
|
# else
|
|
# define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN
|
|
# endif
|
|
# endif
|
|
# if defined(KWSYS_CXX_HAS_RLIMIT64)
|
|
using ResourceLimitType = struct rlimit64;
|
|
# define GetResourceLimit getrlimit64
|
|
# else
|
|
typedef struct rlimit ResourceLimitType;
|
|
# define GetResourceLimit getrlimit
|
|
# endif
|
|
#elif defined(__hpux)
|
|
# include <sys/param.h>
|
|
# include <sys/pstat.h>
|
|
# if defined(KWSYS_SYS_HAS_MPCTL_H)
|
|
# include <sys/mpctl.h>
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef __HAIKU__
|
|
# include <OS.h>
|
|
#endif
|
|
|
|
#if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
|
|
# include <execinfo.h>
|
|
# if defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE)
|
|
# include <cxxabi.h>
|
|
# endif
|
|
# if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
|
|
# include <dlfcn.h>
|
|
# endif
|
|
#else
|
|
# undef KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE
|
|
# undef KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP
|
|
#endif
|
|
|
|
#include <cctype> // int isdigit(int c);
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <memory.h>
|
|
|
|
#if defined(_MSC_VER) && (_MSC_VER >= 1300) && !defined(_WIN64) && \
|
|
!defined(__clang__)
|
|
# define USE_ASM_INSTRUCTIONS 1
|
|
#else
|
|
# define USE_ASM_INSTRUCTIONS 0
|
|
#endif
|
|
|
|
#if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__clang__) && \
|
|
!defined(_M_ARM64)
|
|
# include <intrin.h>
|
|
# define USE_CPUID_INTRINSICS 1
|
|
#else
|
|
# define USE_CPUID_INTRINSICS 0
|
|
#endif
|
|
|
|
#if USE_ASM_INSTRUCTIONS || USE_CPUID_INTRINSICS
|
|
# define USE_CPUID 1
|
|
#else
|
|
# define USE_CPUID 0
|
|
#endif
|
|
|
|
#if USE_CPUID
|
|
|
|
# define CPUID_AWARE_COMPILER
|
|
|
|
/**
|
|
* call CPUID instruction
|
|
*
|
|
* Will return false if the instruction failed.
|
|
*/
|
|
static bool call_cpuid(int select, int result[4])
|
|
{
|
|
# if USE_CPUID_INTRINSICS
|
|
__cpuid(result, select);
|
|
return true;
|
|
# else
|
|
int tmp[4];
|
|
# if defined(_MSC_VER)
|
|
// Use SEH to determine CPUID presence
|
|
__try {
|
|
_asm {
|
|
# ifdef CPUID_AWARE_COMPILER
|
|
; we must push/pop the registers <<CPUID>> writes to, as the
|
|
; optimiser does not know about <<CPUID>>, and so does not expect
|
|
; these registers to change.
|
|
push eax
|
|
push ebx
|
|
push ecx
|
|
push edx
|
|
# endif
|
|
; <<CPUID>>
|
|
mov eax, select
|
|
# ifdef CPUID_AWARE_COMPILER
|
|
cpuid
|
|
# else
|
|
_asm _emit 0x0f
|
|
_asm _emit 0xa2
|
|
# endif
|
|
mov tmp[0 * TYPE int], eax
|
|
mov tmp[1 * TYPE int], ebx
|
|
mov tmp[2 * TYPE int], ecx
|
|
mov tmp[3 * TYPE int], edx
|
|
|
|
# ifdef CPUID_AWARE_COMPILER
|
|
pop edx
|
|
pop ecx
|
|
pop ebx
|
|
pop eax
|
|
# endif
|
|
}
|
|
} __except (1) {
|
|
return false;
|
|
}
|
|
|
|
memcpy(result, tmp, sizeof(tmp));
|
|
# endif
|
|
|
|
// The cpuid instruction succeeded.
|
|
return true;
|
|
# endif
|
|
}
|
|
#endif
|
|
|
|
namespace KWSYS_NAMESPACE {
|
|
template <typename T>
|
|
T min(T a, T b)
|
|
{
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
extern "C" {
|
|
using SigAction = void (*)(int, siginfo_t*, void*);
|
|
}
|
|
|
|
// Define SystemInformationImplementation class
|
|
using DELAY_FUNC = void (*)(unsigned int);
|
|
|
|
class SystemInformationImplementation
|
|
{
|
|
public:
|
|
SystemInformationImplementation();
|
|
~SystemInformationImplementation() = default;
|
|
|
|
const char* GetVendorString() const;
|
|
const char* GetVendorID();
|
|
std::string GetTypeID() const;
|
|
std::string GetFamilyID() const;
|
|
std::string GetModelID() const;
|
|
std::string GetModelName() const;
|
|
std::string GetSteppingCode() const;
|
|
const char* GetExtendedProcessorName() const;
|
|
const char* GetProcessorSerialNumber() const;
|
|
int GetProcessorCacheSize() const;
|
|
unsigned int GetLogicalProcessorsPerPhysical() const;
|
|
float GetProcessorClockFrequency() const;
|
|
int GetProcessorAPICID() const;
|
|
int GetProcessorCacheXSize(long int) const;
|
|
bool DoesCPUSupportFeature(long int) const;
|
|
|
|
const char* GetOSName();
|
|
const char* GetHostname();
|
|
int GetFullyQualifiedDomainName(std::string& fqdn);
|
|
const char* GetOSRelease();
|
|
const char* GetOSVersion();
|
|
const char* GetOSPlatform();
|
|
|
|
bool Is64Bits() const;
|
|
|
|
unsigned int GetNumberOfLogicalCPU() const; // per physical cpu
|
|
unsigned int GetNumberOfPhysicalCPU() const;
|
|
|
|
bool DoesCPUSupportCPUID();
|
|
|
|
// Retrieve memory information in MiB.
|
|
size_t GetTotalVirtualMemory() const;
|
|
size_t GetAvailableVirtualMemory() const;
|
|
size_t GetTotalPhysicalMemory() const;
|
|
size_t GetAvailablePhysicalMemory() const;
|
|
|
|
long long GetProcessId();
|
|
|
|
// Retrieve memory information in KiB.
|
|
long long GetHostMemoryTotal();
|
|
long long GetHostMemoryAvailable(const char* hostLimitEnvVarName);
|
|
long long GetHostMemoryUsed();
|
|
|
|
long long GetProcMemoryAvailable(const char* hostLimitEnvVarName,
|
|
const char* procLimitEnvVarName);
|
|
long long GetProcMemoryUsed();
|
|
|
|
double GetLoadAverage();
|
|
|
|
// enable/disable stack trace signal handler.
|
|
static void SetStackTraceOnError(int enable);
|
|
|
|
// get current stack
|
|
static std::string GetProgramStack(int firstFrame, int wholePath);
|
|
|
|
/** Run the different checks */
|
|
void RunCPUCheck();
|
|
void RunOSCheck();
|
|
void RunMemoryCheck();
|
|
|
|
public:
|
|
using ID = struct tagID
|
|
|
|
{
|
|
|
|
int Type;
|
|
|
|
int Family;
|
|
|
|
int Model;
|
|
|
|
int Revision;
|
|
|
|
int ExtendedFamily;
|
|
|
|
int ExtendedModel;
|
|
|
|
std::string ProcessorName;
|
|
|
|
std::string Vendor;
|
|
|
|
std::string SerialNumber;
|
|
|
|
std::string ModelName;
|
|
};
|
|
|
|
using CPUPowerManagement = struct tagCPUPowerManagement
|
|
|
|
{
|
|
|
|
bool HasVoltageID;
|
|
|
|
bool HasFrequencyID;
|
|
|
|
bool HasTempSenseDiode;
|
|
};
|
|
|
|
using CPUExtendedFeatures = struct tagCPUExtendedFeatures
|
|
|
|
{
|
|
|
|
bool Has3DNow;
|
|
|
|
bool Has3DNowPlus;
|
|
|
|
bool SupportsMP;
|
|
|
|
bool HasMMXPlus;
|
|
|
|
bool HasSSEMMX;
|
|
|
|
unsigned int LogicalProcessorsPerPhysical;
|
|
|
|
int APIC_ID;
|
|
|
|
CPUPowerManagement PowerManagement;
|
|
};
|
|
|
|
using CPUFeatures = struct CPUtagFeatures
|
|
|
|
{
|
|
|
|
bool HasFPU;
|
|
|
|
bool HasTSC;
|
|
|
|
bool HasMMX;
|
|
|
|
bool HasSSE;
|
|
|
|
bool HasSSEFP;
|
|
|
|
bool HasSSE2;
|
|
|
|
bool HasIA64;
|
|
|
|
bool HasAPIC;
|
|
|
|
bool HasCMOV;
|
|
|
|
bool HasMTRR;
|
|
|
|
bool HasACPI;
|
|
|
|
bool HasSerial;
|
|
|
|
bool HasThermal;
|
|
|
|
int CPUSpeed;
|
|
|
|
int L1CacheSize;
|
|
|
|
int L2CacheSize;
|
|
|
|
int L3CacheSize;
|
|
|
|
CPUExtendedFeatures ExtendedFeatures;
|
|
};
|
|
|
|
enum Manufacturer
|
|
{
|
|
AMD,
|
|
Intel,
|
|
NSC,
|
|
UMC,
|
|
Cyrix,
|
|
NexGen,
|
|
IDT,
|
|
Rise,
|
|
Transmeta,
|
|
Sun,
|
|
IBM,
|
|
Motorola,
|
|
HP,
|
|
Hygon,
|
|
Zhaoxin,
|
|
Apple,
|
|
UnknownManufacturer
|
|
};
|
|
|
|
protected:
|
|
// For windows
|
|
bool RetrieveCPUFeatures();
|
|
bool RetrieveCPUIdentity();
|
|
bool RetrieveCPUCacheDetails();
|
|
bool RetrieveClassicalCPUCacheDetails();
|
|
bool RetrieveCPUClockSpeed();
|
|
bool RetrieveClassicalCPUClockSpeed();
|
|
bool RetrieveCPUExtendedLevelSupport(int);
|
|
bool RetrieveExtendedCPUFeatures();
|
|
bool RetrieveProcessorSerialNumber();
|
|
bool RetrieveCPUPowerManagement();
|
|
bool RetrieveClassicalCPUIdentity();
|
|
bool RetrieveExtendedCPUIdentity();
|
|
|
|
// Processor information
|
|
Manufacturer ChipManufacturer;
|
|
CPUFeatures Features;
|
|
ID ChipID;
|
|
float CPUSpeedInMHz;
|
|
unsigned int NumberOfLogicalCPU;
|
|
unsigned int NumberOfPhysicalCPU;
|
|
|
|
void CPUCountWindows(); // For windows
|
|
unsigned char GetAPICId(); // For windows
|
|
bool IsSMTSupported() const;
|
|
static long long GetCyclesDifference(DELAY_FUNC,
|
|
unsigned int); // For windows
|
|
|
|
// For Linux and Cygwin, /proc/cpuinfo formats are slightly different
|
|
bool RetreiveInformationFromCpuInfoFile();
|
|
std::string ExtractValueFromCpuInfoFile(std::string buffer, const char* word,
|
|
size_t init = 0);
|
|
|
|
bool QueryLinuxMemory();
|
|
bool QueryCygwinMemory();
|
|
|
|
static void Delay(unsigned int);
|
|
static void DelayOverhead(unsigned int);
|
|
|
|
void FindManufacturer(const std::string& family = "");
|
|
|
|
// For Mac
|
|
bool ParseSysCtl();
|
|
int CallSwVers(const char* arg, std::string& ver);
|
|
void TrimNewline(std::string&);
|
|
std::string ExtractValueFromSysCtl(const char* word);
|
|
std::string SysCtlBuffer;
|
|
|
|
// For Solaris
|
|
bool QuerySolarisMemory();
|
|
bool QuerySolarisProcessor();
|
|
std::string ParseValueFromKStat(const char* arguments);
|
|
std::string RunProcess(std::vector<const char*> args);
|
|
|
|
// For Haiku OS
|
|
bool QueryHaikuInfo();
|
|
|
|
// For QNX
|
|
bool QueryQNXMemory();
|
|
bool QueryQNXProcessor();
|
|
|
|
// For OpenBSD, FreeBSD, NetBSD, DragonFly
|
|
bool QueryBSDMemory();
|
|
bool QueryBSDProcessor();
|
|
|
|
// For HP-UX
|
|
bool QueryHPUXMemory();
|
|
bool QueryHPUXProcessor();
|
|
|
|
// For Microsoft Windows
|
|
bool QueryWindowsMemory();
|
|
|
|
// For AIX
|
|
bool QueryAIXMemory();
|
|
|
|
bool QueryProcessorBySysconf();
|
|
bool QueryProcessor();
|
|
|
|
// Evaluate the memory information.
|
|
bool QueryMemoryBySysconf();
|
|
bool QueryMemory();
|
|
size_t TotalVirtualMemory;
|
|
size_t AvailableVirtualMemory;
|
|
size_t TotalPhysicalMemory;
|
|
size_t AvailablePhysicalMemory;
|
|
|
|
size_t CurrentPositionInFile;
|
|
|
|
// Operating System information
|
|
bool QueryOSInformation();
|
|
std::string OSName;
|
|
std::string Hostname;
|
|
std::string OSRelease;
|
|
std::string OSVersion;
|
|
std::string OSPlatform;
|
|
bool OSIs64Bit;
|
|
};
|
|
|
|
SystemInformation::SystemInformation()
|
|
{
|
|
this->Implementation = new SystemInformationImplementation;
|
|
}
|
|
|
|
SystemInformation::~SystemInformation()
|
|
{
|
|
delete this->Implementation;
|
|
}
|
|
|
|
const char* SystemInformation::GetVendorString()
|
|
{
|
|
return this->Implementation->GetVendorString();
|
|
}
|
|
|
|
const char* SystemInformation::GetVendorID()
|
|
{
|
|
return this->Implementation->GetVendorID();
|
|
}
|
|
|
|
std::string SystemInformation::GetTypeID()
|
|
{
|
|
return this->Implementation->GetTypeID();
|
|
}
|
|
|
|
std::string SystemInformation::GetFamilyID()
|
|
{
|
|
return this->Implementation->GetFamilyID();
|
|
}
|
|
|
|
std::string SystemInformation::GetModelID()
|
|
{
|
|
return this->Implementation->GetModelID();
|
|
}
|
|
|
|
std::string SystemInformation::GetModelName()
|
|
{
|
|
return this->Implementation->GetModelName();
|
|
}
|
|
|
|
std::string SystemInformation::GetSteppingCode()
|
|
{
|
|
return this->Implementation->GetSteppingCode();
|
|
}
|
|
|
|
const char* SystemInformation::GetExtendedProcessorName()
|
|
{
|
|
return this->Implementation->GetExtendedProcessorName();
|
|
}
|
|
|
|
const char* SystemInformation::GetProcessorSerialNumber()
|
|
{
|
|
return this->Implementation->GetProcessorSerialNumber();
|
|
}
|
|
|
|
int SystemInformation::GetProcessorCacheSize()
|
|
{
|
|
return this->Implementation->GetProcessorCacheSize();
|
|
}
|
|
|
|
unsigned int SystemInformation::GetLogicalProcessorsPerPhysical()
|
|
{
|
|
return this->Implementation->GetLogicalProcessorsPerPhysical();
|
|
}
|
|
|
|
float SystemInformation::GetProcessorClockFrequency()
|
|
{
|
|
return this->Implementation->GetProcessorClockFrequency();
|
|
}
|
|
|
|
int SystemInformation::GetProcessorAPICID()
|
|
{
|
|
return this->Implementation->GetProcessorAPICID();
|
|
}
|
|
|
|
int SystemInformation::GetProcessorCacheXSize(long int l)
|
|
{
|
|
return this->Implementation->GetProcessorCacheXSize(l);
|
|
}
|
|
|
|
bool SystemInformation::DoesCPUSupportFeature(long int i)
|
|
{
|
|
return this->Implementation->DoesCPUSupportFeature(i);
|
|
}
|
|
|
|
std::string SystemInformation::GetCPUDescription()
|
|
{
|
|
std::ostringstream oss;
|
|
oss << this->GetNumberOfPhysicalCPU() << " core ";
|
|
if (this->GetModelName().empty()) {
|
|
oss << this->GetProcessorClockFrequency() << " MHz "
|
|
<< this->GetVendorString() << " " << this->GetExtendedProcessorName();
|
|
} else {
|
|
oss << this->GetModelName();
|
|
}
|
|
|
|
// remove extra spaces
|
|
std::string tmp = oss.str();
|
|
size_t pos;
|
|
while ((pos = tmp.find(" ")) != std::string::npos) {
|
|
tmp.replace(pos, 2, " ");
|
|
}
|
|
|
|
return tmp;
|
|
}
|
|
|
|
const char* SystemInformation::GetOSName()
|
|
{
|
|
return this->Implementation->GetOSName();
|
|
}
|
|
|
|
const char* SystemInformation::GetHostname()
|
|
{
|
|
return this->Implementation->GetHostname();
|
|
}
|
|
|
|
std::string SystemInformation::GetFullyQualifiedDomainName()
|
|
{
|
|
std::string fqdn;
|
|
this->Implementation->GetFullyQualifiedDomainName(fqdn);
|
|
return fqdn;
|
|
}
|
|
|
|
const char* SystemInformation::GetOSRelease()
|
|
{
|
|
return this->Implementation->GetOSRelease();
|
|
}
|
|
|
|
const char* SystemInformation::GetOSVersion()
|
|
{
|
|
return this->Implementation->GetOSVersion();
|
|
}
|
|
|
|
const char* SystemInformation::GetOSPlatform()
|
|
{
|
|
return this->Implementation->GetOSPlatform();
|
|
}
|
|
|
|
int SystemInformation::GetOSIsWindows()
|
|
{
|
|
#if defined(_WIN32)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int SystemInformation::GetOSIsLinux()
|
|
{
|
|
#if defined(__linux)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int SystemInformation::GetOSIsApple()
|
|
{
|
|
#if defined(__APPLE__)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
std::string SystemInformation::GetOSDescription()
|
|
{
|
|
std::ostringstream oss;
|
|
oss << this->GetOSName() << " " << this->GetOSRelease() << " "
|
|
<< this->GetOSVersion();
|
|
|
|
return oss.str();
|
|
}
|
|
|
|
bool SystemInformation::Is64Bits()
|
|
{
|
|
return this->Implementation->Is64Bits();
|
|
}
|
|
|
|
unsigned int SystemInformation::GetNumberOfLogicalCPU() // per physical cpu
|
|
{
|
|
return this->Implementation->GetNumberOfLogicalCPU();
|
|
}
|
|
|
|
unsigned int SystemInformation::GetNumberOfPhysicalCPU()
|
|
{
|
|
return this->Implementation->GetNumberOfPhysicalCPU();
|
|
}
|
|
|
|
bool SystemInformation::DoesCPUSupportCPUID()
|
|
{
|
|
return this->Implementation->DoesCPUSupportCPUID();
|
|
}
|
|
|
|
// Retrieve memory information in MiB.
|
|
size_t SystemInformation::GetTotalVirtualMemory()
|
|
{
|
|
return this->Implementation->GetTotalVirtualMemory();
|
|
}
|
|
|
|
size_t SystemInformation::GetAvailableVirtualMemory()
|
|
{
|
|
return this->Implementation->GetAvailableVirtualMemory();
|
|
}
|
|
|
|
size_t SystemInformation::GetTotalPhysicalMemory()
|
|
{
|
|
return this->Implementation->GetTotalPhysicalMemory();
|
|
}
|
|
|
|
size_t SystemInformation::GetAvailablePhysicalMemory()
|
|
{
|
|
return this->Implementation->GetAvailablePhysicalMemory();
|
|
}
|
|
|
|
std::string SystemInformation::GetMemoryDescription(
|
|
const char* hostLimitEnvVarName, const char* procLimitEnvVarName)
|
|
{
|
|
std::ostringstream oss;
|
|
oss << "Host Total: " << this->GetHostMemoryTotal()
|
|
<< " KiB, Host Available: "
|
|
<< this->GetHostMemoryAvailable(hostLimitEnvVarName)
|
|
<< " KiB, Process Available: "
|
|
<< this->GetProcMemoryAvailable(hostLimitEnvVarName, procLimitEnvVarName)
|
|
<< " KiB";
|
|
return oss.str();
|
|
}
|
|
|
|
// host memory info in units of KiB.
|
|
long long SystemInformation::GetHostMemoryTotal()
|
|
{
|
|
return this->Implementation->GetHostMemoryTotal();
|
|
}
|
|
|
|
long long SystemInformation::GetHostMemoryAvailable(
|
|
const char* hostLimitEnvVarName)
|
|
{
|
|
return this->Implementation->GetHostMemoryAvailable(hostLimitEnvVarName);
|
|
}
|
|
|
|
long long SystemInformation::GetHostMemoryUsed()
|
|
{
|
|
return this->Implementation->GetHostMemoryUsed();
|
|
}
|
|
|
|
// process memory info in units of KiB.
|
|
long long SystemInformation::GetProcMemoryAvailable(
|
|
const char* hostLimitEnvVarName, const char* procLimitEnvVarName)
|
|
{
|
|
return this->Implementation->GetProcMemoryAvailable(hostLimitEnvVarName,
|
|
procLimitEnvVarName);
|
|
}
|
|
|
|
long long SystemInformation::GetProcMemoryUsed()
|
|
{
|
|
return this->Implementation->GetProcMemoryUsed();
|
|
}
|
|
|
|
double SystemInformation::GetLoadAverage()
|
|
{
|
|
return this->Implementation->GetLoadAverage();
|
|
}
|
|
|
|
long long SystemInformation::GetProcessId()
|
|
{
|
|
return this->Implementation->GetProcessId();
|
|
}
|
|
|
|
void SystemInformation::SetStackTraceOnError(int enable)
|
|
{
|
|
SystemInformationImplementation::SetStackTraceOnError(enable);
|
|
}
|
|
|
|
std::string SystemInformation::GetProgramStack(int firstFrame, int wholePath)
|
|
{
|
|
return SystemInformationImplementation::GetProgramStack(firstFrame,
|
|
wholePath);
|
|
}
|
|
|
|
/** Run the different checks */
|
|
void SystemInformation::RunCPUCheck()
|
|
{
|
|
this->Implementation->RunCPUCheck();
|
|
}
|
|
|
|
void SystemInformation::RunOSCheck()
|
|
{
|
|
this->Implementation->RunOSCheck();
|
|
}
|
|
|
|
void SystemInformation::RunMemoryCheck()
|
|
{
|
|
this->Implementation->RunMemoryCheck();
|
|
}
|
|
|
|
// SystemInformationImplementation starts here
|
|
|
|
#if USE_CPUID
|
|
# define STORE_TLBCACHE_INFO(x, y) x = (x < (y)) ? (y) : x
|
|
# define TLBCACHE_INFO_UNITS (15)
|
|
#endif
|
|
|
|
#if USE_ASM_INSTRUCTIONS
|
|
# define CLASSICAL_CPU_FREQ_LOOP 10000000
|
|
# define RDTSC_INSTRUCTION _asm _emit 0x0f _asm _emit 0x31
|
|
#endif
|
|
|
|
#define INITIAL_APIC_ID_BITS 0xFF000000
|
|
// initial APIC ID for the processor this code is running on.
|
|
// Default value = 0xff if HT is not supported
|
|
|
|
// Hide implementation details in an anonymous namespace.
|
|
namespace {
|
|
// *****************************************************************************
|
|
#if defined(__linux) || defined(__APPLE__) || defined(__CYGWIN__)
|
|
int LoadLines(FILE* file, std::vector<std::string>& lines)
|
|
{
|
|
// Load each line in the given file into a the vector.
|
|
int nRead = 0;
|
|
const int bufSize = 1024;
|
|
char buf[bufSize] = { '\0' };
|
|
while (!feof(file) && !ferror(file)) {
|
|
errno = 0;
|
|
if (fgets(buf, bufSize, file) == nullptr) {
|
|
if (ferror(file) && (errno == EINTR)) {
|
|
clearerr(file);
|
|
}
|
|
continue;
|
|
}
|
|
char* pBuf = buf;
|
|
while (*pBuf) {
|
|
if (*pBuf == '\n')
|
|
*pBuf = '\0';
|
|
pBuf += 1;
|
|
}
|
|
lines.emplace_back(buf);
|
|
++nRead;
|
|
}
|
|
if (ferror(file)) {
|
|
return 0;
|
|
}
|
|
return nRead;
|
|
}
|
|
|
|
# if defined(__linux) || defined(__CYGWIN__)
|
|
// *****************************************************************************
|
|
int LoadLines(const char* fileName, std::vector<std::string>& lines)
|
|
{
|
|
FILE* file = fopen(fileName, "r");
|
|
if (file == nullptr) {
|
|
return 0;
|
|
}
|
|
int nRead = LoadLines(file, lines);
|
|
fclose(file);
|
|
return nRead;
|
|
}
|
|
# endif
|
|
|
|
// ****************************************************************************
|
|
template <typename T>
|
|
int NameValue(std::vector<std::string> const& lines, std::string const& name,
|
|
T& value)
|
|
{
|
|
size_t nLines = lines.size();
|
|
for (size_t i = 0; i < nLines; ++i) {
|
|
size_t at = lines[i].find(name);
|
|
if (at == std::string::npos) {
|
|
continue;
|
|
}
|
|
std::istringstream is(lines[i].substr(at + name.size()));
|
|
is >> value;
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
#if defined(__linux) || defined(__CYGWIN__)
|
|
// ****************************************************************************
|
|
template <typename T>
|
|
int GetFieldsFromFile(const char* fileName, const char** fieldNames, T* values)
|
|
{
|
|
std::vector<std::string> fields;
|
|
if (!LoadLines(fileName, fields)) {
|
|
return -1;
|
|
}
|
|
int i = 0;
|
|
while (fieldNames[i] != nullptr) {
|
|
int ierr = NameValue(fields, fieldNames[i], values[i]);
|
|
if (ierr) {
|
|
return -(i + 2);
|
|
}
|
|
i += 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// ****************************************************************************
|
|
template <typename T>
|
|
int GetFieldFromFile(const char* fileName, const char* fieldName, T& value)
|
|
{
|
|
const char* fieldNames[2] = { fieldName, nullptr };
|
|
T values[1] = { T(0) };
|
|
int ierr = GetFieldsFromFile(fileName, fieldNames, values);
|
|
if (ierr) {
|
|
return ierr;
|
|
}
|
|
value = values[0];
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
// ****************************************************************************
|
|
#if defined(__APPLE__)
|
|
template <typename T>
|
|
int GetFieldsFromCommand(const char* command, const char** fieldNames,
|
|
T* values)
|
|
{
|
|
FILE* file = popen(command, "r");
|
|
if (file == nullptr) {
|
|
return -1;
|
|
}
|
|
std::vector<std::string> fields;
|
|
int nl = LoadLines(file, fields);
|
|
pclose(file);
|
|
if (nl == 0) {
|
|
return -1;
|
|
}
|
|
int i = 0;
|
|
while (fieldNames[i] != nullptr) {
|
|
int ierr = NameValue(fields, fieldNames[i], values[i]);
|
|
if (ierr) {
|
|
return -(i + 2);
|
|
}
|
|
i += 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
// ****************************************************************************
|
|
#if !defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__)
|
|
void StacktraceSignalHandler(int sigNo, siginfo_t* sigInfo,
|
|
void* /*sigContext*/)
|
|
{
|
|
# if defined(__linux) || defined(__APPLE__)
|
|
std::ostringstream oss;
|
|
oss << std::endl
|
|
<< "========================================================="
|
|
<< std::endl
|
|
<< "Process id " << getpid() << " ";
|
|
switch (sigNo) {
|
|
case SIGINT:
|
|
oss << "Caught SIGINT";
|
|
break;
|
|
|
|
case SIGTERM:
|
|
oss << "Caught SIGTERM";
|
|
break;
|
|
|
|
case SIGABRT:
|
|
oss << "Caught SIGABRT";
|
|
break;
|
|
|
|
case SIGFPE:
|
|
oss << "Caught SIGFPE at " << (sigInfo->si_addr == nullptr ? "0x" : "")
|
|
<< sigInfo->si_addr << " ";
|
|
switch (sigInfo->si_code) {
|
|
# if defined(FPE_INTDIV)
|
|
case FPE_INTDIV:
|
|
oss << "integer division by zero";
|
|
break;
|
|
# endif
|
|
|
|
# if defined(FPE_INTOVF)
|
|
case FPE_INTOVF:
|
|
oss << "integer overflow";
|
|
break;
|
|
# endif
|
|
|
|
case FPE_FLTDIV:
|
|
oss << "floating point divide by zero";
|
|
break;
|
|
|
|
case FPE_FLTOVF:
|
|
oss << "floating point overflow";
|
|
break;
|
|
|
|
case FPE_FLTUND:
|
|
oss << "floating point underflow";
|
|
break;
|
|
|
|
case FPE_FLTRES:
|
|
oss << "floating point inexact result";
|
|
break;
|
|
|
|
case FPE_FLTINV:
|
|
oss << "floating point invalid operation";
|
|
break;
|
|
|
|
# if defined(FPE_FLTSUB)
|
|
case FPE_FLTSUB:
|
|
oss << "floating point subscript out of range";
|
|
break;
|
|
# endif
|
|
|
|
default:
|
|
oss << "code " << sigInfo->si_code;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIGSEGV:
|
|
oss << "Caught SIGSEGV at " << (sigInfo->si_addr == nullptr ? "0x" : "")
|
|
<< sigInfo->si_addr << " ";
|
|
switch (sigInfo->si_code) {
|
|
case SEGV_MAPERR:
|
|
oss << "address not mapped to object";
|
|
break;
|
|
|
|
case SEGV_ACCERR:
|
|
oss << "invalid permission for mapped object";
|
|
break;
|
|
|
|
default:
|
|
oss << "code " << sigInfo->si_code;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIGBUS:
|
|
oss << "Caught SIGBUS at " << (sigInfo->si_addr == nullptr ? "0x" : "")
|
|
<< sigInfo->si_addr << " ";
|
|
switch (sigInfo->si_code) {
|
|
case BUS_ADRALN:
|
|
oss << "invalid address alignment";
|
|
break;
|
|
|
|
# if defined(BUS_ADRERR)
|
|
case BUS_ADRERR:
|
|
oss << "nonexistent physical address";
|
|
break;
|
|
# endif
|
|
|
|
# if defined(BUS_OBJERR)
|
|
case BUS_OBJERR:
|
|
oss << "object-specific hardware error";
|
|
break;
|
|
# endif
|
|
|
|
# if defined(BUS_MCEERR_AR)
|
|
case BUS_MCEERR_AR:
|
|
oss << "Hardware memory error consumed on a machine check; action "
|
|
"required.";
|
|
break;
|
|
# endif
|
|
|
|
# if defined(BUS_MCEERR_AO)
|
|
case BUS_MCEERR_AO:
|
|
oss << "Hardware memory error detected in process but not consumed; "
|
|
"action optional.";
|
|
break;
|
|
# endif
|
|
|
|
default:
|
|
oss << "code " << sigInfo->si_code;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIGILL:
|
|
oss << "Caught SIGILL at " << (sigInfo->si_addr == nullptr ? "0x" : "")
|
|
<< sigInfo->si_addr << " ";
|
|
switch (sigInfo->si_code) {
|
|
case ILL_ILLOPC:
|
|
oss << "illegal opcode";
|
|
break;
|
|
|
|
# if defined(ILL_ILLOPN)
|
|
case ILL_ILLOPN:
|
|
oss << "illegal operand";
|
|
break;
|
|
# endif
|
|
|
|
# if defined(ILL_ILLADR)
|
|
case ILL_ILLADR:
|
|
oss << "illegal addressing mode.";
|
|
break;
|
|
# endif
|
|
|
|
case ILL_ILLTRP:
|
|
oss << "illegal trap";
|
|
break;
|
|
|
|
case ILL_PRVOPC:
|
|
oss << "privileged opcode";
|
|
break;
|
|
|
|
# if defined(ILL_PRVREG)
|
|
case ILL_PRVREG:
|
|
oss << "privileged register";
|
|
break;
|
|
# endif
|
|
|
|
# if defined(ILL_COPROC)
|
|
case ILL_COPROC:
|
|
oss << "co-processor error";
|
|
break;
|
|
# endif
|
|
|
|
# if defined(ILL_BADSTK)
|
|
case ILL_BADSTK:
|
|
oss << "internal stack error";
|
|
break;
|
|
# endif
|
|
|
|
default:
|
|
oss << "code " << sigInfo->si_code;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
oss << "Caught " << sigNo << " code " << sigInfo->si_code;
|
|
break;
|
|
}
|
|
oss << std::endl
|
|
<< "Program Stack:" << std::endl
|
|
<< SystemInformationImplementation::GetProgramStack(2, 0)
|
|
<< "========================================================="
|
|
<< std::endl;
|
|
std::cerr << oss.str() << std::endl;
|
|
|
|
// restore the previously registered handlers
|
|
// and abort
|
|
SystemInformationImplementation::SetStackTraceOnError(0);
|
|
abort();
|
|
# else
|
|
// avoid warning C4100
|
|
(void)sigNo;
|
|
(void)sigInfo;
|
|
# endif
|
|
}
|
|
#endif
|
|
|
|
#if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
|
|
# define safes(_arg) ((_arg) ? (_arg) : "???")
|
|
|
|
// Description:
|
|
// A container for symbol properties. Each instance
|
|
// must be Initialized.
|
|
class SymbolProperties
|
|
{
|
|
public:
|
|
SymbolProperties();
|
|
|
|
// Description:
|
|
// The SymbolProperties instance must be initialized by
|
|
// passing a stack address.
|
|
void Initialize(void* address);
|
|
|
|
// Description:
|
|
// Get the symbol's stack address.
|
|
void* GetAddress() const { return this->Address; }
|
|
|
|
// Description:
|
|
// If not set paths will be removed. eg, from a binary
|
|
// or source file.
|
|
void SetReportPath(int rp) { this->ReportPath = rp; }
|
|
|
|
// Description:
|
|
// Set/Get the name of the binary file that the symbol
|
|
// is found in.
|
|
void SetBinary(const char* binary) { this->Binary = safes(binary); }
|
|
|
|
std::string GetBinary() const;
|
|
|
|
// Description:
|
|
// Set the name of the function that the symbol is found in.
|
|
// If c++ demangling is supported it will be demangled.
|
|
void SetFunction(const char* function)
|
|
{
|
|
this->Function = this->Demangle(function);
|
|
}
|
|
|
|
std::string GetFunction() const { return this->Function; }
|
|
|
|
// Description:
|
|
// Set/Get the name of the source file where the symbol
|
|
// is defined.
|
|
void SetSourceFile(const char* sourcefile)
|
|
{
|
|
this->SourceFile = safes(sourcefile);
|
|
}
|
|
|
|
std::string GetSourceFile() const
|
|
{
|
|
return this->GetFileName(this->SourceFile);
|
|
}
|
|
|
|
// Description:
|
|
// Set/Get the line number where the symbol is defined
|
|
void SetLineNumber(long linenumber) { this->LineNumber = linenumber; }
|
|
long GetLineNumber() const { return this->LineNumber; }
|
|
|
|
// Description:
|
|
// Set the address where the binary image is mapped
|
|
// into memory.
|
|
void SetBinaryBaseAddress(void* address)
|
|
{
|
|
this->BinaryBaseAddress = address;
|
|
}
|
|
|
|
private:
|
|
void* GetRealAddress() const
|
|
{
|
|
return (void*)((char*)this->Address - (char*)this->BinaryBaseAddress);
|
|
}
|
|
|
|
std::string GetFileName(const std::string& path) const;
|
|
std::string Demangle(const char* symbol) const;
|
|
|
|
private:
|
|
std::string Binary;
|
|
void* BinaryBaseAddress;
|
|
void* Address;
|
|
std::string SourceFile;
|
|
std::string Function;
|
|
long LineNumber;
|
|
int ReportPath;
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& os, const SymbolProperties& sp)
|
|
{
|
|
# if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
|
|
os << std::hex << sp.GetAddress() << " : " << sp.GetFunction() << " [("
|
|
<< sp.GetBinary() << ") " << sp.GetSourceFile() << ":" << std::dec
|
|
<< sp.GetLineNumber() << "]";
|
|
# elif defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
|
|
void* addr = sp.GetAddress();
|
|
char** syminfo = backtrace_symbols(&addr, 1);
|
|
os << safes(syminfo[0]);
|
|
free(syminfo);
|
|
# else
|
|
(void)os;
|
|
(void)sp;
|
|
# endif
|
|
return os;
|
|
}
|
|
|
|
SymbolProperties::SymbolProperties()
|
|
{
|
|
// not using an initializer list
|
|
// to avoid some PGI compiler warnings
|
|
this->SetBinary("???");
|
|
this->SetBinaryBaseAddress(nullptr);
|
|
this->Address = nullptr;
|
|
this->SetSourceFile("???");
|
|
this->SetFunction("???");
|
|
this->SetLineNumber(-1);
|
|
this->SetReportPath(0);
|
|
// avoid PGI compiler warnings
|
|
this->GetRealAddress();
|
|
this->GetFunction();
|
|
this->GetSourceFile();
|
|
this->GetLineNumber();
|
|
}
|
|
|
|
std::string SymbolProperties::GetFileName(const std::string& path) const
|
|
{
|
|
std::string file(path);
|
|
if (!this->ReportPath) {
|
|
size_t at = file.rfind('/');
|
|
if (at != std::string::npos) {
|
|
file.erase(0, at + 1);
|
|
}
|
|
}
|
|
return file;
|
|
}
|
|
|
|
std::string SymbolProperties::GetBinary() const
|
|
{
|
|
// only linux has proc fs
|
|
# if defined(__linux__)
|
|
if (this->Binary == "/proc/self/exe") {
|
|
std::string binary;
|
|
char buf[1024] = { '\0' };
|
|
ssize_t ll = 0;
|
|
if ((ll = readlink("/proc/self/exe", buf, 1024)) > 0 && ll < 1024) {
|
|
buf[ll] = '\0';
|
|
binary = buf;
|
|
} else {
|
|
binary = "/proc/self/exe";
|
|
}
|
|
return this->GetFileName(binary);
|
|
}
|
|
# endif
|
|
return this->GetFileName(this->Binary);
|
|
}
|
|
|
|
std::string SymbolProperties::Demangle(const char* symbol) const
|
|
{
|
|
std::string result = safes(symbol);
|
|
# if defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE)
|
|
int status = 0;
|
|
size_t bufferLen = 1024;
|
|
char* buffer = (char*)malloc(1024);
|
|
char* demangledSymbol =
|
|
abi::__cxa_demangle(symbol, buffer, &bufferLen, &status);
|
|
if (!status) {
|
|
result = demangledSymbol;
|
|
}
|
|
free(buffer);
|
|
# else
|
|
(void)symbol;
|
|
# endif
|
|
return result;
|
|
}
|
|
|
|
void SymbolProperties::Initialize(void* address)
|
|
{
|
|
this->Address = address;
|
|
# if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
|
|
// first fallback option can demangle c++ functions
|
|
Dl_info info;
|
|
int ierr = dladdr(this->Address, &info);
|
|
if (ierr && info.dli_sname && info.dli_saddr) {
|
|
this->SetBinary(info.dli_fname);
|
|
this->SetFunction(info.dli_sname);
|
|
}
|
|
# else
|
|
// second fallback use builtin backtrace_symbols
|
|
// to decode the backtrace.
|
|
# endif
|
|
}
|
|
#endif // don't define this class if we're not using it
|
|
|
|
#if defined(_WIN32) || defined(__CYGWIN__)
|
|
# define KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes
|
|
#endif
|
|
#if defined(_MSC_VER) && _MSC_VER < 1310
|
|
# undef KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes
|
|
#endif
|
|
#if defined(KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes)
|
|
double calculateCPULoad(unsigned __int64 idleTicks,
|
|
unsigned __int64 totalTicks)
|
|
{
|
|
static double previousLoad = -0.0;
|
|
static unsigned __int64 previousIdleTicks = 0;
|
|
static unsigned __int64 previousTotalTicks = 0;
|
|
|
|
unsigned __int64 const idleTicksSinceLastTime =
|
|
idleTicks - previousIdleTicks;
|
|
unsigned __int64 const totalTicksSinceLastTime =
|
|
totalTicks - previousTotalTicks;
|
|
|
|
double load;
|
|
if (previousTotalTicks == 0 || totalTicksSinceLastTime == 0) {
|
|
// No new information. Use previous result.
|
|
load = previousLoad;
|
|
} else {
|
|
// Calculate load since last time.
|
|
load = 1.0 - double(idleTicksSinceLastTime) / totalTicksSinceLastTime;
|
|
|
|
// Smooth if possible.
|
|
if (previousLoad > 0) {
|
|
load = 0.25 * load + 0.75 * previousLoad;
|
|
}
|
|
}
|
|
|
|
previousLoad = load;
|
|
previousIdleTicks = idleTicks;
|
|
previousTotalTicks = totalTicks;
|
|
|
|
return load;
|
|
}
|
|
|
|
unsigned __int64 fileTimeToUInt64(FILETIME const& ft)
|
|
{
|
|
LARGE_INTEGER out;
|
|
out.HighPart = ft.dwHighDateTime;
|
|
out.LowPart = ft.dwLowDateTime;
|
|
return out.QuadPart;
|
|
}
|
|
#endif
|
|
|
|
} // anonymous namespace
|
|
|
|
SystemInformationImplementation::SystemInformationImplementation()
|
|
{
|
|
this->TotalVirtualMemory = 0;
|
|
this->AvailableVirtualMemory = 0;
|
|
this->TotalPhysicalMemory = 0;
|
|
this->AvailablePhysicalMemory = 0;
|
|
this->CurrentPositionInFile = 0;
|
|
this->ChipManufacturer = UnknownManufacturer;
|
|
memset(&this->Features, 0, sizeof(CPUFeatures));
|
|
this->ChipID.Type = 0;
|
|
this->ChipID.Family = 0;
|
|
this->ChipID.Model = 0;
|
|
this->ChipID.Revision = 0;
|
|
this->ChipID.ExtendedFamily = 0;
|
|
this->ChipID.ExtendedModel = 0;
|
|
this->CPUSpeedInMHz = 0;
|
|
this->NumberOfLogicalCPU = 0;
|
|
this->NumberOfPhysicalCPU = 0;
|
|
this->OSName = "";
|
|
this->Hostname = "";
|
|
this->OSRelease = "";
|
|
this->OSVersion = "";
|
|
this->OSPlatform = "";
|
|
this->OSIs64Bit = (sizeof(void*) == 8);
|
|
}
|
|
|
|
void SystemInformationImplementation::RunCPUCheck()
|
|
{
|
|
#ifdef _WIN32
|
|
// Check to see if this processor supports CPUID.
|
|
bool supportsCPUID = DoesCPUSupportCPUID();
|
|
|
|
if (supportsCPUID) {
|
|
// Retrieve the CPU details.
|
|
RetrieveCPUIdentity();
|
|
this->FindManufacturer();
|
|
RetrieveCPUFeatures();
|
|
}
|
|
|
|
// These two may be called without support for the CPUID instruction.
|
|
// (But if the instruction is there, they should be called *after*
|
|
// the above call to RetrieveCPUIdentity... that's why the two if
|
|
// blocks exist with the same "if (supportsCPUID)" logic...
|
|
//
|
|
if (!RetrieveCPUClockSpeed()) {
|
|
RetrieveClassicalCPUClockSpeed();
|
|
}
|
|
|
|
if (supportsCPUID) {
|
|
// Retrieve cache information.
|
|
if (!RetrieveCPUCacheDetails()) {
|
|
RetrieveClassicalCPUCacheDetails();
|
|
}
|
|
|
|
// Retrieve the extended CPU details.
|
|
if (!RetrieveExtendedCPUIdentity()) {
|
|
RetrieveClassicalCPUIdentity();
|
|
}
|
|
|
|
RetrieveExtendedCPUFeatures();
|
|
RetrieveCPUPowerManagement();
|
|
|
|
// Now attempt to retrieve the serial number (if possible).
|
|
RetrieveProcessorSerialNumber();
|
|
}
|
|
|
|
this->CPUCountWindows();
|
|
|
|
#elif defined(__APPLE__)
|
|
this->ParseSysCtl();
|
|
#elif defined(__SVR4) && defined(__sun)
|
|
this->QuerySolarisProcessor();
|
|
#elif defined(__HAIKU__)
|
|
this->QueryHaikuInfo();
|
|
#elif defined(__QNX__)
|
|
this->QueryQNXProcessor();
|
|
#elif defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \
|
|
defined(__DragonFly__)
|
|
this->QueryBSDProcessor();
|
|
#elif defined(__hpux)
|
|
this->QueryHPUXProcessor();
|
|
#elif defined(__linux) || defined(__CYGWIN__)
|
|
this->RetreiveInformationFromCpuInfoFile();
|
|
#else
|
|
this->QueryProcessor();
|
|
#endif
|
|
}
|
|
|
|
void SystemInformationImplementation::RunOSCheck()
|
|
{
|
|
this->QueryOSInformation();
|
|
}
|
|
|
|
void SystemInformationImplementation::RunMemoryCheck()
|
|
{
|
|
#if defined(__APPLE__)
|
|
this->ParseSysCtl();
|
|
#elif defined(__SVR4) && defined(__sun)
|
|
this->QuerySolarisMemory();
|
|
#elif defined(__HAIKU__)
|
|
this->QueryHaikuInfo();
|
|
#elif defined(__QNX__)
|
|
this->QueryQNXMemory();
|
|
#elif defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \
|
|
defined(__DragonFly__)
|
|
this->QueryBSDMemory();
|
|
#elif defined(__CYGWIN__)
|
|
this->QueryCygwinMemory();
|
|
#elif defined(_WIN32)
|
|
this->QueryWindowsMemory();
|
|
#elif defined(__hpux)
|
|
this->QueryHPUXMemory();
|
|
#elif defined(__linux)
|
|
this->QueryLinuxMemory();
|
|
#elif defined(_AIX)
|
|
this->QueryAIXMemory();
|
|
#else
|
|
this->QueryMemory();
|
|
#endif
|
|
}
|
|
|
|
/** Get the vendor string */
|
|
const char* SystemInformationImplementation::GetVendorString() const
|
|
{
|
|
return this->ChipID.Vendor.c_str();
|
|
}
|
|
|
|
/** Get the OS Name */
|
|
const char* SystemInformationImplementation::GetOSName()
|
|
{
|
|
return this->OSName.c_str();
|
|
}
|
|
|
|
/** Get the hostname */
|
|
const char* SystemInformationImplementation::GetHostname()
|
|
{
|
|
if (this->Hostname.empty()) {
|
|
this->Hostname = "localhost";
|
|
#if defined(_WIN32)
|
|
WORD wVersionRequested;
|
|
WSADATA wsaData;
|
|
char name[255];
|
|
wVersionRequested = MAKEWORD(2, 0);
|
|
if (WSAStartup(wVersionRequested, &wsaData) == 0) {
|
|
gethostname(name, sizeof(name));
|
|
WSACleanup();
|
|
}
|
|
this->Hostname = name;
|
|
#else
|
|
struct utsname unameInfo;
|
|
int errorFlag = uname(&unameInfo);
|
|
if (errorFlag == 0) {
|
|
this->Hostname = unameInfo.nodename;
|
|
}
|
|
#endif
|
|
}
|
|
return this->Hostname.c_str();
|
|
}
|
|
|
|
/** Get the FQDN */
|
|
int SystemInformationImplementation::GetFullyQualifiedDomainName(
|
|
std::string& fqdn)
|
|
{
|
|
// in the event of absolute failure return localhost.
|
|
fqdn = "localhost";
|
|
|
|
#if defined(_WIN32)
|
|
int ierr;
|
|
// TODO - a more robust implementation for windows, see comments
|
|
// in unix implementation.
|
|
WSADATA wsaData;
|
|
WORD ver = MAKEWORD(2, 0);
|
|
ierr = WSAStartup(ver, &wsaData);
|
|
if (ierr) {
|
|
return -1;
|
|
}
|
|
|
|
char base[256] = { '\0' };
|
|
ierr = gethostname(base, 256);
|
|
if (ierr) {
|
|
WSACleanup();
|
|
return -2;
|
|
}
|
|
fqdn = base;
|
|
|
|
HOSTENT* hent = gethostbyname(base);
|
|
if (hent) {
|
|
fqdn = hent->h_name;
|
|
}
|
|
|
|
WSACleanup();
|
|
return 0;
|
|
|
|
#elif defined(KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN)
|
|
// gethostname typical returns an alias for loopback interface
|
|
// we want the fully qualified domain name. Because there are
|
|
// any number of interfaces on this system we look for the
|
|
// first of these that contains the name returned by gethostname
|
|
// and is longer. failing that we return gethostname and indicate
|
|
// with a failure code. Return of a failure code is not necessarily
|
|
// an indication of an error. for instance gethostname may return
|
|
// the fully qualified domain name, or there may not be one if the
|
|
// system lives on a private network such as in the case of a cluster
|
|
// node.
|
|
|
|
int ierr = 0;
|
|
char base[NI_MAXHOST];
|
|
ierr = gethostname(base, NI_MAXHOST);
|
|
if (ierr) {
|
|
return -1;
|
|
}
|
|
size_t baseSize = strlen(base);
|
|
fqdn = base;
|
|
|
|
struct ifaddrs* ifas;
|
|
struct ifaddrs* ifa;
|
|
ierr = getifaddrs(&ifas);
|
|
if (ierr) {
|
|
return -2;
|
|
}
|
|
|
|
for (ifa = ifas; ifa != nullptr; ifa = ifa->ifa_next) {
|
|
int fam = ifa->ifa_addr ? ifa->ifa_addr->sa_family : -1;
|
|
// Skip Loopback interfaces
|
|
if (((fam == AF_INET) || (fam == AF_INET6)) &&
|
|
!(ifa->ifa_flags & IFF_LOOPBACK)) {
|
|
char host[NI_MAXHOST] = { '\0' };
|
|
|
|
const size_t addrlen = (fam == AF_INET ? sizeof(struct sockaddr_in)
|
|
: sizeof(struct sockaddr_in6));
|
|
|
|
ierr = getnameinfo(ifa->ifa_addr, static_cast<socklen_t>(addrlen), host,
|
|
NI_MAXHOST, nullptr, 0, NI_NAMEREQD);
|
|
if (ierr) {
|
|
// don't report the failure now since we may succeed on another
|
|
// interface. If all attempts fail then return the failure code.
|
|
ierr = -3;
|
|
continue;
|
|
}
|
|
|
|
std::string candidate = host;
|
|
if ((candidate.find(base) != std::string::npos) &&
|
|
baseSize < candidate.size()) {
|
|
// success, stop now.
|
|
ierr = 0;
|
|
fqdn = candidate;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
freeifaddrs(ifas);
|
|
|
|
return ierr;
|
|
#else
|
|
/* TODO: Implement on more platforms. */
|
|
fqdn = this->GetHostname();
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
/** Get the OS release */
|
|
const char* SystemInformationImplementation::GetOSRelease()
|
|
{
|
|
return this->OSRelease.c_str();
|
|
}
|
|
|
|
/** Get the OS version */
|
|
const char* SystemInformationImplementation::GetOSVersion()
|
|
{
|
|
return this->OSVersion.c_str();
|
|
}
|
|
|
|
/** Get the OS platform */
|
|
const char* SystemInformationImplementation::GetOSPlatform()
|
|
{
|
|
return this->OSPlatform.c_str();
|
|
}
|
|
|
|
/** Get the vendor ID */
|
|
const char* SystemInformationImplementation::GetVendorID()
|
|
{
|
|
// Return the vendor ID.
|
|
switch (this->ChipManufacturer) {
|
|
case Intel:
|
|
return "Intel Corporation";
|
|
case AMD:
|
|
return "Advanced Micro Devices";
|
|
case NSC:
|
|
return "National Semiconductor";
|
|
case Cyrix:
|
|
return "Cyrix Corp., VIA Inc.";
|
|
case NexGen:
|
|
return "NexGen Inc., Advanced Micro Devices";
|
|
case IDT:
|
|
return "IDT\\Centaur, Via Inc., Shanghai Zhaoxin Semiconductor Co., "
|
|
"Ltd.";
|
|
case UMC:
|
|
return "United Microelectronics Corp.";
|
|
case Rise:
|
|
return "Rise";
|
|
case Transmeta:
|
|
return "Transmeta";
|
|
case Sun:
|
|
return "Sun Microelectronics";
|
|
case IBM:
|
|
return "IBM";
|
|
case Motorola:
|
|
return "Motorola";
|
|
case HP:
|
|
return "Hewlett-Packard";
|
|
case Hygon:
|
|
return "Chengdu Haiguang IC Design Co., Ltd.";
|
|
case Zhaoxin:
|
|
return "Shanghai Zhaoxin Semiconductor Co., Ltd.";
|
|
case Apple:
|
|
return "Apple";
|
|
case UnknownManufacturer:
|
|
default:
|
|
return "Unknown Manufacturer";
|
|
}
|
|
}
|
|
|
|
/** Return the type ID of the CPU */
|
|
std::string SystemInformationImplementation::GetTypeID() const
|
|
{
|
|
std::ostringstream str;
|
|
str << this->ChipID.Type;
|
|
return str.str();
|
|
}
|
|
|
|
/** Return the family of the CPU present */
|
|
std::string SystemInformationImplementation::GetFamilyID() const
|
|
{
|
|
std::ostringstream str;
|
|
str << this->ChipID.Family;
|
|
return str.str();
|
|
}
|
|
|
|
// Return the model of CPU present */
|
|
std::string SystemInformationImplementation::GetModelID() const
|
|
{
|
|
std::ostringstream str;
|
|
str << this->ChipID.Model;
|
|
return str.str();
|
|
}
|
|
|
|
// Return the model name of CPU present */
|
|
std::string SystemInformationImplementation::GetModelName() const
|
|
{
|
|
return this->ChipID.ModelName;
|
|
}
|
|
|
|
/** Return the stepping code of the CPU present. */
|
|
std::string SystemInformationImplementation::GetSteppingCode() const
|
|
{
|
|
std::ostringstream str;
|
|
str << this->ChipID.Revision;
|
|
return str.str();
|
|
}
|
|
|
|
/** Return the stepping code of the CPU present. */
|
|
const char* SystemInformationImplementation::GetExtendedProcessorName() const
|
|
{
|
|
return this->ChipID.ProcessorName.c_str();
|
|
}
|
|
|
|
/** Return the serial number of the processor
|
|
* in hexadecimal: xxxx-xxxx-xxxx-xxxx-xxxx-xxxx. */
|
|
const char* SystemInformationImplementation::GetProcessorSerialNumber() const
|
|
{
|
|
return this->ChipID.SerialNumber.c_str();
|
|
}
|
|
|
|
/** Return the logical processors per physical */
|
|
unsigned int SystemInformationImplementation::GetLogicalProcessorsPerPhysical()
|
|
const
|
|
{
|
|
return this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical;
|
|
}
|
|
|
|
/** Return the processor clock frequency. */
|
|
float SystemInformationImplementation::GetProcessorClockFrequency() const
|
|
{
|
|
return this->CPUSpeedInMHz;
|
|
}
|
|
|
|
/** Return the APIC ID. */
|
|
int SystemInformationImplementation::GetProcessorAPICID() const
|
|
{
|
|
return this->Features.ExtendedFeatures.APIC_ID;
|
|
}
|
|
|
|
/** Return the L1 cache size. */
|
|
int SystemInformationImplementation::GetProcessorCacheSize() const
|
|
{
|
|
return this->Features.L1CacheSize;
|
|
}
|
|
|
|
/** Return the chosen cache size. */
|
|
int SystemInformationImplementation::GetProcessorCacheXSize(
|
|
long int dwCacheID) const
|
|
{
|
|
switch (dwCacheID) {
|
|
case SystemInformation::CPU_FEATURE_L1CACHE:
|
|
return this->Features.L1CacheSize;
|
|
case SystemInformation::CPU_FEATURE_L2CACHE:
|
|
return this->Features.L2CacheSize;
|
|
case SystemInformation::CPU_FEATURE_L3CACHE:
|
|
return this->Features.L3CacheSize;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
bool SystemInformationImplementation::DoesCPUSupportFeature(
|
|
long int dwFeature) const
|
|
{
|
|
bool bHasFeature = false;
|
|
|
|
// Check for MMX instructions.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_MMX) != 0) &&
|
|
this->Features.HasMMX)
|
|
bHasFeature = true;
|
|
|
|
// Check for MMX+ instructions.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_MMX_PLUS) != 0) &&
|
|
this->Features.ExtendedFeatures.HasMMXPlus)
|
|
bHasFeature = true;
|
|
|
|
// Check for SSE FP instructions.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_SSE) != 0) &&
|
|
this->Features.HasSSE)
|
|
bHasFeature = true;
|
|
|
|
// Check for SSE FP instructions.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_SSE_FP) != 0) &&
|
|
this->Features.HasSSEFP)
|
|
bHasFeature = true;
|
|
|
|
// Check for SSE MMX instructions.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_SSE_MMX) != 0) &&
|
|
this->Features.ExtendedFeatures.HasSSEMMX)
|
|
bHasFeature = true;
|
|
|
|
// Check for SSE2 instructions.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_SSE2) != 0) &&
|
|
this->Features.HasSSE2)
|
|
bHasFeature = true;
|
|
|
|
// Check for 3DNow! instructions.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_AMD_3DNOW) != 0) &&
|
|
this->Features.ExtendedFeatures.Has3DNow)
|
|
bHasFeature = true;
|
|
|
|
// Check for 3DNow+ instructions.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_AMD_3DNOW_PLUS) != 0) &&
|
|
this->Features.ExtendedFeatures.Has3DNowPlus)
|
|
bHasFeature = true;
|
|
|
|
// Check for IA64 instructions.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_IA64) != 0) &&
|
|
this->Features.HasIA64)
|
|
bHasFeature = true;
|
|
|
|
// Check for MP capable.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_MP_CAPABLE) != 0) &&
|
|
this->Features.ExtendedFeatures.SupportsMP)
|
|
bHasFeature = true;
|
|
|
|
// Check for a serial number for the processor.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_SERIALNUMBER) != 0) &&
|
|
this->Features.HasSerial)
|
|
bHasFeature = true;
|
|
|
|
// Check for a local APIC in the processor.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_APIC) != 0) &&
|
|
this->Features.HasAPIC)
|
|
bHasFeature = true;
|
|
|
|
// Check for CMOV instructions.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_CMOV) != 0) &&
|
|
this->Features.HasCMOV)
|
|
bHasFeature = true;
|
|
|
|
// Check for MTRR instructions.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_MTRR) != 0) &&
|
|
this->Features.HasMTRR)
|
|
bHasFeature = true;
|
|
|
|
// Check for L1 cache size.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_L1CACHE) != 0) &&
|
|
(this->Features.L1CacheSize != -1))
|
|
bHasFeature = true;
|
|
|
|
// Check for L2 cache size.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_L2CACHE) != 0) &&
|
|
(this->Features.L2CacheSize != -1))
|
|
bHasFeature = true;
|
|
|
|
// Check for L3 cache size.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_L3CACHE) != 0) &&
|
|
(this->Features.L3CacheSize != -1))
|
|
bHasFeature = true;
|
|
|
|
// Check for ACPI capability.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_ACPI) != 0) &&
|
|
this->Features.HasACPI)
|
|
bHasFeature = true;
|
|
|
|
// Check for thermal monitor support.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_THERMALMONITOR) != 0) &&
|
|
this->Features.HasThermal)
|
|
bHasFeature = true;
|
|
|
|
// Check for temperature sensing diode support.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_TEMPSENSEDIODE) != 0) &&
|
|
this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode)
|
|
bHasFeature = true;
|
|
|
|
// Check for frequency ID support.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_FREQUENCYID) != 0) &&
|
|
this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID)
|
|
bHasFeature = true;
|
|
|
|
// Check for voltage ID support.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_VOLTAGEID_FREQUENCY) !=
|
|
0) &&
|
|
this->Features.ExtendedFeatures.PowerManagement.HasVoltageID)
|
|
bHasFeature = true;
|
|
|
|
// Check for FPU support.
|
|
if (((dwFeature & SystemInformation::CPU_FEATURE_FPU) != 0) &&
|
|
this->Features.HasFPU)
|
|
bHasFeature = true;
|
|
|
|
return bHasFeature;
|
|
}
|
|
|
|
void SystemInformationImplementation::Delay(unsigned int uiMS)
|
|
{
|
|
#ifdef _WIN32
|
|
LARGE_INTEGER Frequency, StartCounter, EndCounter;
|
|
__int64 x;
|
|
|
|
// Get the frequency of the high performance counter.
|
|
if (!QueryPerformanceFrequency(&Frequency))
|
|
return;
|
|
x = Frequency.QuadPart / 1000 * uiMS;
|
|
|
|
// Get the starting position of the counter.
|
|
QueryPerformanceCounter(&StartCounter);
|
|
|
|
do {
|
|
// Get the ending position of the counter.
|
|
QueryPerformanceCounter(&EndCounter);
|
|
} while (EndCounter.QuadPart - StartCounter.QuadPart < x);
|
|
#endif
|
|
(void)uiMS;
|
|
}
|
|
|
|
bool SystemInformationImplementation::DoesCPUSupportCPUID()
|
|
{
|
|
#if USE_CPUID
|
|
int dummy[4] = { 0, 0, 0, 0 };
|
|
|
|
# if USE_ASM_INSTRUCTIONS
|
|
return call_cpuid(0, dummy);
|
|
# else
|
|
call_cpuid(0, dummy);
|
|
return dummy[0] || dummy[1] || dummy[2] || dummy[3];
|
|
# endif
|
|
#else
|
|
// Assume no cpuid instruction.
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool SystemInformationImplementation::RetrieveCPUFeatures()
|
|
{
|
|
#if USE_CPUID
|
|
int cpuinfo[4] = { 0, 0, 0, 0 };
|
|
|
|
if (!call_cpuid(1, cpuinfo)) {
|
|
return false;
|
|
}
|
|
|
|
// Retrieve the features of CPU present.
|
|
this->Features.HasFPU =
|
|
((cpuinfo[3] & 0x00000001) != 0); // FPU Present --> Bit 0
|
|
this->Features.HasTSC =
|
|
((cpuinfo[3] & 0x00000010) != 0); // TSC Present --> Bit 4
|
|
this->Features.HasAPIC =
|
|
((cpuinfo[3] & 0x00000200) != 0); // APIC Present --> Bit 9
|
|
this->Features.HasMTRR =
|
|
((cpuinfo[3] & 0x00001000) != 0); // MTRR Present --> Bit 12
|
|
this->Features.HasCMOV =
|
|
((cpuinfo[3] & 0x00008000) != 0); // CMOV Present --> Bit 15
|
|
this->Features.HasSerial =
|
|
((cpuinfo[3] & 0x00040000) != 0); // Serial Present --> Bit 18
|
|
this->Features.HasACPI =
|
|
((cpuinfo[3] & 0x00400000) != 0); // ACPI Capable --> Bit 22
|
|
this->Features.HasMMX =
|
|
((cpuinfo[3] & 0x00800000) != 0); // MMX Present --> Bit 23
|
|
this->Features.HasSSE =
|
|
((cpuinfo[3] & 0x02000000) != 0); // SSE Present --> Bit 25
|
|
this->Features.HasSSE2 =
|
|
((cpuinfo[3] & 0x04000000) != 0); // SSE2 Present --> Bit 26
|
|
this->Features.HasThermal =
|
|
((cpuinfo[3] & 0x20000000) != 0); // Thermal Monitor Present --> Bit 29
|
|
this->Features.HasIA64 =
|
|
((cpuinfo[3] & 0x40000000) != 0); // IA64 Present --> Bit 30
|
|
|
|
# if USE_ASM_INSTRUCTIONS
|
|
// Retrieve extended SSE capabilities if SSE is available.
|
|
if (this->Features.HasSSE) {
|
|
|
|
// Attempt to __try some SSE FP instructions.
|
|
__try {
|
|
// Perform: orps xmm0, xmm0
|
|
_asm
|
|
{
|
|
_emit 0x0f
|
|
_emit 0x56
|
|
_emit 0xc0
|
|
}
|
|
|
|
// SSE FP capable processor.
|
|
this->Features.HasSSEFP = true;
|
|
} __except (1) {
|
|
// bad instruction - processor or OS cannot handle SSE FP.
|
|
this->Features.HasSSEFP = false;
|
|
}
|
|
} else {
|
|
// Set the advanced SSE capabilities to not available.
|
|
this->Features.HasSSEFP = false;
|
|
}
|
|
# else
|
|
this->Features.HasSSEFP = false;
|
|
# endif
|
|
|
|
// Retrieve Intel specific extended features.
|
|
if (this->ChipManufacturer == Intel) {
|
|
bool SupportsSMT =
|
|
((cpuinfo[3] & 0x10000000) != 0); // Intel specific: SMT --> Bit 28
|
|
|
|
if ((SupportsSMT) && (this->Features.HasAPIC)) {
|
|
// Retrieve APIC information if there is one present.
|
|
this->Features.ExtendedFeatures.APIC_ID =
|
|
((cpuinfo[1] & 0xFF000000) >> 24);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/** Find the manufacturer given the vendor id */
|
|
void SystemInformationImplementation::FindManufacturer(
|
|
const std::string& family)
|
|
{
|
|
if (this->ChipID.Vendor == "GenuineIntel")
|
|
this->ChipManufacturer = Intel; // Intel Corp.
|
|
else if (this->ChipID.Vendor == "UMC UMC UMC ")
|
|
this->ChipManufacturer = UMC; // United Microelectronics Corp.
|
|
else if (this->ChipID.Vendor == "AuthenticAMD")
|
|
this->ChipManufacturer = AMD; // Advanced Micro Devices
|
|
else if (this->ChipID.Vendor == "AMD ISBETTER")
|
|
this->ChipManufacturer = AMD; // Advanced Micro Devices (1994)
|
|
else if (this->ChipID.Vendor == "HygonGenuine")
|
|
this->ChipManufacturer = Hygon; // Chengdu Haiguang IC Design Co., Ltd.
|
|
else if (this->ChipID.Vendor == "CyrixInstead")
|
|
this->ChipManufacturer = Cyrix; // Cyrix Corp., VIA Inc.
|
|
else if (this->ChipID.Vendor == "NexGenDriven")
|
|
this->ChipManufacturer = NexGen; // NexGen Inc. (now AMD)
|
|
else if (this->ChipID.Vendor == "CentaurHauls")
|
|
this->ChipManufacturer = IDT; // original IDT/Centaur/VIA (now Zhaoxin)
|
|
else if (this->ChipID.Vendor == " Shanghai ")
|
|
this->ChipManufacturer =
|
|
Zhaoxin; // Shanghai Zhaoxin Semiconductor Co., Ltd.
|
|
else if (this->ChipID.Vendor == "RiseRiseRise")
|
|
this->ChipManufacturer = Rise; // Rise
|
|
else if (this->ChipID.Vendor == "GenuineTMx86")
|
|
this->ChipManufacturer = Transmeta; // Transmeta
|
|
else if (this->ChipID.Vendor == "TransmetaCPU")
|
|
this->ChipManufacturer = Transmeta; // Transmeta
|
|
else if (this->ChipID.Vendor == "Geode By NSC")
|
|
this->ChipManufacturer = NSC; // National Semiconductor
|
|
else if (this->ChipID.Vendor == "Sun")
|
|
this->ChipManufacturer = Sun; // Sun Microelectronics
|
|
else if (this->ChipID.Vendor == "IBM")
|
|
this->ChipManufacturer = IBM; // IBM Microelectronics
|
|
else if (this->ChipID.Vendor == "Hewlett-Packard")
|
|
this->ChipManufacturer = HP; // Hewlett-Packard
|
|
else if (this->ChipID.Vendor == "Motorola")
|
|
this->ChipManufacturer = Motorola; // Motorola Microelectronics
|
|
else if (family.compare(0, 7, "PA-RISC") == 0)
|
|
this->ChipManufacturer = HP; // Hewlett-Packard
|
|
else if (this->ChipID.Vendor == "Apple")
|
|
this->ChipManufacturer = Apple; // Apple
|
|
else
|
|
this->ChipManufacturer = UnknownManufacturer; // Unknown manufacturer
|
|
}
|
|
|
|
/** */
|
|
bool SystemInformationImplementation::RetrieveCPUIdentity()
|
|
{
|
|
#if USE_CPUID
|
|
int localCPUVendor[4];
|
|
int localCPUSignature[4];
|
|
|
|
if (!call_cpuid(0, localCPUVendor)) {
|
|
return false;
|
|
}
|
|
if (!call_cpuid(1, localCPUSignature)) {
|
|
return false;
|
|
}
|
|
|
|
// Process the returned information.
|
|
// ; eax = 0 --> eax: maximum value of CPUID instruction.
|
|
// ; ebx: part 1 of 3; CPU signature.
|
|
// ; edx: part 2 of 3; CPU signature.
|
|
// ; ecx: part 3 of 3; CPU signature.
|
|
char vbuf[13];
|
|
memcpy(&(vbuf[0]), &(localCPUVendor[1]), sizeof(int));
|
|
memcpy(&(vbuf[4]), &(localCPUVendor[3]), sizeof(int));
|
|
memcpy(&(vbuf[8]), &(localCPUVendor[2]), sizeof(int));
|
|
vbuf[12] = '\0';
|
|
this->ChipID.Vendor = vbuf;
|
|
|
|
// Retrieve the family of CPU present.
|
|
// ; eax = 1 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type,
|
|
// bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision
|
|
// ; ebx: 31..24 - default APIC ID, 23..16 - logical processor ID,
|
|
// 15..8 - CFLUSH chunk size , 7..0 - brand ID
|
|
// ; edx: CPU feature flags
|
|
this->ChipID.ExtendedFamily =
|
|
((localCPUSignature[0] & 0x0FF00000) >> 20); // Bits 27..20 Used
|
|
this->ChipID.ExtendedModel =
|
|
((localCPUSignature[0] & 0x000F0000) >> 16); // Bits 19..16 Used
|
|
this->ChipID.Type =
|
|
((localCPUSignature[0] & 0x0000F000) >> 12); // Bits 15..12 Used
|
|
this->ChipID.Family =
|
|
((localCPUSignature[0] & 0x00000F00) >> 8); // Bits 11..8 Used
|
|
this->ChipID.Model =
|
|
((localCPUSignature[0] & 0x000000F0) >> 4); // Bits 7..4 Used
|
|
this->ChipID.Revision =
|
|
((localCPUSignature[0] & 0x0000000F) >> 0); // Bits 3..0 Used
|
|
|
|
return true;
|
|
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/** */
|
|
bool SystemInformationImplementation::RetrieveCPUCacheDetails()
|
|
{
|
|
#if USE_CPUID
|
|
int L1Cache[4] = { 0, 0, 0, 0 };
|
|
int L2Cache[4] = { 0, 0, 0, 0 };
|
|
|
|
// Check to see if what we are about to do is supported...
|
|
if (RetrieveCPUExtendedLevelSupport(0x80000005)) {
|
|
if (!call_cpuid(0x80000005, L1Cache)) {
|
|
return false;
|
|
}
|
|
// Save the L1 data cache size (in KB) from ecx: bits 31..24 as well as
|
|
// data cache size from edx: bits 31..24.
|
|
this->Features.L1CacheSize = ((L1Cache[2] & 0xFF000000) >> 24);
|
|
this->Features.L1CacheSize += ((L1Cache[3] & 0xFF000000) >> 24);
|
|
} else {
|
|
// Store -1 to indicate the cache could not be queried.
|
|
this->Features.L1CacheSize = -1;
|
|
}
|
|
|
|
// Check to see if what we are about to do is supported...
|
|
if (RetrieveCPUExtendedLevelSupport(0x80000006)) {
|
|
if (!call_cpuid(0x80000006, L2Cache)) {
|
|
return false;
|
|
}
|
|
// Save the L2 unified cache size (in KB) from ecx: bits 31..16.
|
|
this->Features.L2CacheSize = ((L2Cache[2] & 0xFFFF0000) >> 16);
|
|
} else {
|
|
// Store -1 to indicate the cache could not be queried.
|
|
this->Features.L2CacheSize = -1;
|
|
}
|
|
|
|
// Define L3 as being not present as we cannot test for it.
|
|
this->Features.L3CacheSize = -1;
|
|
|
|
#endif
|
|
|
|
// Return failure if we cannot detect either cache with this method.
|
|
return ((this->Features.L1CacheSize == -1) &&
|
|
(this->Features.L2CacheSize == -1))
|
|
? false
|
|
: true;
|
|
}
|
|
|
|
/** */
|
|
bool SystemInformationImplementation::RetrieveClassicalCPUCacheDetails()
|
|
{
|
|
#if USE_CPUID
|
|
int TLBCode = -1, TLBData = -1, L1Code = -1, L1Data = -1, L1Trace = -1,
|
|
L2Unified = -1, L3Unified = -1;
|
|
int TLBCacheData[4] = { 0, 0, 0, 0 };
|
|
int TLBPassCounter = 0;
|
|
int TLBCacheUnit = 0;
|
|
|
|
do {
|
|
if (!call_cpuid(2, TLBCacheData)) {
|
|
return false;
|
|
}
|
|
|
|
int bob = ((TLBCacheData[0] & 0x00FF0000) >> 16);
|
|
(void)bob;
|
|
// Process the returned TLB and cache information.
|
|
for (int nCounter = 0; nCounter < TLBCACHE_INFO_UNITS; nCounter++) {
|
|
// First of all - decide which unit we are dealing with.
|
|
switch (nCounter) {
|
|
// eax: bits 8..15 : bits 16..23 : bits 24..31
|
|
case 0:
|
|
TLBCacheUnit = ((TLBCacheData[0] & 0x0000FF00) >> 8);
|
|
break;
|
|
case 1:
|
|
TLBCacheUnit = ((TLBCacheData[0] & 0x00FF0000) >> 16);
|
|
break;
|
|
case 2:
|
|
TLBCacheUnit = ((TLBCacheData[0] & 0xFF000000) >> 24);
|
|
break;
|
|
|
|
// ebx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
|
|
case 3:
|
|
TLBCacheUnit = ((TLBCacheData[1] & 0x000000FF) >> 0);
|
|
break;
|
|
case 4:
|
|
TLBCacheUnit = ((TLBCacheData[1] & 0x0000FF00) >> 8);
|
|
break;
|
|
case 5:
|
|
TLBCacheUnit = ((TLBCacheData[1] & 0x00FF0000) >> 16);
|
|
break;
|
|
case 6:
|
|
TLBCacheUnit = ((TLBCacheData[1] & 0xFF000000) >> 24);
|
|
break;
|
|
|
|
// ecx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
|
|
case 7:
|
|
TLBCacheUnit = ((TLBCacheData[2] & 0x000000FF) >> 0);
|
|
break;
|
|
case 8:
|
|
TLBCacheUnit = ((TLBCacheData[2] & 0x0000FF00) >> 8);
|
|
break;
|
|
case 9:
|
|
TLBCacheUnit = ((TLBCacheData[2] & 0x00FF0000) >> 16);
|
|
break;
|
|
case 10:
|
|
TLBCacheUnit = ((TLBCacheData[2] & 0xFF000000) >> 24);
|
|
break;
|
|
|
|
// edx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
|
|
case 11:
|
|
TLBCacheUnit = ((TLBCacheData[3] & 0x000000FF) >> 0);
|
|
break;
|
|
case 12:
|
|
TLBCacheUnit = ((TLBCacheData[3] & 0x0000FF00) >> 8);
|
|
break;
|
|
case 13:
|
|
TLBCacheUnit = ((TLBCacheData[3] & 0x00FF0000) >> 16);
|
|
break;
|
|
case 14:
|
|
TLBCacheUnit = ((TLBCacheData[3] & 0xFF000000) >> 24);
|
|
break;
|
|
|
|
// Default case - an error has occurred.
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// Now process the resulting unit to see what it means....
|
|
switch (TLBCacheUnit) {
|
|
case 0x00:
|
|
break;
|
|
case 0x01:
|
|
STORE_TLBCACHE_INFO(TLBCode, 4);
|
|
break;
|
|
case 0x02:
|
|
STORE_TLBCACHE_INFO(TLBCode, 4096);
|
|
break;
|
|
case 0x03:
|
|
STORE_TLBCACHE_INFO(TLBData, 4);
|
|
break;
|
|
case 0x04:
|
|
STORE_TLBCACHE_INFO(TLBData, 4096);
|
|
break;
|
|
case 0x06:
|
|
STORE_TLBCACHE_INFO(L1Code, 8);
|
|
break;
|
|
case 0x08:
|
|
STORE_TLBCACHE_INFO(L1Code, 16);
|
|
break;
|
|
case 0x0a:
|
|
STORE_TLBCACHE_INFO(L1Data, 8);
|
|
break;
|
|
case 0x0c:
|
|
STORE_TLBCACHE_INFO(L1Data, 16);
|
|
break;
|
|
case 0x10:
|
|
STORE_TLBCACHE_INFO(L1Data, 16);
|
|
break; // <-- FIXME: IA-64 Only
|
|
case 0x15:
|
|
STORE_TLBCACHE_INFO(L1Code, 16);
|
|
break; // <-- FIXME: IA-64 Only
|
|
case 0x1a:
|
|
STORE_TLBCACHE_INFO(L2Unified, 96);
|
|
break; // <-- FIXME: IA-64 Only
|
|
case 0x22:
|
|
STORE_TLBCACHE_INFO(L3Unified, 512);
|
|
break;
|
|
case 0x23:
|
|
STORE_TLBCACHE_INFO(L3Unified, 1024);
|
|
break;
|
|
case 0x25:
|
|
STORE_TLBCACHE_INFO(L3Unified, 2048);
|
|
break;
|
|
case 0x29:
|
|
STORE_TLBCACHE_INFO(L3Unified, 4096);
|
|
break;
|
|
case 0x39:
|
|
STORE_TLBCACHE_INFO(L2Unified, 128);
|
|
break;
|
|
case 0x3c:
|
|
STORE_TLBCACHE_INFO(L2Unified, 256);
|
|
break;
|
|
case 0x40:
|
|
STORE_TLBCACHE_INFO(L2Unified, 0);
|
|
break; // <-- FIXME: No integrated L2 cache (P6 core) or L3 cache (P4
|
|
// core).
|
|
case 0x41:
|
|
STORE_TLBCACHE_INFO(L2Unified, 128);
|
|
break;
|
|
case 0x42:
|
|
STORE_TLBCACHE_INFO(L2Unified, 256);
|
|
break;
|
|
case 0x43:
|
|
STORE_TLBCACHE_INFO(L2Unified, 512);
|
|
break;
|
|
case 0x44:
|
|
STORE_TLBCACHE_INFO(L2Unified, 1024);
|
|
break;
|
|
case 0x45:
|
|
STORE_TLBCACHE_INFO(L2Unified, 2048);
|
|
break;
|
|
case 0x50:
|
|
STORE_TLBCACHE_INFO(TLBCode, 4096);
|
|
break;
|
|
case 0x51:
|
|
STORE_TLBCACHE_INFO(TLBCode, 4096);
|
|
break;
|
|
case 0x52:
|
|
STORE_TLBCACHE_INFO(TLBCode, 4096);
|
|
break;
|
|
case 0x5b:
|
|
STORE_TLBCACHE_INFO(TLBData, 4096);
|
|
break;
|
|
case 0x5c:
|
|
STORE_TLBCACHE_INFO(TLBData, 4096);
|
|
break;
|
|
case 0x5d:
|
|
STORE_TLBCACHE_INFO(TLBData, 4096);
|
|
break;
|
|
case 0x66:
|
|
STORE_TLBCACHE_INFO(L1Data, 8);
|
|
break;
|
|
case 0x67:
|
|
STORE_TLBCACHE_INFO(L1Data, 16);
|
|
break;
|
|
case 0x68:
|
|
STORE_TLBCACHE_INFO(L1Data, 32);
|
|
break;
|
|
case 0x70:
|
|
STORE_TLBCACHE_INFO(L1Trace, 12);
|
|
break;
|
|
case 0x71:
|
|
STORE_TLBCACHE_INFO(L1Trace, 16);
|
|
break;
|
|
case 0x72:
|
|
STORE_TLBCACHE_INFO(L1Trace, 32);
|
|
break;
|
|
case 0x77:
|
|
STORE_TLBCACHE_INFO(L1Code, 16);
|
|
break; // <-- FIXME: IA-64 Only
|
|
case 0x79:
|
|
STORE_TLBCACHE_INFO(L2Unified, 128);
|
|
break;
|
|
case 0x7a:
|
|
STORE_TLBCACHE_INFO(L2Unified, 256);
|
|
break;
|
|
case 0x7b:
|
|
STORE_TLBCACHE_INFO(L2Unified, 512);
|
|
break;
|
|
case 0x7c:
|
|
STORE_TLBCACHE_INFO(L2Unified, 1024);
|
|
break;
|
|
case 0x7e:
|
|
STORE_TLBCACHE_INFO(L2Unified, 256);
|
|
break;
|
|
case 0x81:
|
|
STORE_TLBCACHE_INFO(L2Unified, 128);
|
|
break;
|
|
case 0x82:
|
|
STORE_TLBCACHE_INFO(L2Unified, 256);
|
|
break;
|
|
case 0x83:
|
|
STORE_TLBCACHE_INFO(L2Unified, 512);
|
|
break;
|
|
case 0x84:
|
|
STORE_TLBCACHE_INFO(L2Unified, 1024);
|
|
break;
|
|
case 0x85:
|
|
STORE_TLBCACHE_INFO(L2Unified, 2048);
|
|
break;
|
|
case 0x88:
|
|
STORE_TLBCACHE_INFO(L3Unified, 2048);
|
|
break; // <-- FIXME: IA-64 Only
|
|
case 0x89:
|
|
STORE_TLBCACHE_INFO(L3Unified, 4096);
|
|
break; // <-- FIXME: IA-64 Only
|
|
case 0x8a:
|
|
STORE_TLBCACHE_INFO(L3Unified, 8192);
|
|
break; // <-- FIXME: IA-64 Only
|
|
case 0x8d:
|
|
STORE_TLBCACHE_INFO(L3Unified, 3096);
|
|
break; // <-- FIXME: IA-64 Only
|
|
case 0x90:
|
|
STORE_TLBCACHE_INFO(TLBCode, 262144);
|
|
break; // <-- FIXME: IA-64 Only
|
|
case 0x96:
|
|
STORE_TLBCACHE_INFO(TLBCode, 262144);
|
|
break; // <-- FIXME: IA-64 Only
|
|
case 0x9b:
|
|
STORE_TLBCACHE_INFO(TLBCode, 262144);
|
|
break; // <-- FIXME: IA-64 Only
|
|
|
|
// Default case - an error has occurred.
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Increment the TLB pass counter.
|
|
TLBPassCounter++;
|
|
} while ((TLBCacheData[0] & 0x000000FF) > TLBPassCounter);
|
|
|
|
// Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
|
|
if ((L1Code == -1) && (L1Data == -1) && (L1Trace == -1)) {
|
|
this->Features.L1CacheSize = -1;
|
|
} else if ((L1Code == -1) && (L1Data == -1) && (L1Trace != -1)) {
|
|
this->Features.L1CacheSize = L1Trace;
|
|
} else if ((L1Code != -1) && (L1Data == -1)) {
|
|
this->Features.L1CacheSize = L1Code;
|
|
} else if ((L1Code == -1) && (L1Data != -1)) {
|
|
this->Features.L1CacheSize = L1Data;
|
|
} else if ((L1Code != -1) && (L1Data != -1)) {
|
|
this->Features.L1CacheSize = L1Code + L1Data;
|
|
} else {
|
|
this->Features.L1CacheSize = -1;
|
|
}
|
|
|
|
// Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
|
|
if (L2Unified == -1) {
|
|
this->Features.L2CacheSize = -1;
|
|
} else {
|
|
this->Features.L2CacheSize = L2Unified;
|
|
}
|
|
|
|
// Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
|
|
if (L3Unified == -1) {
|
|
this->Features.L3CacheSize = -1;
|
|
} else {
|
|
this->Features.L3CacheSize = L3Unified;
|
|
}
|
|
|
|
return true;
|
|
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/** */
|
|
bool SystemInformationImplementation::RetrieveCPUClockSpeed()
|
|
{
|
|
bool retrieved = false;
|
|
|
|
#if defined(_WIN32)
|
|
unsigned int uiRepetitions = 1;
|
|
unsigned int uiMSecPerRepetition = 50;
|
|
__int64 i64Total = 0;
|
|
__int64 i64Overhead = 0;
|
|
|
|
// Check if the TSC implementation works at all
|
|
if (this->Features.HasTSC &&
|
|
GetCyclesDifference(SystemInformationImplementation::Delay,
|
|
uiMSecPerRepetition) > 0) {
|
|
for (unsigned int nCounter = 0; nCounter < uiRepetitions; nCounter++) {
|
|
i64Total += GetCyclesDifference(SystemInformationImplementation::Delay,
|
|
uiMSecPerRepetition);
|
|
i64Overhead += GetCyclesDifference(
|
|
SystemInformationImplementation::DelayOverhead, uiMSecPerRepetition);
|
|
}
|
|
|
|
// Calculate the MHz speed.
|
|
i64Total -= i64Overhead;
|
|
i64Total /= uiRepetitions;
|
|
i64Total /= uiMSecPerRepetition;
|
|
i64Total /= 1000;
|
|
|
|
// Save the CPU speed.
|
|
this->CPUSpeedInMHz = (float)i64Total;
|
|
|
|
retrieved = true;
|
|
}
|
|
|
|
// If RDTSC is not supported, we fallback to trying to read this value
|
|
// from the registry:
|
|
if (!retrieved) {
|
|
HKEY hKey = nullptr;
|
|
LONG err =
|
|
RegOpenKeyExW(HKEY_LOCAL_MACHINE,
|
|
L"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0,
|
|
KEY_READ, &hKey);
|
|
|
|
if (ERROR_SUCCESS == err) {
|
|
DWORD dwType = 0;
|
|
DWORD data = 0;
|
|
DWORD dwSize = sizeof(DWORD);
|
|
|
|
err =
|
|
RegQueryValueExW(hKey, L"~MHz", 0, &dwType, (LPBYTE)&data, &dwSize);
|
|
|
|
if (ERROR_SUCCESS == err) {
|
|
this->CPUSpeedInMHz = (float)data;
|
|
retrieved = true;
|
|
}
|
|
|
|
RegCloseKey(hKey);
|
|
hKey = nullptr;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return retrieved;
|
|
}
|
|
|
|
/** */
|
|
bool SystemInformationImplementation::RetrieveClassicalCPUClockSpeed()
|
|
{
|
|
#if USE_ASM_INSTRUCTIONS
|
|
LARGE_INTEGER liStart, liEnd, liCountsPerSecond;
|
|
double dFrequency, dDifference;
|
|
|
|
// Attempt to get a starting tick count.
|
|
QueryPerformanceCounter(&liStart);
|
|
|
|
__try {
|
|
_asm {
|
|
mov eax, 0x80000000
|
|
mov ebx, CLASSICAL_CPU_FREQ_LOOP
|
|
Timer_Loop:
|
|
bsf ecx,eax
|
|
dec ebx
|
|
jnz Timer_Loop
|
|
}
|
|
} __except (1) {
|
|
return false;
|
|
}
|
|
|
|
// Attempt to get a starting tick count.
|
|
QueryPerformanceCounter(&liEnd);
|
|
|
|
// Get the difference... NB: This is in seconds....
|
|
QueryPerformanceFrequency(&liCountsPerSecond);
|
|
dDifference = (((double)liEnd.QuadPart - (double)liStart.QuadPart) /
|
|
(double)liCountsPerSecond.QuadPart);
|
|
|
|
// Calculate the clock speed.
|
|
if (this->ChipID.Family == 3) {
|
|
// 80386 processors.... Loop time is 115 cycles!
|
|
dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 115) / dDifference) / 1000000);
|
|
} else if (this->ChipID.Family == 4) {
|
|
// 80486 processors.... Loop time is 47 cycles!
|
|
dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 47) / dDifference) / 1000000);
|
|
} else if (this->ChipID.Family == 5) {
|
|
// Pentium processors.... Loop time is 43 cycles!
|
|
dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 43) / dDifference) / 1000000);
|
|
}
|
|
|
|
// Save the clock speed.
|
|
this->Features.CPUSpeed = (int)dFrequency;
|
|
|
|
return true;
|
|
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/** */
|
|
bool SystemInformationImplementation::RetrieveCPUExtendedLevelSupport(
|
|
int CPULevelToCheck)
|
|
{
|
|
int cpuinfo[4] = { 0, 0, 0, 0 };
|
|
|
|
// The extended CPUID is supported by various vendors starting with the
|
|
// following CPU models:
|
|
//
|
|
// Manufacturer & Chip Name | Family Model Revision
|
|
//
|
|
// AMD K6, K6-2 | 5 6 x
|
|
// Cyrix GXm, Cyrix III "Joshua" | 5 4 x
|
|
// IDT C6-2 | 5 8 x
|
|
// VIA Cyrix III | 6 5 x
|
|
// Transmeta Crusoe | 5 x x
|
|
// Intel Pentium 4 | f x x
|
|
//
|
|
|
|
// We check to see if a supported processor is present...
|
|
if (this->ChipManufacturer == AMD) {
|
|
if (this->ChipID.Family < 5)
|
|
return false;
|
|
if ((this->ChipID.Family == 5) && (this->ChipID.Model < 6))
|
|
return false;
|
|
} else if (this->ChipManufacturer == Cyrix) {
|
|
if (this->ChipID.Family < 5)
|
|
return false;
|
|
if ((this->ChipID.Family == 5) && (this->ChipID.Model < 4))
|
|
return false;
|
|
if ((this->ChipID.Family == 6) && (this->ChipID.Model < 5))
|
|
return false;
|
|
} else if (this->ChipManufacturer == IDT) {
|
|
if (this->ChipID.Family < 5)
|
|
return false;
|
|
if ((this->ChipID.Family == 5) && (this->ChipID.Model < 8))
|
|
return false;
|
|
} else if (this->ChipManufacturer == Transmeta) {
|
|
if (this->ChipID.Family < 5)
|
|
return false;
|
|
} else if (this->ChipManufacturer == Intel) {
|
|
if (this->ChipID.Family < 0xf) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
#if USE_CPUID
|
|
if (!call_cpuid(0x80000000, cpuinfo)) {
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
// Now we have to check the level wanted vs level returned...
|
|
int nLevelWanted = (CPULevelToCheck & 0x7FFFFFFF);
|
|
int nLevelReturn = (cpuinfo[0] & 0x7FFFFFFF);
|
|
|
|
// Check to see if the level provided is supported...
|
|
if (nLevelWanted > nLevelReturn) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/** */
|
|
bool SystemInformationImplementation::RetrieveExtendedCPUFeatures()
|
|
{
|
|
|
|
// Check that we are not using an Intel processor as it does not support
|
|
// this.
|
|
if (this->ChipManufacturer == Intel) {
|
|
return false;
|
|
}
|
|
|
|
// Check to see if what we are about to do is supported...
|
|
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000001))) {
|
|
return false;
|
|
}
|
|
|
|
#if USE_CPUID
|
|
int localCPUExtendedFeatures[4] = { 0, 0, 0, 0 };
|
|
|
|
if (!call_cpuid(0x80000001, localCPUExtendedFeatures)) {
|
|
return false;
|
|
}
|
|
|
|
// Retrieve the extended features of CPU present.
|
|
this->Features.ExtendedFeatures.Has3DNow =
|
|
((localCPUExtendedFeatures[3] & 0x80000000) !=
|
|
0); // 3DNow Present --> Bit 31.
|
|
this->Features.ExtendedFeatures.Has3DNowPlus =
|
|
((localCPUExtendedFeatures[3] & 0x40000000) !=
|
|
0); // 3DNow+ Present -- > Bit 30.
|
|
this->Features.ExtendedFeatures.HasSSEMMX =
|
|
((localCPUExtendedFeatures[3] & 0x00400000) !=
|
|
0); // SSE MMX Present --> Bit 22.
|
|
this->Features.ExtendedFeatures.SupportsMP =
|
|
((localCPUExtendedFeatures[3] & 0x00080000) !=
|
|
0); // MP Capable -- > Bit 19.
|
|
|
|
// Retrieve AMD specific extended features.
|
|
if (this->ChipManufacturer == AMD || this->ChipManufacturer == Hygon) {
|
|
this->Features.ExtendedFeatures.HasMMXPlus =
|
|
((localCPUExtendedFeatures[3] & 0x00400000) !=
|
|
0); // AMD specific: MMX-SSE --> Bit 22
|
|
}
|
|
|
|
// Retrieve Cyrix specific extended features.
|
|
if (this->ChipManufacturer == Cyrix) {
|
|
this->Features.ExtendedFeatures.HasMMXPlus =
|
|
((localCPUExtendedFeatures[3] & 0x01000000) !=
|
|
0); // Cyrix specific: Extended MMX --> Bit 24
|
|
}
|
|
|
|
return true;
|
|
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/** */
|
|
bool SystemInformationImplementation::RetrieveProcessorSerialNumber()
|
|
{
|
|
// Check to see if the processor supports the processor serial number.
|
|
if (!this->Features.HasSerial) {
|
|
return false;
|
|
}
|
|
|
|
#if USE_CPUID
|
|
int SerialNumber[4];
|
|
|
|
if (!call_cpuid(3, SerialNumber)) {
|
|
return false;
|
|
}
|
|
|
|
// Process the returned information.
|
|
// ; eax = 3 --> ebx: top 32 bits are the processor signature bits --> NB:
|
|
// Transmeta only ?!?
|
|
// ; ecx: middle 32 bits are the processor signature bits
|
|
// ; edx: bottom 32 bits are the processor signature bits
|
|
char sn[128];
|
|
sprintf(sn, "%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x",
|
|
((SerialNumber[1] & 0xff000000) >> 24),
|
|
((SerialNumber[1] & 0x00ff0000) >> 16),
|
|
((SerialNumber[1] & 0x0000ff00) >> 8),
|
|
((SerialNumber[1] & 0x000000ff) >> 0),
|
|
((SerialNumber[2] & 0xff000000) >> 24),
|
|
((SerialNumber[2] & 0x00ff0000) >> 16),
|
|
((SerialNumber[2] & 0x0000ff00) >> 8),
|
|
((SerialNumber[2] & 0x000000ff) >> 0),
|
|
((SerialNumber[3] & 0xff000000) >> 24),
|
|
((SerialNumber[3] & 0x00ff0000) >> 16),
|
|
((SerialNumber[3] & 0x0000ff00) >> 8),
|
|
((SerialNumber[3] & 0x000000ff) >> 0));
|
|
this->ChipID.SerialNumber = sn;
|
|
return true;
|
|
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/** */
|
|
bool SystemInformationImplementation::RetrieveCPUPowerManagement()
|
|
{
|
|
// Check to see if what we are about to do is supported...
|
|
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000007))) {
|
|
this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = false;
|
|
this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = false;
|
|
this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = false;
|
|
return false;
|
|
}
|
|
|
|
#if USE_CPUID
|
|
int localCPUPowerManagement[4] = { 0, 0, 0, 0 };
|
|
|
|
if (!call_cpuid(0x80000007, localCPUPowerManagement)) {
|
|
return false;
|
|
}
|
|
|
|
// Check for the power management capabilities of the CPU.
|
|
this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode =
|
|
((localCPUPowerManagement[3] & 0x00000001) != 0);
|
|
this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID =
|
|
((localCPUPowerManagement[3] & 0x00000002) != 0);
|
|
this->Features.ExtendedFeatures.PowerManagement.HasVoltageID =
|
|
((localCPUPowerManagement[3] & 0x00000004) != 0);
|
|
|
|
return true;
|
|
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
#if USE_CPUID
|
|
// Used only in USE_CPUID implementation below.
|
|
static void SystemInformationStripLeadingSpace(std::string& str)
|
|
{
|
|
// Because some manufacturers have leading white space - we have to
|
|
// post-process the name.
|
|
std::string::size_type pos = str.find_first_not_of(" ");
|
|
if (pos != std::string::npos) {
|
|
str.erase(0, pos);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/** */
|
|
bool SystemInformationImplementation::RetrieveExtendedCPUIdentity()
|
|
{
|
|
// Check to see if what we are about to do is supported...
|
|
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000002)))
|
|
return false;
|
|
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000003)))
|
|
return false;
|
|
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000004)))
|
|
return false;
|
|
|
|
#if USE_CPUID
|
|
int CPUExtendedIdentity[12];
|
|
|
|
if (!call_cpuid(0x80000002, CPUExtendedIdentity)) {
|
|
return false;
|
|
}
|
|
if (!call_cpuid(0x80000003, CPUExtendedIdentity + 4)) {
|
|
return false;
|
|
}
|
|
if (!call_cpuid(0x80000004, CPUExtendedIdentity + 8)) {
|
|
return false;
|
|
}
|
|
|
|
// Process the returned information.
|
|
char nbuf[49];
|
|
memcpy(&(nbuf[0]), &(CPUExtendedIdentity[0]), sizeof(int));
|
|
memcpy(&(nbuf[4]), &(CPUExtendedIdentity[1]), sizeof(int));
|
|
memcpy(&(nbuf[8]), &(CPUExtendedIdentity[2]), sizeof(int));
|
|
memcpy(&(nbuf[12]), &(CPUExtendedIdentity[3]), sizeof(int));
|
|
memcpy(&(nbuf[16]), &(CPUExtendedIdentity[4]), sizeof(int));
|
|
memcpy(&(nbuf[20]), &(CPUExtendedIdentity[5]), sizeof(int));
|
|
memcpy(&(nbuf[24]), &(CPUExtendedIdentity[6]), sizeof(int));
|
|
memcpy(&(nbuf[28]), &(CPUExtendedIdentity[7]), sizeof(int));
|
|
memcpy(&(nbuf[32]), &(CPUExtendedIdentity[8]), sizeof(int));
|
|
memcpy(&(nbuf[36]), &(CPUExtendedIdentity[9]), sizeof(int));
|
|
memcpy(&(nbuf[40]), &(CPUExtendedIdentity[10]), sizeof(int));
|
|
memcpy(&(nbuf[44]), &(CPUExtendedIdentity[11]), sizeof(int));
|
|
nbuf[48] = '\0';
|
|
this->ChipID.ProcessorName = nbuf;
|
|
this->ChipID.ModelName = nbuf;
|
|
|
|
// Because some manufacturers have leading white space - we have to
|
|
// post-process the name.
|
|
SystemInformationStripLeadingSpace(this->ChipID.ProcessorName);
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/** */
|
|
bool SystemInformationImplementation::RetrieveClassicalCPUIdentity()
|
|
{
|
|
// Start by decided which manufacturer we are using....
|
|
switch (this->ChipManufacturer) {
|
|
case Intel:
|
|
// Check the family / model / revision to determine the CPU ID.
|
|
switch (this->ChipID.Family) {
|
|
case 3:
|
|
this->ChipID.ProcessorName = "Newer i80386 family";
|
|
break;
|
|
case 4:
|
|
switch (this->ChipID.Model) {
|
|
case 0:
|
|
this->ChipID.ProcessorName = "i80486DX-25/33";
|
|
break;
|
|
case 1:
|
|
this->ChipID.ProcessorName = "i80486DX-50";
|
|
break;
|
|
case 2:
|
|
this->ChipID.ProcessorName = "i80486SX";
|
|
break;
|
|
case 3:
|
|
this->ChipID.ProcessorName = "i80486DX2";
|
|
break;
|
|
case 4:
|
|
this->ChipID.ProcessorName = "i80486SL";
|
|
break;
|
|
case 5:
|
|
this->ChipID.ProcessorName = "i80486SX2";
|
|
break;
|
|
case 7:
|
|
this->ChipID.ProcessorName = "i80486DX2 WriteBack";
|
|
break;
|
|
case 8:
|
|
this->ChipID.ProcessorName = "i80486DX4";
|
|
break;
|
|
case 9:
|
|
this->ChipID.ProcessorName = "i80486DX4 WriteBack";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown 80486 family";
|
|
return false;
|
|
}
|
|
break;
|
|
case 5:
|
|
switch (this->ChipID.Model) {
|
|
case 0:
|
|
this->ChipID.ProcessorName = "P5 A-Step";
|
|
break;
|
|
case 1:
|
|
this->ChipID.ProcessorName = "P5";
|
|
break;
|
|
case 2:
|
|
this->ChipID.ProcessorName = "P54C";
|
|
break;
|
|
case 3:
|
|
this->ChipID.ProcessorName = "P24T OverDrive";
|
|
break;
|
|
case 4:
|
|
this->ChipID.ProcessorName = "P55C";
|
|
break;
|
|
case 7:
|
|
this->ChipID.ProcessorName = "P54C";
|
|
break;
|
|
case 8:
|
|
this->ChipID.ProcessorName = "P55C (0.25micron)";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown Pentium family";
|
|
return false;
|
|
}
|
|
break;
|
|
case 6:
|
|
switch (this->ChipID.Model) {
|
|
case 0:
|
|
this->ChipID.ProcessorName = "P6 A-Step";
|
|
break;
|
|
case 1:
|
|
this->ChipID.ProcessorName = "P6";
|
|
break;
|
|
case 3:
|
|
this->ChipID.ProcessorName = "Pentium II (0.28 micron)";
|
|
break;
|
|
case 5:
|
|
this->ChipID.ProcessorName = "Pentium II (0.25 micron)";
|
|
break;
|
|
case 6:
|
|
this->ChipID.ProcessorName = "Pentium II With On-Die L2 Cache";
|
|
break;
|
|
case 7:
|
|
this->ChipID.ProcessorName = "Pentium III (0.25 micron)";
|
|
break;
|
|
case 8:
|
|
this->ChipID.ProcessorName =
|
|
"Pentium III (0.18 micron) With 256 KB On-Die L2 Cache ";
|
|
break;
|
|
case 0xa:
|
|
this->ChipID.ProcessorName =
|
|
"Pentium III (0.18 micron) With 1 Or 2 MB On-Die L2 Cache ";
|
|
break;
|
|
case 0xb:
|
|
this->ChipID.ProcessorName = "Pentium III (0.13 micron) With "
|
|
"256 Or 512 KB On-Die L2 Cache ";
|
|
break;
|
|
case 23:
|
|
this->ChipID.ProcessorName =
|
|
"Intel(R) Core(TM)2 Duo CPU T9500 @ 2.60GHz";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown P6 family";
|
|
return false;
|
|
}
|
|
break;
|
|
case 7:
|
|
this->ChipID.ProcessorName = "Intel Merced (IA-64)";
|
|
break;
|
|
case 0xf:
|
|
// Check the extended family bits...
|
|
switch (this->ChipID.ExtendedFamily) {
|
|
case 0:
|
|
switch (this->ChipID.Model) {
|
|
case 0:
|
|
this->ChipID.ProcessorName = "Pentium IV (0.18 micron)";
|
|
break;
|
|
case 1:
|
|
this->ChipID.ProcessorName = "Pentium IV (0.18 micron)";
|
|
break;
|
|
case 2:
|
|
this->ChipID.ProcessorName = "Pentium IV (0.13 micron)";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown Pentium 4 family";
|
|
return false;
|
|
}
|
|
break;
|
|
case 1:
|
|
this->ChipID.ProcessorName = "Intel McKinley (IA-64)";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Pentium";
|
|
}
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown Intel family";
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case AMD:
|
|
// Check the family / model / revision to determine the CPU ID.
|
|
switch (this->ChipID.Family) {
|
|
case 4:
|
|
switch (this->ChipID.Model) {
|
|
case 3:
|
|
this->ChipID.ProcessorName = "80486DX2";
|
|
break;
|
|
case 7:
|
|
this->ChipID.ProcessorName = "80486DX2 WriteBack";
|
|
break;
|
|
case 8:
|
|
this->ChipID.ProcessorName = "80486DX4";
|
|
break;
|
|
case 9:
|
|
this->ChipID.ProcessorName = "80486DX4 WriteBack";
|
|
break;
|
|
case 0xe:
|
|
this->ChipID.ProcessorName = "5x86";
|
|
break;
|
|
case 0xf:
|
|
this->ChipID.ProcessorName = "5x86WB";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown 80486 family";
|
|
return false;
|
|
}
|
|
break;
|
|
case 5:
|
|
switch (this->ChipID.Model) {
|
|
case 0:
|
|
this->ChipID.ProcessorName = "SSA5 (PR75, PR90 = PR100)";
|
|
break;
|
|
case 1:
|
|
this->ChipID.ProcessorName = "5k86 (PR120 = PR133)";
|
|
break;
|
|
case 2:
|
|
this->ChipID.ProcessorName = "5k86 (PR166)";
|
|
break;
|
|
case 3:
|
|
this->ChipID.ProcessorName = "5k86 (PR200)";
|
|
break;
|
|
case 6:
|
|
this->ChipID.ProcessorName = "K6 (0.30 micron)";
|
|
break;
|
|
case 7:
|
|
this->ChipID.ProcessorName = "K6 (0.25 micron)";
|
|
break;
|
|
case 8:
|
|
this->ChipID.ProcessorName = "K6-2";
|
|
break;
|
|
case 9:
|
|
this->ChipID.ProcessorName = "K6-III";
|
|
break;
|
|
case 0xd:
|
|
this->ChipID.ProcessorName = "K6-2+ or K6-III+ (0.18 micron)";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown 80586 family";
|
|
return false;
|
|
}
|
|
break;
|
|
case 6:
|
|
switch (this->ChipID.Model) {
|
|
case 1:
|
|
this->ChipID.ProcessorName = "Athlon- (0.25 micron)";
|
|
break;
|
|
case 2:
|
|
this->ChipID.ProcessorName = "Athlon- (0.18 micron)";
|
|
break;
|
|
case 3:
|
|
this->ChipID.ProcessorName = "Duron- (SF core)";
|
|
break;
|
|
case 4:
|
|
this->ChipID.ProcessorName = "Athlon- (Thunderbird core)";
|
|
break;
|
|
case 6:
|
|
this->ChipID.ProcessorName = "Athlon- (Palomino core)";
|
|
break;
|
|
case 7:
|
|
this->ChipID.ProcessorName = "Duron- (Morgan core)";
|
|
break;
|
|
case 8:
|
|
if (this->Features.ExtendedFeatures.SupportsMP)
|
|
this->ChipID.ProcessorName = "Athlon - MP (Thoroughbred core)";
|
|
else
|
|
this->ChipID.ProcessorName = "Athlon - XP (Thoroughbred core)";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown K7 family";
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown AMD family";
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Hygon:
|
|
this->ChipID.ProcessorName = "Unknown Hygon family";
|
|
return false;
|
|
|
|
case Transmeta:
|
|
switch (this->ChipID.Family) {
|
|
case 5:
|
|
switch (this->ChipID.Model) {
|
|
case 4:
|
|
this->ChipID.ProcessorName = "Crusoe TM3x00 and TM5x00";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown Crusoe family";
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown Transmeta family";
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Rise:
|
|
switch (this->ChipID.Family) {
|
|
case 5:
|
|
switch (this->ChipID.Model) {
|
|
case 0:
|
|
this->ChipID.ProcessorName = "mP6 (0.25 micron)";
|
|
break;
|
|
case 2:
|
|
this->ChipID.ProcessorName = "mP6 (0.18 micron)";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown Rise family";
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown Rise family";
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case UMC:
|
|
switch (this->ChipID.Family) {
|
|
case 4:
|
|
switch (this->ChipID.Model) {
|
|
case 1:
|
|
this->ChipID.ProcessorName = "U5D";
|
|
break;
|
|
case 2:
|
|
this->ChipID.ProcessorName = "U5S";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown UMC family";
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown UMC family";
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case IDT:
|
|
switch (this->ChipID.Family) {
|
|
case 5:
|
|
switch (this->ChipID.Model) {
|
|
case 4:
|
|
this->ChipID.ProcessorName = "C6";
|
|
break;
|
|
case 8:
|
|
this->ChipID.ProcessorName = "C2";
|
|
break;
|
|
case 9:
|
|
this->ChipID.ProcessorName = "C3";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName =
|
|
"Unknown IDT\\Centaur\\VIA\\Zhaoxin family";
|
|
return false;
|
|
}
|
|
break;
|
|
case 6:
|
|
switch (this->ChipID.Model) {
|
|
case 6:
|
|
this->ChipID.ProcessorName = "VIA Cyrix III - Samuel";
|
|
break;
|
|
case 0xf:
|
|
this->ChipID.ProcessorName = "Zhaoxin zxc";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName =
|
|
"Unknown IDT\\Centaur\\VIA\\Zhaoxin family";
|
|
return false;
|
|
}
|
|
break;
|
|
case 7:
|
|
switch (this->ChipID.Model) {
|
|
case 0x1b:
|
|
this->ChipID.ProcessorName = "Zhaoxin kx5000";
|
|
break;
|
|
case 0x3b:
|
|
this->ChipID.ProcessorName = "Zhaoxin kx6000";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName =
|
|
"Unknown IDT\\Centaur\\VIA\\Zhaoxin family";
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName =
|
|
"Unknown IDT\\Centaur\\VIA\\Zhaoxin family";
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Zhaoxin:
|
|
switch (this->ChipID.Family) {
|
|
case 6:
|
|
switch (this->ChipID.Model) {
|
|
case 0x19:
|
|
this->ChipID.ProcessorName = "Zhaoxin zxc";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown Zhaoxin family";
|
|
return false;
|
|
}
|
|
break;
|
|
case 7:
|
|
switch (this->ChipID.Model) {
|
|
case 0x1b:
|
|
this->ChipID.ProcessorName = "Zhaoxin kx5000";
|
|
break;
|
|
case 0x3b:
|
|
this->ChipID.ProcessorName = "Zhaoxin kx6000";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown Zhaoxin family";
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown Zhaoxin family";
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Cyrix:
|
|
switch (this->ChipID.Family) {
|
|
case 4:
|
|
switch (this->ChipID.Model) {
|
|
case 4:
|
|
this->ChipID.ProcessorName = "MediaGX GX = GXm";
|
|
break;
|
|
case 9:
|
|
this->ChipID.ProcessorName = "5x86";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown Cx5x86 family";
|
|
return false;
|
|
}
|
|
break;
|
|
case 5:
|
|
switch (this->ChipID.Model) {
|
|
case 2:
|
|
this->ChipID.ProcessorName = "Cx6x86";
|
|
break;
|
|
case 4:
|
|
this->ChipID.ProcessorName = "MediaGX GXm";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown Cx6x86 family";
|
|
return false;
|
|
}
|
|
break;
|
|
case 6:
|
|
switch (this->ChipID.Model) {
|
|
case 0:
|
|
this->ChipID.ProcessorName = "6x86MX";
|
|
break;
|
|
case 5:
|
|
this->ChipID.ProcessorName = "Cyrix M2 Core";
|
|
break;
|
|
case 6:
|
|
this->ChipID.ProcessorName = "WinChip C5A Core";
|
|
break;
|
|
case 7:
|
|
this->ChipID.ProcessorName = "WinChip C5B\\C5C Core";
|
|
break;
|
|
case 8:
|
|
this->ChipID.ProcessorName = "WinChip C5C-T Core";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown 6x86MX\\Cyrix III family";
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown Cyrix family";
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case NexGen:
|
|
switch (this->ChipID.Family) {
|
|
case 5:
|
|
switch (this->ChipID.Model) {
|
|
case 0:
|
|
this->ChipID.ProcessorName = "Nx586 or Nx586FPU";
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown NexGen family";
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
this->ChipID.ProcessorName = "Unknown NexGen family";
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case NSC:
|
|
this->ChipID.ProcessorName = "Cx486SLC \\ DLC \\ Cx486S A-Step";
|
|
break;
|
|
|
|
case Sun:
|
|
case IBM:
|
|
case Motorola:
|
|
case HP:
|
|
case UnknownManufacturer:
|
|
default:
|
|
this->ChipID.ProcessorName =
|
|
"Unknown family"; // We cannot identify the processor.
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/** Extract a value from the CPUInfo file */
|
|
std::string SystemInformationImplementation::ExtractValueFromCpuInfoFile(
|
|
std::string buffer, const char* word, size_t init)
|
|
{
|
|
size_t pos = buffer.find(word, init);
|
|
if (pos != std::string::npos) {
|
|
this->CurrentPositionInFile = pos;
|
|
pos = buffer.find(':', pos);
|
|
size_t pos2 = buffer.find('\n', pos);
|
|
if (pos != std::string::npos && pos2 != std::string::npos) {
|
|
// It may happen that the beginning matches, but this is still not the
|
|
// requested key.
|
|
// An example is looking for "cpu" when "cpu family" comes first. So we
|
|
// check that
|
|
// we have only spaces from here to pos, otherwise we search again.
|
|
for (size_t i = this->CurrentPositionInFile + strlen(word); i < pos;
|
|
++i) {
|
|
if (buffer[i] != ' ' && buffer[i] != '\t') {
|
|
return this->ExtractValueFromCpuInfoFile(buffer, word, pos2);
|
|
}
|
|
}
|
|
buffer.erase(0, pos + 2);
|
|
buffer.resize(pos2 - pos - 2);
|
|
return buffer;
|
|
}
|
|
}
|
|
this->CurrentPositionInFile = std::string::npos;
|
|
return "";
|
|
}
|
|
|
|
/** Query for the cpu status */
|
|
bool SystemInformationImplementation::RetreiveInformationFromCpuInfoFile()
|
|
{
|
|
this->NumberOfLogicalCPU = 0;
|
|
this->NumberOfPhysicalCPU = 0;
|
|
std::string buffer;
|
|
|
|
FILE* fd = fopen("/proc/cpuinfo", "r");
|
|
if (!fd) {
|
|
std::cout << "Problem opening /proc/cpuinfo" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
size_t fileSize = 0;
|
|
while (!feof(fd)) {
|
|
buffer += static_cast<char>(fgetc(fd));
|
|
fileSize++;
|
|
}
|
|
fclose(fd);
|
|
buffer.resize(fileSize - 2);
|
|
// Number of logical CPUs (combination of multiple processors, multi-core
|
|
// and SMT)
|
|
size_t pos = buffer.find("processor\t");
|
|
while (pos != std::string::npos) {
|
|
this->NumberOfLogicalCPU++;
|
|
pos = buffer.find("processor\t", pos + 1);
|
|
}
|
|
|
|
#if defined(__linux) || defined(__CYGWIN__)
|
|
// Count sockets.
|
|
std::set<int> PhysicalIDs;
|
|
std::string idc = this->ExtractValueFromCpuInfoFile(buffer, "physical id");
|
|
while (this->CurrentPositionInFile != std::string::npos) {
|
|
int id = atoi(idc.c_str());
|
|
PhysicalIDs.insert(id);
|
|
idc = this->ExtractValueFromCpuInfoFile(buffer, "physical id",
|
|
this->CurrentPositionInFile + 1);
|
|
}
|
|
uint64_t NumberOfSockets = PhysicalIDs.size();
|
|
NumberOfSockets = std::max(NumberOfSockets, (uint64_t)1);
|
|
// Physical ids returned by Linux don't distinguish cores.
|
|
// We want to record the total number of cores in this->NumberOfPhysicalCPU
|
|
// (checking only the first proc)
|
|
std::string Cores = this->ExtractValueFromCpuInfoFile(buffer, "cpu cores");
|
|
if (Cores.empty()) {
|
|
// Linux Sparc is different
|
|
Cores = this->ExtractValueFromCpuInfoFile(buffer, "ncpus probed");
|
|
}
|
|
auto NumberOfCoresPerSocket = (unsigned int)atoi(Cores.c_str());
|
|
NumberOfCoresPerSocket = std::max(NumberOfCoresPerSocket, 1u);
|
|
this->NumberOfPhysicalCPU =
|
|
NumberOfCoresPerSocket * (unsigned int)NumberOfSockets;
|
|
|
|
#else
|
|
// For systems which do not have "physical id" entries, neither "cpu cores"
|
|
// this has to be fixed for hyper-threading.
|
|
std::string cpucount =
|
|
this->ExtractValueFromCpuInfoFile(buffer, "cpu count");
|
|
this->NumberOfPhysicalCPU = this->NumberOfLogicalCPU =
|
|
atoi(cpucount.c_str());
|
|
#endif
|
|
// gotta have one, and if this is 0 then we get a / by 0n
|
|
// better to have a bad answer than a crash
|
|
if (this->NumberOfPhysicalCPU <= 0) {
|
|
this->NumberOfPhysicalCPU = 1;
|
|
}
|
|
if (this->NumberOfLogicalCPU == 0) {
|
|
this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;
|
|
}
|
|
// LogicalProcessorsPerPhysical>1 => SMT.
|
|
this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical =
|
|
this->NumberOfLogicalCPU / this->NumberOfPhysicalCPU;
|
|
|
|
// CPU speed (checking only the first processor)
|
|
std::string CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer, "cpu MHz");
|
|
if (!CPUSpeed.empty()) {
|
|
this->CPUSpeedInMHz = static_cast<float>(atof(CPUSpeed.c_str()));
|
|
}
|
|
#ifdef __linux
|
|
else {
|
|
// Linux Sparc: CPU speed is in Hz and encoded in hexadecimal
|
|
CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer, "Cpu0ClkTck");
|
|
if (!CPUSpeed.empty()) {
|
|
this->CPUSpeedInMHz =
|
|
static_cast<float>(strtoull(CPUSpeed.c_str(), nullptr, 16)) /
|
|
1000000.0f;
|
|
} else {
|
|
// if the kernel is build as Sparc32 it's in decimal, note the different
|
|
// case
|
|
CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer, "CPU0ClkTck");
|
|
this->CPUSpeedInMHz =
|
|
static_cast<float>(strtoull(CPUSpeed.c_str(), nullptr, 10)) /
|
|
1000000.0f;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Chip family
|
|
std::string familyStr =
|
|
this->ExtractValueFromCpuInfoFile(buffer, "cpu family");
|
|
if (familyStr.empty()) {
|
|
familyStr = this->ExtractValueFromCpuInfoFile(buffer, "CPU architecture");
|
|
}
|
|
this->ChipID.Family = atoi(familyStr.c_str());
|
|
|
|
// Chip Vendor
|
|
this->ChipID.Vendor = this->ExtractValueFromCpuInfoFile(buffer, "vendor_id");
|
|
this->FindManufacturer(familyStr);
|
|
|
|
// second try for setting family
|
|
if (this->ChipID.Family == 0 && this->ChipManufacturer == HP) {
|
|
if (familyStr == "PA-RISC 1.1a")
|
|
this->ChipID.Family = 0x11a;
|
|
else if (familyStr == "PA-RISC 2.0")
|
|
this->ChipID.Family = 0x200;
|
|
// If you really get CMake to work on a machine not belonging to
|
|
// any of those families I owe you a dinner if you get it to
|
|
// contribute nightly builds regularly.
|
|
}
|
|
|
|
// Chip Model
|
|
this->ChipID.Model =
|
|
atoi(this->ExtractValueFromCpuInfoFile(buffer, "model").c_str());
|
|
if (!this->RetrieveClassicalCPUIdentity()) {
|
|
// Some platforms (e.g. PA-RISC) tell us their CPU name here.
|
|
// Note: x86 does not.
|
|
std::string cpuname = this->ExtractValueFromCpuInfoFile(buffer, "cpu");
|
|
if (!cpuname.empty()) {
|
|
this->ChipID.ProcessorName = cpuname;
|
|
}
|
|
}
|
|
|
|
// Chip revision
|
|
std::string cpurev = this->ExtractValueFromCpuInfoFile(buffer, "stepping");
|
|
if (cpurev.empty()) {
|
|
cpurev = this->ExtractValueFromCpuInfoFile(buffer, "CPU revision");
|
|
}
|
|
this->ChipID.Revision = atoi(cpurev.c_str());
|
|
|
|
// Chip Model Name
|
|
this->ChipID.ModelName =
|
|
this->ExtractValueFromCpuInfoFile(buffer, "model name");
|
|
|
|
// L1 Cache size
|
|
// Different architectures may show different names for the caches.
|
|
// Sum up everything we find.
|
|
std::vector<const char*> cachename;
|
|
cachename.clear();
|
|
|
|
cachename.push_back("cache size"); // e.g. x86
|
|
cachename.push_back("I-cache"); // e.g. PA-RISC
|
|
cachename.push_back("D-cache"); // e.g. PA-RISC
|
|
|
|
this->Features.L1CacheSize = 0;
|
|
for (auto& index : cachename) {
|
|
std::string cacheSize = this->ExtractValueFromCpuInfoFile(buffer, index);
|
|
if (!cacheSize.empty()) {
|
|
pos = cacheSize.find(" KB");
|
|
if (pos != std::string::npos) {
|
|
cacheSize.resize(pos);
|
|
}
|
|
this->Features.L1CacheSize += atoi(cacheSize.c_str());
|
|
}
|
|
}
|
|
|
|
// processor feature flags (probably x86 specific)
|
|
std::string cpuflags = this->ExtractValueFromCpuInfoFile(buffer, "flags");
|
|
if (!cpurev.empty()) {
|
|
// now we can match every flags as space + flag + space
|
|
cpuflags = " " + cpuflags + " ";
|
|
if ((cpuflags.find(" fpu ") != std::string::npos)) {
|
|
this->Features.HasFPU = true;
|
|
}
|
|
if ((cpuflags.find(" tsc ") != std::string::npos)) {
|
|
this->Features.HasTSC = true;
|
|
}
|
|
if ((cpuflags.find(" mmx ") != std::string::npos)) {
|
|
this->Features.HasMMX = true;
|
|
}
|
|
if ((cpuflags.find(" sse ") != std::string::npos)) {
|
|
this->Features.HasSSE = true;
|
|
}
|
|
if ((cpuflags.find(" sse2 ") != std::string::npos)) {
|
|
this->Features.HasSSE2 = true;
|
|
}
|
|
if ((cpuflags.find(" apic ") != std::string::npos)) {
|
|
this->Features.HasAPIC = true;
|
|
}
|
|
if ((cpuflags.find(" cmov ") != std::string::npos)) {
|
|
this->Features.HasCMOV = true;
|
|
}
|
|
if ((cpuflags.find(" mtrr ") != std::string::npos)) {
|
|
this->Features.HasMTRR = true;
|
|
}
|
|
if ((cpuflags.find(" acpi ") != std::string::npos)) {
|
|
this->Features.HasACPI = true;
|
|
}
|
|
if ((cpuflags.find(" 3dnow ") != std::string::npos)) {
|
|
this->Features.ExtendedFeatures.Has3DNow = true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SystemInformationImplementation::QueryProcessorBySysconf()
|
|
{
|
|
#if defined(_SC_NPROC_ONLN) && !defined(_SC_NPROCESSORS_ONLN)
|
|
// IRIX names this slightly different
|
|
# define _SC_NPROCESSORS_ONLN _SC_NPROC_ONLN
|
|
#endif
|
|
|
|
#ifdef _SC_NPROCESSORS_ONLN
|
|
long c = sysconf(_SC_NPROCESSORS_ONLN);
|
|
if (c <= 0) {
|
|
return false;
|
|
}
|
|
|
|
this->NumberOfPhysicalCPU = static_cast<unsigned int>(c);
|
|
this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;
|
|
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool SystemInformationImplementation::QueryProcessor()
|
|
{
|
|
return this->QueryProcessorBySysconf();
|
|
}
|
|
|
|
/**
|
|
Get total system RAM in units of KiB.
|
|
*/
|
|
long long SystemInformationImplementation::GetHostMemoryTotal()
|
|
{
|
|
#if defined(_WIN32)
|
|
# if defined(_MSC_VER) && _MSC_VER < 1300
|
|
MEMORYSTATUS stat;
|
|
stat.dwLength = sizeof(stat);
|
|
GlobalMemoryStatus(&stat);
|
|
return stat.dwTotalPhys / 1024;
|
|
# else
|
|
MEMORYSTATUSEX statex;
|
|
statex.dwLength = sizeof(statex);
|
|
GlobalMemoryStatusEx(&statex);
|
|
return statex.ullTotalPhys / 1024;
|
|
# endif
|
|
#elif defined(__linux) || defined(__CYGWIN__)
|
|
long long memTotal = 0;
|
|
int ierr = GetFieldFromFile("/proc/meminfo", "MemTotal:", memTotal);
|
|
if (ierr) {
|
|
return -1;
|
|
}
|
|
return memTotal;
|
|
#elif defined(__APPLE__)
|
|
uint64_t mem;
|
|
size_t len = sizeof(mem);
|
|
int ierr = sysctlbyname("hw.memsize", &mem, &len, nullptr, 0);
|
|
if (ierr) {
|
|
return -1;
|
|
}
|
|
return mem / 1024;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
Get total system RAM in units of KiB. This may differ from the
|
|
host total if a host-wide resource limit is applied.
|
|
*/
|
|
long long SystemInformationImplementation::GetHostMemoryAvailable(
|
|
const char* hostLimitEnvVarName)
|
|
{
|
|
long long memTotal = this->GetHostMemoryTotal();
|
|
|
|
// the following mechanism is provided for systems that
|
|
// apply resource limits across groups of processes.
|
|
// this is of use on certain SMP systems (eg. SGI UV)
|
|
// where the host has a large amount of ram but a given user's
|
|
// access to it is severely restricted. The system will
|
|
// apply a limit across a set of processes. Units are in KiB.
|
|
if (hostLimitEnvVarName) {
|
|
const char* hostLimitEnvVarValue = getenv(hostLimitEnvVarName);
|
|
if (hostLimitEnvVarValue) {
|
|
long long hostLimit = std::atoll(hostLimitEnvVarValue);
|
|
if (hostLimit > 0) {
|
|
memTotal = min(hostLimit, memTotal);
|
|
}
|
|
}
|
|
}
|
|
|
|
return memTotal;
|
|
}
|
|
|
|
/**
|
|
Get total system RAM in units of KiB. This may differ from the
|
|
host total if a per-process resource limit is applied.
|
|
*/
|
|
long long SystemInformationImplementation::GetProcMemoryAvailable(
|
|
const char* hostLimitEnvVarName, const char* procLimitEnvVarName)
|
|
{
|
|
long long memAvail = this->GetHostMemoryAvailable(hostLimitEnvVarName);
|
|
|
|
// the following mechanism is provide for systems where rlimits
|
|
// are not employed. Units are in KiB.
|
|
if (procLimitEnvVarName) {
|
|
const char* procLimitEnvVarValue = getenv(procLimitEnvVarName);
|
|
if (procLimitEnvVarValue) {
|
|
long long procLimit = std::atoll(procLimitEnvVarValue);
|
|
if (procLimit > 0) {
|
|
memAvail = min(procLimit, memAvail);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(__linux)
|
|
int ierr;
|
|
ResourceLimitType rlim;
|
|
ierr = GetResourceLimit(RLIMIT_DATA, &rlim);
|
|
if ((ierr == 0) && (rlim.rlim_cur != RLIM_INFINITY)) {
|
|
memAvail = min((long long)rlim.rlim_cur / 1024, memAvail);
|
|
}
|
|
|
|
ierr = GetResourceLimit(RLIMIT_AS, &rlim);
|
|
if ((ierr == 0) && (rlim.rlim_cur != RLIM_INFINITY)) {
|
|
memAvail = min((long long)rlim.rlim_cur / 1024, memAvail);
|
|
}
|
|
#elif defined(__APPLE__)
|
|
struct rlimit rlim;
|
|
int ierr;
|
|
ierr = getrlimit(RLIMIT_DATA, &rlim);
|
|
if ((ierr == 0) && (rlim.rlim_cur != RLIM_INFINITY)) {
|
|
memAvail = min((long long)rlim.rlim_cur / 1024, memAvail);
|
|
}
|
|
|
|
ierr = getrlimit(RLIMIT_RSS, &rlim);
|
|
if ((ierr == 0) && (rlim.rlim_cur != RLIM_INFINITY)) {
|
|
memAvail = min((long long)rlim.rlim_cur / 1024, memAvail);
|
|
}
|
|
#endif
|
|
|
|
return memAvail;
|
|
}
|
|
|
|
/**
|
|
Get RAM used by all processes in the host, in units of KiB.
|
|
*/
|
|
long long SystemInformationImplementation::GetHostMemoryUsed()
|
|
{
|
|
#if defined(_WIN32)
|
|
# if defined(_MSC_VER) && _MSC_VER < 1300
|
|
MEMORYSTATUS stat;
|
|
stat.dwLength = sizeof(stat);
|
|
GlobalMemoryStatus(&stat);
|
|
return (stat.dwTotalPhys - stat.dwAvailPhys) / 1024;
|
|
# else
|
|
MEMORYSTATUSEX statex;
|
|
statex.dwLength = sizeof(statex);
|
|
GlobalMemoryStatusEx(&statex);
|
|
return (statex.ullTotalPhys - statex.ullAvailPhys) / 1024;
|
|
# endif
|
|
#elif defined(__CYGWIN__)
|
|
const char* names[3] = { "MemTotal:", "MemFree:", nullptr };
|
|
long long values[2] = { 0 };
|
|
int ierr = GetFieldsFromFile("/proc/meminfo", names, values);
|
|
if (ierr) {
|
|
return ierr;
|
|
}
|
|
long long& memTotal = values[0];
|
|
long long& memFree = values[1];
|
|
return memTotal - memFree;
|
|
#elif defined(__linux)
|
|
// First try to use MemAvailable, but it only works on newer kernels
|
|
const char* names2[3] = { "MemTotal:", "MemAvailable:", nullptr };
|
|
long long values2[2] = { 0 };
|
|
int ierr = GetFieldsFromFile("/proc/meminfo", names2, values2);
|
|
if (ierr) {
|
|
const char* names4[5] = { "MemTotal:", "MemFree:", "Buffers:", "Cached:",
|
|
nullptr };
|
|
long long values4[4] = { 0 };
|
|
ierr = GetFieldsFromFile("/proc/meminfo", names4, values4);
|
|
if (ierr) {
|
|
return ierr;
|
|
}
|
|
long long& memTotal = values4[0];
|
|
long long& memFree = values4[1];
|
|
long long& memBuffers = values4[2];
|
|
long long& memCached = values4[3];
|
|
return memTotal - memFree - memBuffers - memCached;
|
|
}
|
|
long long& memTotal = values2[0];
|
|
long long& memAvail = values2[1];
|
|
return memTotal - memAvail;
|
|
#elif defined(__APPLE__)
|
|
long long psz = getpagesize();
|
|
if (psz < 1) {
|
|
return -1;
|
|
}
|
|
const char* names[3] = { "Pages wired down:", "Pages active:", nullptr };
|
|
long long values[2] = { 0 };
|
|
int ierr = GetFieldsFromCommand("vm_stat", names, values);
|
|
if (ierr) {
|
|
return -1;
|
|
}
|
|
long long& vmWired = values[0];
|
|
long long& vmActive = values[1];
|
|
return ((vmActive + vmWired) * psz) / 1024;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
Get system RAM used by the process associated with the given
|
|
process id in units of KiB.
|
|
*/
|
|
long long SystemInformationImplementation::GetProcMemoryUsed()
|
|
{
|
|
#if defined(_WIN32) && defined(KWSYS_SYS_HAS_PSAPI)
|
|
long pid = GetCurrentProcessId();
|
|
HANDLE hProc;
|
|
hProc = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, false, pid);
|
|
if (hProc == 0) {
|
|
return -1;
|
|
}
|
|
PROCESS_MEMORY_COUNTERS pmc;
|
|
int ok = GetProcessMemoryInfo(hProc, &pmc, sizeof(pmc));
|
|
CloseHandle(hProc);
|
|
if (!ok) {
|
|
return -2;
|
|
}
|
|
return pmc.WorkingSetSize / 1024;
|
|
#elif defined(__linux) || defined(__CYGWIN__)
|
|
long long memUsed = 0;
|
|
int ierr = GetFieldFromFile("/proc/self/status", "VmRSS:", memUsed);
|
|
if (ierr) {
|
|
return -1;
|
|
}
|
|
return memUsed;
|
|
#elif defined(__APPLE__)
|
|
long long memUsed = 0;
|
|
pid_t pid = getpid();
|
|
std::ostringstream oss;
|
|
oss << "ps -o rss= -p " << pid;
|
|
FILE* file = popen(oss.str().c_str(), "r");
|
|
if (file == nullptr) {
|
|
return -1;
|
|
}
|
|
oss.str("");
|
|
while (!feof(file) && !ferror(file)) {
|
|
char buf[256] = { '\0' };
|
|
errno = 0;
|
|
size_t nRead = fread(buf, 1, 256, file);
|
|
if (ferror(file) && (errno == EINTR)) {
|
|
clearerr(file);
|
|
}
|
|
if (nRead)
|
|
oss << buf;
|
|
}
|
|
int ierr = ferror(file);
|
|
pclose(file);
|
|
if (ierr) {
|
|
return -2;
|
|
}
|
|
std::istringstream iss(oss.str());
|
|
iss >> memUsed;
|
|
return memUsed;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
double SystemInformationImplementation::GetLoadAverage()
|
|
{
|
|
#if defined(KWSYS_CXX_HAS_GETLOADAVG)
|
|
double loadavg[3] = { 0.0, 0.0, 0.0 };
|
|
if (getloadavg(loadavg, 3) > 0) {
|
|
return loadavg[0];
|
|
}
|
|
return -0.0;
|
|
#elif defined(KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes)
|
|
// Old windows.h headers do not provide GetSystemTimes.
|
|
typedef BOOL(WINAPI * GetSystemTimesType)(LPFILETIME, LPFILETIME,
|
|
LPFILETIME);
|
|
static GetSystemTimesType pGetSystemTimes =
|
|
(GetSystemTimesType)GetProcAddress(GetModuleHandleW(L"kernel32"),
|
|
"GetSystemTimes");
|
|
FILETIME idleTime, kernelTime, userTime;
|
|
if (pGetSystemTimes && pGetSystemTimes(&idleTime, &kernelTime, &userTime)) {
|
|
unsigned __int64 const idleTicks = fileTimeToUInt64(idleTime);
|
|
unsigned __int64 const totalTicks =
|
|
fileTimeToUInt64(kernelTime) + fileTimeToUInt64(userTime);
|
|
return calculateCPULoad(idleTicks, totalTicks) * GetNumberOfPhysicalCPU();
|
|
}
|
|
return -0.0;
|
|
#else
|
|
// Not implemented on this platform.
|
|
return -0.0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
Get the process id of the running process.
|
|
*/
|
|
long long SystemInformationImplementation::GetProcessId()
|
|
{
|
|
#if defined(_WIN32)
|
|
return GetCurrentProcessId();
|
|
#elif defined(__linux) || defined(__APPLE__) || defined(__OpenBSD__) || \
|
|
defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__) || \
|
|
defined(__CYGWIN__)
|
|
return getpid();
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Used in GetProgramStack(...) below
|
|
*/
|
|
#if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0600 && defined(_MSC_VER) && \
|
|
_MSC_VER >= 1800
|
|
# define KWSYS_SYSTEMINFORMATION_HAS_DBGHELP
|
|
# define TRACE_MAX_STACK_FRAMES 1024
|
|
# define TRACE_MAX_FUNCTION_NAME_LENGTH 1024
|
|
# pragma warning(push)
|
|
# pragma warning(disable : 4091) /* 'typedef ': ignored on left of '' */
|
|
# include "dbghelp.h"
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
/**
|
|
return current program stack in a string
|
|
demangle cxx symbols if possible.
|
|
*/
|
|
std::string SystemInformationImplementation::GetProgramStack(int firstFrame,
|
|
int wholePath)
|
|
{
|
|
std::ostringstream oss;
|
|
std::string programStack;
|
|
|
|
#ifdef KWSYS_SYSTEMINFORMATION_HAS_DBGHELP
|
|
(void)wholePath;
|
|
|
|
void* stack[TRACE_MAX_STACK_FRAMES];
|
|
HANDLE process = GetCurrentProcess();
|
|
SymInitialize(process, nullptr, TRUE);
|
|
WORD numberOfFrames =
|
|
CaptureStackBackTrace(firstFrame, TRACE_MAX_STACK_FRAMES, stack, nullptr);
|
|
SYMBOL_INFO* symbol = static_cast<SYMBOL_INFO*>(
|
|
malloc(sizeof(SYMBOL_INFO) +
|
|
(TRACE_MAX_FUNCTION_NAME_LENGTH - 1) * sizeof(TCHAR)));
|
|
symbol->MaxNameLen = TRACE_MAX_FUNCTION_NAME_LENGTH;
|
|
symbol->SizeOfStruct = sizeof(SYMBOL_INFO);
|
|
DWORD displacement;
|
|
IMAGEHLP_LINE64 line;
|
|
line.SizeOfStruct = sizeof(IMAGEHLP_LINE64);
|
|
for (int i = 0; i < numberOfFrames; i++) {
|
|
DWORD64 address = reinterpret_cast<DWORD64>(stack[i]);
|
|
SymFromAddr(process, address, nullptr, symbol);
|
|
if (SymGetLineFromAddr64(process, address, &displacement, &line)) {
|
|
oss << " at " << symbol->Name << " in " << line.FileName << " line "
|
|
<< line.LineNumber << std::endl;
|
|
} else {
|
|
oss << " at " << symbol->Name << std::endl;
|
|
}
|
|
}
|
|
free(symbol);
|
|
|
|
#else
|
|
programStack += ""
|
|
# if !defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
|
|
"WARNING: The stack could not be examined "
|
|
"because backtrace is not supported.\n"
|
|
# elif !defined(KWSYS_SYSTEMINFORMATION_HAS_DEBUG_BUILD)
|
|
"WARNING: The stack trace will not use advanced "
|
|
"capabilities because this is a release build.\n"
|
|
# else
|
|
# if !defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
|
|
"WARNING: Function names will not be demangled "
|
|
"because dladdr is not available.\n"
|
|
# endif
|
|
# if !defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE)
|
|
"WARNING: Function names will not be demangled "
|
|
"because cxxabi is not available.\n"
|
|
# endif
|
|
# endif
|
|
;
|
|
|
|
# if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
|
|
void* stackSymbols[256];
|
|
int nFrames = backtrace(stackSymbols, 256);
|
|
for (int i = firstFrame; i < nFrames; ++i) {
|
|
SymbolProperties symProps;
|
|
symProps.SetReportPath(wholePath);
|
|
symProps.Initialize(stackSymbols[i]);
|
|
oss << symProps << std::endl;
|
|
}
|
|
# else
|
|
(void)firstFrame;
|
|
(void)wholePath;
|
|
# endif
|
|
#endif
|
|
|
|
programStack += oss.str();
|
|
|
|
return programStack;
|
|
}
|
|
|
|
/**
|
|
when set print stack trace in response to common signals.
|
|
*/
|
|
void SystemInformationImplementation::SetStackTraceOnError(int enable)
|
|
{
|
|
#if !defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__)
|
|
static int saOrigValid = 0;
|
|
static struct sigaction saABRTOrig;
|
|
static struct sigaction saSEGVOrig;
|
|
static struct sigaction saTERMOrig;
|
|
static struct sigaction saINTOrig;
|
|
static struct sigaction saILLOrig;
|
|
static struct sigaction saBUSOrig;
|
|
static struct sigaction saFPEOrig;
|
|
|
|
if (enable && !saOrigValid) {
|
|
// save the current actions
|
|
sigaction(SIGABRT, nullptr, &saABRTOrig);
|
|
sigaction(SIGSEGV, nullptr, &saSEGVOrig);
|
|
sigaction(SIGTERM, nullptr, &saTERMOrig);
|
|
sigaction(SIGINT, nullptr, &saINTOrig);
|
|
sigaction(SIGILL, nullptr, &saILLOrig);
|
|
sigaction(SIGBUS, nullptr, &saBUSOrig);
|
|
sigaction(SIGFPE, nullptr, &saFPEOrig);
|
|
|
|
// enable read, disable write
|
|
saOrigValid = 1;
|
|
|
|
// install ours
|
|
struct sigaction sa;
|
|
sa.sa_sigaction = (SigAction)StacktraceSignalHandler;
|
|
sa.sa_flags = SA_SIGINFO | SA_RESETHAND;
|
|
# ifdef SA_RESTART
|
|
sa.sa_flags |= SA_RESTART;
|
|
# endif
|
|
sigemptyset(&sa.sa_mask);
|
|
|
|
sigaction(SIGABRT, &sa, nullptr);
|
|
sigaction(SIGSEGV, &sa, nullptr);
|
|
sigaction(SIGTERM, &sa, nullptr);
|
|
sigaction(SIGINT, &sa, nullptr);
|
|
sigaction(SIGILL, &sa, nullptr);
|
|
sigaction(SIGBUS, &sa, nullptr);
|
|
sigaction(SIGFPE, &sa, nullptr);
|
|
} else if (!enable && saOrigValid) {
|
|
// restore previous actions
|
|
sigaction(SIGABRT, &saABRTOrig, nullptr);
|
|
sigaction(SIGSEGV, &saSEGVOrig, nullptr);
|
|
sigaction(SIGTERM, &saTERMOrig, nullptr);
|
|
sigaction(SIGINT, &saINTOrig, nullptr);
|
|
sigaction(SIGILL, &saILLOrig, nullptr);
|
|
sigaction(SIGBUS, &saBUSOrig, nullptr);
|
|
sigaction(SIGFPE, &saFPEOrig, nullptr);
|
|
|
|
// enable write, disable read
|
|
saOrigValid = 0;
|
|
}
|
|
#else
|
|
// avoid warning C4100
|
|
(void)enable;
|
|
#endif
|
|
}
|
|
|
|
bool SystemInformationImplementation::QueryWindowsMemory()
|
|
{
|
|
#if defined(_WIN32)
|
|
# if defined(_MSC_VER) && _MSC_VER < 1300
|
|
MEMORYSTATUS ms;
|
|
unsigned long tv, tp, av, ap;
|
|
ms.dwLength = sizeof(ms);
|
|
GlobalMemoryStatus(&ms);
|
|
# define MEM_VAL(value) dw##value
|
|
# else
|
|
MEMORYSTATUSEX ms;
|
|
DWORDLONG tv, tp, av, ap;
|
|
ms.dwLength = sizeof(ms);
|
|
if (0 == GlobalMemoryStatusEx(&ms)) {
|
|
return 0;
|
|
}
|
|
# define MEM_VAL(value) ull##value
|
|
# endif
|
|
tv = ms.MEM_VAL(TotalPageFile);
|
|
tp = ms.MEM_VAL(TotalPhys);
|
|
av = ms.MEM_VAL(AvailPageFile);
|
|
ap = ms.MEM_VAL(AvailPhys);
|
|
this->TotalVirtualMemory = tv >> 10 >> 10;
|
|
this->TotalPhysicalMemory = tp >> 10 >> 10;
|
|
this->AvailableVirtualMemory = av >> 10 >> 10;
|
|
this->AvailablePhysicalMemory = ap >> 10 >> 10;
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool SystemInformationImplementation::QueryLinuxMemory()
|
|
{
|
|
#if defined(__linux)
|
|
unsigned long tv = 0;
|
|
unsigned long tp = 0;
|
|
unsigned long av = 0;
|
|
unsigned long ap = 0;
|
|
|
|
char buffer[1024]; // for reading lines
|
|
|
|
int linuxMajor = 0;
|
|
int linuxMinor = 0;
|
|
|
|
// Find the Linux kernel version first
|
|
struct utsname unameInfo;
|
|
int errorFlag = uname(&unameInfo);
|
|
if (errorFlag != 0) {
|
|
std::cout << "Problem calling uname(): " << strerror(errno) << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (strlen(unameInfo.release) >= 3) {
|
|
// release looks like "2.6.3-15mdk-i686-up-4GB"
|
|
char majorChar = unameInfo.release[0];
|
|
char minorChar = unameInfo.release[2];
|
|
|
|
if (isdigit(majorChar)) {
|
|
linuxMajor = majorChar - '0';
|
|
}
|
|
|
|
if (isdigit(minorChar)) {
|
|
linuxMinor = minorChar - '0';
|
|
}
|
|
}
|
|
|
|
FILE* fd = fopen("/proc/meminfo", "r");
|
|
if (!fd) {
|
|
std::cout << "Problem opening /proc/meminfo" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (linuxMajor >= 3 || ((linuxMajor >= 2) && (linuxMinor >= 6))) {
|
|
// new /proc/meminfo format since kernel 2.6.x
|
|
// Rigorously, this test should check from the developing version 2.5.x
|
|
// that introduced the new format...
|
|
|
|
enum
|
|
{
|
|
mMemTotal,
|
|
mMemFree,
|
|
mBuffers,
|
|
mCached,
|
|
mSwapTotal,
|
|
mSwapFree
|
|
};
|
|
const char* format[6] = { "MemTotal:%lu kB", "MemFree:%lu kB",
|
|
"Buffers:%lu kB", "Cached:%lu kB",
|
|
"SwapTotal:%lu kB", "SwapFree:%lu kB" };
|
|
bool have[6] = { false, false, false, false, false, false };
|
|
unsigned long value[6];
|
|
int count = 0;
|
|
while (fgets(buffer, static_cast<int>(sizeof(buffer)), fd)) {
|
|
for (int i = 0; i < 6; ++i) {
|
|
if (!have[i] && sscanf(buffer, format[i], &value[i]) == 1) {
|
|
have[i] = true;
|
|
++count;
|
|
}
|
|
}
|
|
}
|
|
if (count == 6) {
|
|
this->TotalPhysicalMemory = value[mMemTotal] / 1024;
|
|
this->AvailablePhysicalMemory =
|
|
(value[mMemFree] + value[mBuffers] + value[mCached]) / 1024;
|
|
this->TotalVirtualMemory = value[mSwapTotal] / 1024;
|
|
this->AvailableVirtualMemory = value[mSwapFree] / 1024;
|
|
} else {
|
|
std::cout << "Problem parsing /proc/meminfo" << std::endl;
|
|
fclose(fd);
|
|
return false;
|
|
}
|
|
} else {
|
|
// /proc/meminfo format for kernel older than 2.6.x
|
|
|
|
unsigned long temp;
|
|
unsigned long cachedMem;
|
|
unsigned long buffersMem;
|
|
// Skip "total: used:..."
|
|
char* r = fgets(buffer, static_cast<int>(sizeof(buffer)), fd);
|
|
int status = 0;
|
|
if (r == buffer) {
|
|
status += fscanf(fd, "Mem: %lu %lu %lu %lu %lu %lu\n", &tp, &temp, &ap,
|
|
&temp, &buffersMem, &cachedMem);
|
|
}
|
|
if (status == 6) {
|
|
status += fscanf(fd, "Swap: %lu %lu %lu\n", &tv, &temp, &av);
|
|
}
|
|
if (status == 9) {
|
|
this->TotalVirtualMemory = tv >> 10 >> 10;
|
|
this->TotalPhysicalMemory = tp >> 10 >> 10;
|
|
this->AvailableVirtualMemory = av >> 10 >> 10;
|
|
this->AvailablePhysicalMemory =
|
|
(ap + buffersMem + cachedMem) >> 10 >> 10;
|
|
} else {
|
|
std::cout << "Problem parsing /proc/meminfo" << std::endl;
|
|
fclose(fd);
|
|
return false;
|
|
}
|
|
}
|
|
fclose(fd);
|
|
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool SystemInformationImplementation::QueryCygwinMemory()
|
|
{
|
|
#ifdef __CYGWIN__
|
|
// _SC_PAGE_SIZE does return the mmap() granularity on Cygwin,
|
|
// see http://cygwin.com/ml/cygwin/2006-06/msg00350.html
|
|
// Therefore just use 4096 as the page size of Windows.
|
|
long m = sysconf(_SC_PHYS_PAGES);
|
|
if (m < 0) {
|
|
return false;
|
|
}
|
|
this->TotalPhysicalMemory = m >> 8;
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool SystemInformationImplementation::QueryAIXMemory()
|
|
{
|
|
#if defined(_AIX) && defined(_SC_AIX_REALMEM)
|
|
long c = sysconf(_SC_AIX_REALMEM);
|
|
if (c <= 0) {
|
|
return false;
|
|
}
|
|
|
|
this->TotalPhysicalMemory = c / 1024;
|
|
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool SystemInformationImplementation::QueryMemoryBySysconf()
|
|
{
|
|
#if defined(_SC_PHYS_PAGES) && defined(_SC_PAGESIZE)
|
|
// Assume the mmap() granularity as returned by _SC_PAGESIZE is also
|
|
// the system page size. The only known system where this isn't true
|
|
// is Cygwin.
|
|
long p = sysconf(_SC_PHYS_PAGES);
|
|
long m = sysconf(_SC_PAGESIZE);
|
|
|
|
if (p < 0 || m < 0) {
|
|
return false;
|
|
}
|
|
|
|
// assume pagesize is a power of 2 and smaller 1 MiB
|
|
size_t pagediv = (1024 * 1024 / m);
|
|
|
|
this->TotalPhysicalMemory = p;
|
|
this->TotalPhysicalMemory /= pagediv;
|
|
|
|
# if defined(_SC_AVPHYS_PAGES)
|
|
p = sysconf(_SC_AVPHYS_PAGES);
|
|
if (p < 0) {
|
|
return false;
|
|
}
|
|
|
|
this->AvailablePhysicalMemory = p;
|
|
this->AvailablePhysicalMemory /= pagediv;
|
|
# endif
|
|
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/** Query for the memory status */
|
|
bool SystemInformationImplementation::QueryMemory()
|
|
{
|
|
return this->QueryMemoryBySysconf();
|
|
}
|
|
|
|
/** */
|
|
size_t SystemInformationImplementation::GetTotalVirtualMemory() const
|
|
{
|
|
return this->TotalVirtualMemory;
|
|
}
|
|
|
|
/** */
|
|
size_t SystemInformationImplementation::GetAvailableVirtualMemory() const
|
|
{
|
|
return this->AvailableVirtualMemory;
|
|
}
|
|
|
|
size_t SystemInformationImplementation::GetTotalPhysicalMemory() const
|
|
{
|
|
return this->TotalPhysicalMemory;
|
|
}
|
|
|
|
/** */
|
|
size_t SystemInformationImplementation::GetAvailablePhysicalMemory() const
|
|
{
|
|
return this->AvailablePhysicalMemory;
|
|
}
|
|
|
|
/** Get Cycle differences */
|
|
long long SystemInformationImplementation::GetCyclesDifference(
|
|
DELAY_FUNC DelayFunction, unsigned int uiParameter)
|
|
{
|
|
#if defined(_MSC_VER) && (_MSC_VER >= 1400)
|
|
unsigned __int64 stamp1, stamp2;
|
|
|
|
# ifdef _M_ARM64
|
|
stamp1 = _ReadStatusReg(ARM64_PMCCNTR_EL0);
|
|
DelayFunction(uiParameter);
|
|
stamp2 = _ReadStatusReg(ARM64_PMCCNTR_EL0);
|
|
# else
|
|
stamp1 = __rdtsc();
|
|
DelayFunction(uiParameter);
|
|
stamp2 = __rdtsc();
|
|
# endif
|
|
|
|
return stamp2 - stamp1;
|
|
#elif USE_ASM_INSTRUCTIONS
|
|
|
|
unsigned int edx1, eax1;
|
|
unsigned int edx2, eax2;
|
|
|
|
// Calculate the frequency of the CPU instructions.
|
|
__try {
|
|
_asm {
|
|
push uiParameter ; push parameter param
|
|
mov ebx, DelayFunction ; store func in ebx
|
|
|
|
RDTSC_INSTRUCTION
|
|
|
|
mov esi, eax ; esi = eax
|
|
mov edi, edx ; edi = edx
|
|
|
|
call ebx ; call the delay functions
|
|
|
|
RDTSC_INSTRUCTION
|
|
|
|
pop ebx
|
|
|
|
mov edx2, edx ; edx2 = edx
|
|
mov eax2, eax ; eax2 = eax
|
|
|
|
mov edx1, edi ; edx2 = edi
|
|
mov eax1, esi ; eax2 = esi
|
|
}
|
|
} __except (1) {
|
|
return -1;
|
|
}
|
|
|
|
return ((((__int64)edx2 << 32) + eax2) - (((__int64)edx1 << 32) + eax1));
|
|
|
|
#else
|
|
(void)DelayFunction;
|
|
(void)uiParameter;
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
/** Compute the delay overhead */
|
|
void SystemInformationImplementation::DelayOverhead(unsigned int uiMS)
|
|
{
|
|
#if defined(_WIN32)
|
|
LARGE_INTEGER Frequency, StartCounter, EndCounter;
|
|
__int64 x;
|
|
|
|
// Get the frequency of the high performance counter.
|
|
if (!QueryPerformanceFrequency(&Frequency)) {
|
|
return;
|
|
}
|
|
x = Frequency.QuadPart / 1000 * uiMS;
|
|
|
|
// Get the starting position of the counter.
|
|
QueryPerformanceCounter(&StartCounter);
|
|
|
|
do {
|
|
// Get the ending position of the counter.
|
|
QueryPerformanceCounter(&EndCounter);
|
|
} while (EndCounter.QuadPart - StartCounter.QuadPart == x);
|
|
#endif
|
|
(void)uiMS;
|
|
}
|
|
|
|
/** Works only for windows */
|
|
bool SystemInformationImplementation::IsSMTSupported() const
|
|
{
|
|
return this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical > 1;
|
|
}
|
|
|
|
/** Return the APIC Id. Works only for windows. */
|
|
unsigned char SystemInformationImplementation::GetAPICId()
|
|
{
|
|
int Regs[4] = { 0, 0, 0, 0 };
|
|
|
|
#if USE_CPUID
|
|
if (!this->IsSMTSupported()) {
|
|
return static_cast<unsigned char>(-1); // HT not supported
|
|
} // Logical processor = 1
|
|
call_cpuid(1, Regs);
|
|
#endif
|
|
|
|
return static_cast<unsigned char>((Regs[1] & INITIAL_APIC_ID_BITS) >> 24);
|
|
}
|
|
|
|
/** Count the number of CPUs. Works only on windows. */
|
|
void SystemInformationImplementation::CPUCountWindows()
|
|
{
|
|
#if defined(_WIN32)
|
|
this->NumberOfPhysicalCPU = 0;
|
|
this->NumberOfLogicalCPU = 0;
|
|
|
|
typedef BOOL(WINAPI * GetLogicalProcessorInformationType)(
|
|
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION, PDWORD);
|
|
static GetLogicalProcessorInformationType pGetLogicalProcessorInformation =
|
|
(GetLogicalProcessorInformationType)GetProcAddress(
|
|
GetModuleHandleW(L"kernel32"), "GetLogicalProcessorInformation");
|
|
|
|
if (!pGetLogicalProcessorInformation) {
|
|
// Fallback to approximate implementation on ancient Windows versions.
|
|
SYSTEM_INFO info;
|
|
ZeroMemory(&info, sizeof(info));
|
|
GetSystemInfo(&info);
|
|
this->NumberOfPhysicalCPU =
|
|
static_cast<unsigned int>(info.dwNumberOfProcessors);
|
|
this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;
|
|
return;
|
|
}
|
|
|
|
std::vector<SYSTEM_LOGICAL_PROCESSOR_INFORMATION> ProcInfo;
|
|
{
|
|
DWORD Length = 0;
|
|
DWORD rc = pGetLogicalProcessorInformation(nullptr, &Length);
|
|
assert(FALSE == rc);
|
|
(void)rc; // Silence unused variable warning
|
|
assert(GetLastError() == ERROR_INSUFFICIENT_BUFFER);
|
|
ProcInfo.resize(Length / sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION));
|
|
rc = pGetLogicalProcessorInformation(&ProcInfo[0], &Length);
|
|
assert(rc != FALSE);
|
|
(void)rc; // Silence unused variable warning
|
|
}
|
|
|
|
typedef std::vector<SYSTEM_LOGICAL_PROCESSOR_INFORMATION>::iterator
|
|
pinfoIt_t;
|
|
for (pinfoIt_t it = ProcInfo.begin(); it != ProcInfo.end(); ++it) {
|
|
SYSTEM_LOGICAL_PROCESSOR_INFORMATION PInfo = *it;
|
|
if (PInfo.Relationship != RelationProcessorCore) {
|
|
continue;
|
|
}
|
|
|
|
std::bitset<std::numeric_limits<ULONG_PTR>::digits> ProcMask(
|
|
(unsigned long long)PInfo.ProcessorMask);
|
|
unsigned int count = (unsigned int)ProcMask.count();
|
|
if (count == 0) { // I think this should never happen, but just to be safe.
|
|
continue;
|
|
}
|
|
this->NumberOfPhysicalCPU++;
|
|
this->NumberOfLogicalCPU += (unsigned int)count;
|
|
this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = count;
|
|
}
|
|
this->NumberOfPhysicalCPU = std::max(1u, this->NumberOfPhysicalCPU);
|
|
this->NumberOfLogicalCPU = std::max(1u, this->NumberOfLogicalCPU);
|
|
#else
|
|
#endif
|
|
}
|
|
|
|
/** Return the number of logical CPUs on the system */
|
|
unsigned int SystemInformationImplementation::GetNumberOfLogicalCPU() const
|
|
{
|
|
return this->NumberOfLogicalCPU;
|
|
}
|
|
|
|
/** Return the number of physical CPUs on the system */
|
|
unsigned int SystemInformationImplementation::GetNumberOfPhysicalCPU() const
|
|
{
|
|
return this->NumberOfPhysicalCPU;
|
|
}
|
|
|
|
#if defined(__APPLE__)
|
|
static int kw_sysctlbyname_int32(const char* name, int32_t* value)
|
|
{
|
|
size_t len = sizeof(int32_t);
|
|
int err = sysctlbyname(name, value, &len, nullptr, 0);
|
|
if (err == 0) {
|
|
assert(len == sizeof(int32_t));
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int kw_sysctlbyname_int64(const char* name, int64_t* value)
|
|
{
|
|
size_t len = sizeof(int64_t);
|
|
int err = sysctlbyname(name, value, &len, nullptr, 0);
|
|
if (err == 0) {
|
|
assert(len == sizeof(int64_t));
|
|
}
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
/** For Apple use sysctlbyname calls to find system info */
|
|
bool SystemInformationImplementation::ParseSysCtl()
|
|
{
|
|
#if defined(__APPLE__)
|
|
char tempBuff[128];
|
|
int32_t tempInt32 = 0;
|
|
int64_t tempInt64 = 0;
|
|
int err = 0;
|
|
size_t len;
|
|
|
|
this->TotalPhysicalMemory = 0;
|
|
err = kw_sysctlbyname_int64("hw.memsize", &tempInt64);
|
|
if (err == 0) {
|
|
this->TotalPhysicalMemory = static_cast<size_t>(tempInt64 / 1024 / 1024);
|
|
}
|
|
|
|
this->AvailablePhysicalMemory = 0;
|
|
vm_statistics_data_t vmstat;
|
|
mach_msg_type_number_t count = HOST_VM_INFO_COUNT;
|
|
if (host_statistics(mach_host_self(), HOST_VM_INFO, (host_info_t)&vmstat,
|
|
&count) == KERN_SUCCESS) {
|
|
err = kw_sysctlbyname_int64("hw.pagesize", &tempInt64);
|
|
if (err == 0) {
|
|
int64_t available_memory =
|
|
(vmstat.free_count + vmstat.inactive_count) * tempInt64;
|
|
this->AvailablePhysicalMemory =
|
|
static_cast<size_t>(available_memory / 1024 / 1024);
|
|
}
|
|
}
|
|
|
|
// Virtual memory.
|
|
this->AvailableVirtualMemory = 0;
|
|
this->TotalVirtualMemory = 0;
|
|
# ifdef VM_SWAPUSAGE
|
|
int mib[2] = { CTL_VM, VM_SWAPUSAGE };
|
|
unsigned int miblen =
|
|
static_cast<unsigned int>(sizeof(mib) / sizeof(mib[0]));
|
|
struct xsw_usage swap;
|
|
len = sizeof(swap);
|
|
err = sysctl(mib, miblen, &swap, &len, nullptr, 0);
|
|
if (err == 0) {
|
|
this->AvailableVirtualMemory =
|
|
static_cast<size_t>(swap.xsu_avail / 1024 / 1024);
|
|
this->TotalVirtualMemory =
|
|
static_cast<size_t>(swap.xsu_total / 1024 / 1024);
|
|
}
|
|
# endif
|
|
|
|
// CPU Info
|
|
this->NumberOfPhysicalCPU = 1;
|
|
err = kw_sysctlbyname_int32("hw.physicalcpu", &tempInt32);
|
|
if (err == 0) {
|
|
this->NumberOfPhysicalCPU = tempInt32;
|
|
}
|
|
|
|
this->NumberOfLogicalCPU = 1;
|
|
err = kw_sysctlbyname_int32("hw.logicalcpu", &tempInt32);
|
|
if (err == 0) {
|
|
this->NumberOfLogicalCPU = tempInt32;
|
|
}
|
|
|
|
this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = 1;
|
|
err = kw_sysctlbyname_int32("machdep.cpu.cores_per_package", &tempInt32);
|
|
if (err == 0) {
|
|
this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = tempInt32;
|
|
}
|
|
|
|
this->CPUSpeedInMHz = 0;
|
|
err = kw_sysctlbyname_int64("hw.cpufrequency", &tempInt64);
|
|
if (err == 0) {
|
|
this->CPUSpeedInMHz = static_cast<float>(tempInt64) / 1000000.0f;
|
|
}
|
|
|
|
// Chip family
|
|
// Seems only the Intel chips will have this name so if this fails it is
|
|
// a PowerPC or ARM, or something unknown
|
|
this->ChipID.Vendor = "";
|
|
this->ChipID.Family = 0;
|
|
this->ChipID.Model = 0;
|
|
this->ChipID.Revision = 0;
|
|
err = kw_sysctlbyname_int32("machdep.cpu.family", &tempInt32);
|
|
if (err != 0) // Go back to names we know but are less descriptive
|
|
{
|
|
::memset(tempBuff, 0, sizeof(tempBuff));
|
|
len = sizeof(tempBuff) - 1; // leave a byte for null termination
|
|
err = sysctlbyname("hw.machine", &tempBuff, &len, nullptr, 0);
|
|
if (err == 0) {
|
|
std::string machineBuf(tempBuff);
|
|
if (machineBuf.find_first_of("Power") != std::string::npos) {
|
|
this->ChipID.Vendor = "IBM";
|
|
|
|
err = kw_sysctlbyname_int32("hw.cputype", &tempInt32);
|
|
if (err == 0) {
|
|
this->ChipID.Family = tempInt32;
|
|
}
|
|
|
|
err = kw_sysctlbyname_int32("hw.cpusubtype", &tempInt32);
|
|
if (err == 0) {
|
|
this->ChipID.Model = tempInt32;
|
|
}
|
|
|
|
this->FindManufacturer();
|
|
} else if (machineBuf.find_first_of("arm64") != std::string::npos) {
|
|
this->ChipID.Vendor = "Apple";
|
|
|
|
this->FindManufacturer();
|
|
}
|
|
}
|
|
} else {
|
|
// Should be an Intel Chip.
|
|
err = kw_sysctlbyname_int32("machdep.cpu.family", &tempInt32);
|
|
if (err == 0) {
|
|
this->ChipID.Family = tempInt32;
|
|
}
|
|
|
|
// Chip Vendor
|
|
::memset(tempBuff, 0, sizeof(tempBuff));
|
|
len = sizeof(tempBuff) - 1; // leave a byte for null termination
|
|
err = sysctlbyname("machdep.cpu.vendor", tempBuff, &len, nullptr, 0);
|
|
if (err == 0) {
|
|
this->ChipID.Vendor = tempBuff;
|
|
}
|
|
this->FindManufacturer();
|
|
|
|
// Chip Model
|
|
err = kw_sysctlbyname_int32("machdep.cpu.model", &tempInt32);
|
|
if (err == 0) {
|
|
this->ChipID.Model = tempInt32;
|
|
}
|
|
|
|
// Chip Stepping
|
|
err = kw_sysctlbyname_int32("machdep.cpu.stepping", &tempInt32);
|
|
if (err == 0) {
|
|
this->ChipID.Revision = tempInt32;
|
|
}
|
|
|
|
// feature string
|
|
char* buf = nullptr;
|
|
size_t allocSize = 128;
|
|
|
|
err = 0;
|
|
len = 0;
|
|
|
|
// sysctlbyname() will return with err==0 && len==0 if the buffer is too
|
|
// small
|
|
while (err == 0 && len == 0) {
|
|
delete[] buf;
|
|
allocSize *= 2;
|
|
buf = new char[allocSize];
|
|
if (!buf) {
|
|
break;
|
|
}
|
|
buf[0] = ' ';
|
|
len = allocSize - 2; // keep space for leading and trailing space
|
|
err = sysctlbyname("machdep.cpu.features", buf + 1, &len, nullptr, 0);
|
|
}
|
|
if (err == 0 && buf && len) {
|
|
// now we can match every flags as space + flag + space
|
|
buf[len + 1] = ' ';
|
|
std::string cpuflags(buf, len + 2);
|
|
|
|
if (cpuflags.find(" FPU ") != std::string::npos) {
|
|
this->Features.HasFPU = true;
|
|
}
|
|
if (cpuflags.find(" TSC ") != std::string::npos) {
|
|
this->Features.HasTSC = true;
|
|
}
|
|
if (cpuflags.find(" MMX ") != std::string::npos) {
|
|
this->Features.HasMMX = true;
|
|
}
|
|
if (cpuflags.find(" SSE ") != std::string::npos) {
|
|
this->Features.HasSSE = true;
|
|
}
|
|
if (cpuflags.find(" SSE2 ") != std::string::npos) {
|
|
this->Features.HasSSE2 = true;
|
|
}
|
|
if (cpuflags.find(" APIC ") != std::string::npos) {
|
|
this->Features.HasAPIC = true;
|
|
}
|
|
if (cpuflags.find(" CMOV ") != std::string::npos) {
|
|
this->Features.HasCMOV = true;
|
|
}
|
|
if (cpuflags.find(" MTRR ") != std::string::npos) {
|
|
this->Features.HasMTRR = true;
|
|
}
|
|
if (cpuflags.find(" ACPI ") != std::string::npos) {
|
|
this->Features.HasACPI = true;
|
|
}
|
|
}
|
|
delete[] buf;
|
|
}
|
|
|
|
// brand string
|
|
this->ChipID.ProcessorName = "";
|
|
this->ChipID.ModelName = "";
|
|
::memset(tempBuff, 0, sizeof(tempBuff));
|
|
len = sizeof(tempBuff) - 1; // leave a byte for null termination
|
|
err = sysctlbyname("machdep.cpu.brand_string", tempBuff, &len, nullptr, 0);
|
|
if (err == 0) {
|
|
this->ChipID.ProcessorName = tempBuff;
|
|
this->ChipID.ModelName = tempBuff;
|
|
}
|
|
|
|
// L1 Cache size
|
|
this->Features.L1CacheSize = 0;
|
|
err = kw_sysctlbyname_int64("hw.l1icachesize", &tempInt64);
|
|
if (err == 0) {
|
|
this->Features.L1CacheSize = static_cast<int>(tempInt64);
|
|
}
|
|
|
|
// L2 Cache size
|
|
this->Features.L2CacheSize = 0;
|
|
err = kw_sysctlbyname_int64("hw.l2cachesize", &tempInt64);
|
|
if (err == 0) {
|
|
this->Features.L2CacheSize = static_cast<int>(tempInt64);
|
|
}
|
|
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/** Extract a value from sysctl command */
|
|
std::string SystemInformationImplementation::ExtractValueFromSysCtl(
|
|
const char* word)
|
|
{
|
|
size_t pos = this->SysCtlBuffer.find(word);
|
|
if (pos != std::string::npos) {
|
|
pos = this->SysCtlBuffer.find(": ", pos);
|
|
size_t pos2 = this->SysCtlBuffer.find('\n', pos);
|
|
if (pos != std::string::npos && pos2 != std::string::npos) {
|
|
return this->SysCtlBuffer.substr(pos + 2, pos2 - pos - 2);
|
|
}
|
|
}
|
|
return "";
|
|
}
|
|
|
|
/** Run a given process */
|
|
std::string SystemInformationImplementation::RunProcess(
|
|
std::vector<const char*> args)
|
|
{
|
|
std::string buffer;
|
|
|
|
// Run the application
|
|
kwsysProcess* gp = kwsysProcess_New();
|
|
kwsysProcess_SetCommand(gp, args.data());
|
|
kwsysProcess_SetOption(gp, kwsysProcess_Option_HideWindow, 1);
|
|
|
|
kwsysProcess_Execute(gp);
|
|
|
|
char* data = nullptr;
|
|
int length;
|
|
double timeout = 255;
|
|
int pipe; // pipe id as returned by kwsysProcess_WaitForData()
|
|
|
|
while ((static_cast<void>(
|
|
pipe = kwsysProcess_WaitForData(gp, &data, &length, &timeout)),
|
|
(pipe == kwsysProcess_Pipe_STDOUT ||
|
|
pipe == kwsysProcess_Pipe_STDERR))) // wait for 1s
|
|
{
|
|
buffer.append(data, length);
|
|
}
|
|
kwsysProcess_WaitForExit(gp, nullptr);
|
|
|
|
int result = 0;
|
|
switch (kwsysProcess_GetState(gp)) {
|
|
case kwsysProcess_State_Exited: {
|
|
result = kwsysProcess_GetExitValue(gp);
|
|
} break;
|
|
case kwsysProcess_State_Error: {
|
|
std::cerr << "Error: Could not run " << args[0] << ":\n";
|
|
std::cerr << kwsysProcess_GetErrorString(gp) << "\n";
|
|
} break;
|
|
case kwsysProcess_State_Exception: {
|
|
std::cerr << "Error: " << args[0] << " terminated with an exception: "
|
|
<< kwsysProcess_GetExceptionString(gp) << "\n";
|
|
} break;
|
|
case kwsysProcess_State_Starting:
|
|
case kwsysProcess_State_Executing:
|
|
case kwsysProcess_State_Expired:
|
|
case kwsysProcess_State_Killed: {
|
|
// Should not get here.
|
|
std::cerr << "Unexpected ending state after running " << args[0]
|
|
<< std::endl;
|
|
} break;
|
|
}
|
|
kwsysProcess_Delete(gp);
|
|
if (result) {
|
|
std::cerr << "Error " << args[0] << " returned :" << result << "\n";
|
|
}
|
|
return buffer;
|
|
}
|
|
|
|
std::string SystemInformationImplementation::ParseValueFromKStat(
|
|
const char* arguments)
|
|
{
|
|
std::vector<std::string> args_string;
|
|
std::string command = arguments;
|
|
size_t start = std::string::npos;
|
|
size_t pos = command.find(' ', 0);
|
|
while (pos != std::string::npos) {
|
|
bool inQuotes = false;
|
|
// Check if we are between quotes
|
|
size_t b0 = command.find('"', 0);
|
|
size_t b1 = command.find('"', b0 + 1);
|
|
while (b0 != std::string::npos && b1 != std::string::npos && b1 > b0) {
|
|
if (pos > b0 && pos < b1) {
|
|
inQuotes = true;
|
|
break;
|
|
}
|
|
b0 = command.find('"', b1 + 1);
|
|
b1 = command.find('"', b0 + 1);
|
|
}
|
|
|
|
if (!inQuotes) {
|
|
args_string.push_back(command.substr(start + 1, pos - start - 1));
|
|
std::string& arg = args_string.back();
|
|
|
|
// Remove the quotes if any
|
|
arg.erase(std::remove(arg.begin(), arg.end(), '"'), arg.end());
|
|
start = pos;
|
|
}
|
|
pos = command.find(' ', pos + 1);
|
|
}
|
|
command.erase(0, start + 1);
|
|
args_string.push_back(command);
|
|
|
|
std::vector<const char*> args;
|
|
args.reserve(3 + args_string.size());
|
|
args.push_back("kstat");
|
|
args.push_back("-p");
|
|
for (auto& i : args_string) {
|
|
args.push_back(i.c_str());
|
|
}
|
|
args.push_back(nullptr);
|
|
|
|
std::string buffer = this->RunProcess(args);
|
|
|
|
std::string value;
|
|
for (size_t i = buffer.size() - 1; i > 0; i--) {
|
|
if (buffer[i] == ' ' || buffer[i] == '\t') {
|
|
break;
|
|
}
|
|
if (buffer[i] != '\n' && buffer[i] != '\r') {
|
|
value.insert(0u, 1, buffer[i]);
|
|
}
|
|
}
|
|
return value;
|
|
}
|
|
|
|
/** Querying for system information from Solaris */
|
|
bool SystemInformationImplementation::QuerySolarisMemory()
|
|
{
|
|
#if defined(__SVR4) && defined(__sun)
|
|
// Solaris allows querying this value by sysconf, but if this is
|
|
// a 32 bit process on a 64 bit host the returned memory will be
|
|
// limited to 4GiB. So if this is a 32 bit process or if the sysconf
|
|
// method fails use the kstat interface.
|
|
# if SIZEOF_VOID_P == 8
|
|
if (this->QueryMemoryBySysconf()) {
|
|
return true;
|
|
}
|
|
# endif
|
|
|
|
char* tail;
|
|
unsigned long totalMemory =
|
|
strtoul(this->ParseValueFromKStat("-s physmem").c_str(), &tail, 0);
|
|
this->TotalPhysicalMemory = totalMemory / 128;
|
|
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool SystemInformationImplementation::QuerySolarisProcessor()
|
|
{
|
|
if (!this->QueryProcessorBySysconf()) {
|
|
return false;
|
|
}
|
|
|
|
// Parse values
|
|
this->CPUSpeedInMHz = static_cast<float>(
|
|
atoi(this->ParseValueFromKStat("-s clock_MHz").c_str()));
|
|
|
|
// Chip family
|
|
this->ChipID.Family = 0;
|
|
|
|
// Chip Model
|
|
this->ChipID.ProcessorName = this->ParseValueFromKStat("-s cpu_type");
|
|
this->ChipID.Model = 0;
|
|
|
|
// Chip Vendor
|
|
if (this->ChipID.ProcessorName != "i386") {
|
|
this->ChipID.Vendor = "Sun";
|
|
this->FindManufacturer();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/** Querying for system information from Haiku OS */
|
|
bool SystemInformationImplementation::QueryHaikuInfo()
|
|
{
|
|
#if defined(__HAIKU__)
|
|
|
|
// CPU count
|
|
system_info info;
|
|
get_system_info(&info);
|
|
this->NumberOfPhysicalCPU = info.cpu_count;
|
|
|
|
// CPU speed
|
|
uint32 topologyNodeCount = 0;
|
|
cpu_topology_node_info* topology = 0;
|
|
get_cpu_topology_info(0, &topologyNodeCount);
|
|
if (topologyNodeCount != 0)
|
|
topology = new cpu_topology_node_info[topologyNodeCount];
|
|
get_cpu_topology_info(topology, &topologyNodeCount);
|
|
|
|
for (uint32 i = 0; i < topologyNodeCount; i++) {
|
|
if (topology[i].type == B_TOPOLOGY_CORE) {
|
|
this->CPUSpeedInMHz =
|
|
topology[i].data.core.default_frequency / 1000000.0f;
|
|
break;
|
|
}
|
|
}
|
|
|
|
delete[] topology;
|
|
|
|
// Physical Memory
|
|
this->TotalPhysicalMemory = (info.max_pages * B_PAGE_SIZE) / (1024 * 1024);
|
|
this->AvailablePhysicalMemory = this->TotalPhysicalMemory -
|
|
((info.used_pages * B_PAGE_SIZE) / (1024 * 1024));
|
|
|
|
// NOTE: get_system_info_etc is currently a private call so just set to 0
|
|
// until it becomes public
|
|
this->TotalVirtualMemory = 0;
|
|
this->AvailableVirtualMemory = 0;
|
|
|
|
// Retrieve cpuid_info union for cpu 0
|
|
cpuid_info cpu_info;
|
|
get_cpuid(&cpu_info, 0, 0);
|
|
|
|
// Chip Vendor
|
|
// Use a temporary buffer so that we can add NULL termination to the string
|
|
char vbuf[13];
|
|
strncpy(vbuf, cpu_info.eax_0.vendor_id, 12);
|
|
vbuf[12] = '\0';
|
|
this->ChipID.Vendor = vbuf;
|
|
|
|
this->FindManufacturer();
|
|
|
|
// Retrieve cpuid_info union for cpu 0 this time using a register value of 1
|
|
get_cpuid(&cpu_info, 1, 0);
|
|
|
|
this->NumberOfLogicalCPU = cpu_info.eax_1.logical_cpus;
|
|
|
|
// Chip type
|
|
this->ChipID.Type = cpu_info.eax_1.type;
|
|
|
|
// Chip family
|
|
this->ChipID.Family = cpu_info.eax_1.family;
|
|
|
|
// Chip Model
|
|
this->ChipID.Model = cpu_info.eax_1.model;
|
|
|
|
// Chip Revision
|
|
this->ChipID.Revision = cpu_info.eax_1.stepping;
|
|
|
|
// Chip Extended Family
|
|
this->ChipID.ExtendedFamily = cpu_info.eax_1.extended_family;
|
|
|
|
// Chip Extended Model
|
|
this->ChipID.ExtendedModel = cpu_info.eax_1.extended_model;
|
|
|
|
// Get ChipID.ProcessorName from other information already gathered
|
|
this->RetrieveClassicalCPUIdentity();
|
|
|
|
// Cache size
|
|
this->Features.L1CacheSize = 0;
|
|
this->Features.L2CacheSize = 0;
|
|
|
|
return true;
|
|
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool SystemInformationImplementation::QueryQNXMemory()
|
|
{
|
|
#if defined(__QNX__)
|
|
std::string buffer;
|
|
std::vector<const char*> args;
|
|
args.clear();
|
|
|
|
args.push_back("showmem");
|
|
args.push_back("-S");
|
|
args.push_back(0);
|
|
buffer = this->RunProcess(args);
|
|
args.clear();
|
|
|
|
size_t pos = buffer.find("System RAM:");
|
|
if (pos == std::string::npos)
|
|
return false;
|
|
pos = buffer.find(":", pos);
|
|
size_t pos2 = buffer.find("M (", pos);
|
|
if (pos2 == std::string::npos)
|
|
return false;
|
|
|
|
pos++;
|
|
while (buffer[pos] == ' ')
|
|
pos++;
|
|
|
|
buffer.erase(0, pos);
|
|
buffer.resize(pos2);
|
|
this->TotalPhysicalMemory = atoi(buffer.c_str());
|
|
return true;
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
bool SystemInformationImplementation::QueryBSDMemory()
|
|
{
|
|
#if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \
|
|
defined(__DragonFly__)
|
|
int ctrl[2] = { CTL_HW, HW_PHYSMEM };
|
|
# if defined(HW_PHYSMEM64)
|
|
int64_t k;
|
|
ctrl[1] = HW_PHYSMEM64;
|
|
# else
|
|
int k;
|
|
# endif
|
|
size_t sz = sizeof(k);
|
|
|
|
if (sysctl(ctrl, 2, &k, &sz, nullptr, 0) != 0) {
|
|
return false;
|
|
}
|
|
|
|
this->TotalPhysicalMemory = k >> 10 >> 10;
|
|
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool SystemInformationImplementation::QueryQNXProcessor()
|
|
{
|
|
#if defined(__QNX__)
|
|
// the output on my QNX 6.4.1 looks like this:
|
|
// Processor1: 686 Pentium II Stepping 3 2175MHz FPU
|
|
std::string buffer;
|
|
std::vector<const char*> args;
|
|
args.clear();
|
|
|
|
args.push_back("pidin");
|
|
args.push_back("info");
|
|
args.push_back(0);
|
|
buffer = this->RunProcess(args);
|
|
args.clear();
|
|
|
|
size_t pos = buffer.find("Processor1:");
|
|
if (pos == std::string::npos)
|
|
return false;
|
|
|
|
size_t pos2 = buffer.find("MHz", pos);
|
|
if (pos2 == std::string::npos)
|
|
return false;
|
|
|
|
size_t pos3 = pos2;
|
|
while (buffer[pos3] != ' ')
|
|
--pos3;
|
|
|
|
this->CPUSpeedInMHz = atoi(buffer.substr(pos3 + 1, pos2 - pos3 - 1).c_str());
|
|
|
|
pos2 = buffer.find(" Stepping", pos);
|
|
if (pos2 != std::string::npos) {
|
|
pos2 = buffer.find(" ", pos2 + 1);
|
|
if (pos2 != std::string::npos && pos2 < pos3) {
|
|
this->ChipID.Revision =
|
|
atoi(buffer.substr(pos2 + 1, pos3 - pos2).c_str());
|
|
}
|
|
}
|
|
|
|
this->NumberOfPhysicalCPU = 0;
|
|
do {
|
|
pos = buffer.find("\nProcessor", pos + 1);
|
|
++this->NumberOfPhysicalCPU;
|
|
} while (pos != std::string::npos);
|
|
this->NumberOfLogicalCPU = 1;
|
|
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool SystemInformationImplementation::QueryBSDProcessor()
|
|
{
|
|
#if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || \
|
|
defined(__DragonFly__)
|
|
int k;
|
|
size_t sz = sizeof(k);
|
|
int ctrl[2] = { CTL_HW, HW_NCPU };
|
|
|
|
if (sysctl(ctrl, 2, &k, &sz, nullptr, 0) != 0) {
|
|
return false;
|
|
}
|
|
|
|
this->NumberOfPhysicalCPU = k;
|
|
this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;
|
|
|
|
# if defined(HW_CPUSPEED)
|
|
ctrl[1] = HW_CPUSPEED;
|
|
|
|
if (sysctl(ctrl, 2, &k, &sz, nullptr, 0) != 0) {
|
|
return false;
|
|
}
|
|
|
|
this->CPUSpeedInMHz = (float)k;
|
|
# endif
|
|
|
|
# if defined(CPU_SSE)
|
|
ctrl[0] = CTL_MACHDEP;
|
|
ctrl[1] = CPU_SSE;
|
|
|
|
if (sysctl(ctrl, 2, &k, &sz, nullptr, 0) != 0) {
|
|
return false;
|
|
}
|
|
|
|
this->Features.HasSSE = (k > 0);
|
|
# endif
|
|
|
|
# if defined(CPU_SSE2)
|
|
ctrl[0] = CTL_MACHDEP;
|
|
ctrl[1] = CPU_SSE2;
|
|
|
|
if (sysctl(ctrl, 2, &k, &sz, nullptr, 0) != 0) {
|
|
return false;
|
|
}
|
|
|
|
this->Features.HasSSE2 = (k > 0);
|
|
# endif
|
|
|
|
# if defined(CPU_CPUVENDOR)
|
|
ctrl[0] = CTL_MACHDEP;
|
|
ctrl[1] = CPU_CPUVENDOR;
|
|
char vbuf[25];
|
|
::memset(vbuf, 0, sizeof(vbuf));
|
|
sz = sizeof(vbuf) - 1;
|
|
if (sysctl(ctrl, 2, vbuf, &sz, nullptr, 0) != 0) {
|
|
return false;
|
|
}
|
|
|
|
this->ChipID.Vendor = vbuf;
|
|
this->FindManufacturer();
|
|
# endif
|
|
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool SystemInformationImplementation::QueryHPUXMemory()
|
|
{
|
|
#if defined(__hpux)
|
|
unsigned long tv = 0;
|
|
unsigned long tp = 0;
|
|
unsigned long av = 0;
|
|
unsigned long ap = 0;
|
|
struct pst_static pst;
|
|
struct pst_dynamic pdy;
|
|
|
|
unsigned long ps = 0;
|
|
if (pstat_getstatic(&pst, sizeof(pst), (size_t)1, 0) == -1) {
|
|
return false;
|
|
}
|
|
|
|
ps = pst.page_size;
|
|
tp = pst.physical_memory * ps;
|
|
tv = (pst.physical_memory + pst.pst_maxmem) * ps;
|
|
if (pstat_getdynamic(&pdy, sizeof(pdy), (size_t)1, 0) == -1) {
|
|
return false;
|
|
}
|
|
|
|
ap = tp - pdy.psd_rm * ps;
|
|
av = tv - pdy.psd_vm;
|
|
this->TotalVirtualMemory = tv >> 10 >> 10;
|
|
this->TotalPhysicalMemory = tp >> 10 >> 10;
|
|
this->AvailableVirtualMemory = av >> 10 >> 10;
|
|
this->AvailablePhysicalMemory = ap >> 10 >> 10;
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool SystemInformationImplementation::QueryHPUXProcessor()
|
|
{
|
|
#if defined(__hpux)
|
|
# if defined(KWSYS_SYS_HAS_MPCTL_H)
|
|
int c = mpctl(MPC_GETNUMSPUS_SYS, 0, 0);
|
|
if (c <= 0) {
|
|
return false;
|
|
}
|
|
|
|
this->NumberOfPhysicalCPU = c;
|
|
this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;
|
|
|
|
long t = sysconf(_SC_CPU_VERSION);
|
|
|
|
if (t == -1) {
|
|
return false;
|
|
}
|
|
|
|
switch (t) {
|
|
case CPU_PA_RISC1_0:
|
|
this->ChipID.Vendor = "Hewlett-Packard";
|
|
this->ChipID.Family = 0x100;
|
|
break;
|
|
case CPU_PA_RISC1_1:
|
|
this->ChipID.Vendor = "Hewlett-Packard";
|
|
this->ChipID.Family = 0x110;
|
|
break;
|
|
case CPU_PA_RISC2_0:
|
|
this->ChipID.Vendor = "Hewlett-Packard";
|
|
this->ChipID.Family = 0x200;
|
|
break;
|
|
# if defined(CPU_HP_INTEL_EM_1_0) || defined(CPU_IA64_ARCHREV_0)
|
|
# ifdef CPU_HP_INTEL_EM_1_0
|
|
case CPU_HP_INTEL_EM_1_0:
|
|
# endif
|
|
# ifdef CPU_IA64_ARCHREV_0
|
|
case CPU_IA64_ARCHREV_0:
|
|
# endif
|
|
this->ChipID.Vendor = "GenuineIntel";
|
|
this->Features.HasIA64 = true;
|
|
break;
|
|
# endif
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
this->FindManufacturer();
|
|
|
|
return true;
|
|
# else
|
|
return false;
|
|
# endif
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/** Query the operating system information */
|
|
bool SystemInformationImplementation::QueryOSInformation()
|
|
{
|
|
#if defined(_WIN32)
|
|
|
|
this->OSName = "Windows";
|
|
|
|
OSVERSIONINFOEXW osvi;
|
|
BOOL bIsWindows64Bit;
|
|
BOOL bOsVersionInfoEx;
|
|
char operatingSystem[256];
|
|
|
|
// Try calling GetVersionEx using the OSVERSIONINFOEX structure.
|
|
ZeroMemory(&osvi, sizeof(OSVERSIONINFOEXW));
|
|
osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEXW);
|
|
# ifdef KWSYS_WINDOWS_DEPRECATED_GetVersionEx
|
|
# pragma warning(push)
|
|
# ifdef __INTEL_COMPILER
|
|
# pragma warning(disable : 1478)
|
|
# elif defined __clang__
|
|
# pragma clang diagnostic push
|
|
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
|
# else
|
|
# pragma warning(disable : 4996)
|
|
# endif
|
|
# endif
|
|
bOsVersionInfoEx = GetVersionExW((OSVERSIONINFOW*)&osvi);
|
|
if (!bOsVersionInfoEx) {
|
|
osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOW);
|
|
if (!GetVersionExW((OSVERSIONINFOW*)&osvi)) {
|
|
return false;
|
|
}
|
|
}
|
|
# ifdef KWSYS_WINDOWS_DEPRECATED_GetVersionEx
|
|
# ifdef __clang__
|
|
# pragma clang diagnostic pop
|
|
# else
|
|
# pragma warning(pop)
|
|
# endif
|
|
# endif
|
|
|
|
switch (osvi.dwPlatformId) {
|
|
case VER_PLATFORM_WIN32_NT:
|
|
// Test for the product.
|
|
if (osvi.dwMajorVersion <= 4) {
|
|
this->OSRelease = "NT";
|
|
}
|
|
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 0) {
|
|
this->OSRelease = "2000";
|
|
}
|
|
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) {
|
|
this->OSRelease = "XP";
|
|
}
|
|
// XP Professional x64
|
|
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 2) {
|
|
this->OSRelease = "XP";
|
|
}
|
|
# ifdef VER_NT_WORKSTATION
|
|
// Test for product type.
|
|
if (bOsVersionInfoEx) {
|
|
if (osvi.wProductType == VER_NT_WORKSTATION) {
|
|
if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 0) {
|
|
this->OSRelease = "Vista";
|
|
}
|
|
if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 1) {
|
|
this->OSRelease = "7";
|
|
}
|
|
// VER_SUITE_PERSONAL may not be defined
|
|
# ifdef VER_SUITE_PERSONAL
|
|
else {
|
|
if (osvi.wSuiteMask & VER_SUITE_PERSONAL) {
|
|
this->OSRelease += " Personal";
|
|
} else {
|
|
this->OSRelease += " Professional";
|
|
}
|
|
}
|
|
# endif
|
|
} else if (osvi.wProductType == VER_NT_SERVER) {
|
|
// Check for .NET Server instead of Windows XP.
|
|
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) {
|
|
this->OSRelease = ".NET";
|
|
}
|
|
|
|
// Continue with the type detection.
|
|
if (osvi.wSuiteMask & VER_SUITE_DATACENTER) {
|
|
this->OSRelease += " DataCenter Server";
|
|
} else if (osvi.wSuiteMask & VER_SUITE_ENTERPRISE) {
|
|
this->OSRelease += " Advanced Server";
|
|
} else {
|
|
this->OSRelease += " Server";
|
|
}
|
|
}
|
|
|
|
sprintf(operatingSystem, "%ls (Build %ld)", osvi.szCSDVersion,
|
|
osvi.dwBuildNumber & 0xFFFF);
|
|
this->OSVersion = operatingSystem;
|
|
} else
|
|
# endif // VER_NT_WORKSTATION
|
|
{
|
|
HKEY hKey;
|
|
wchar_t szProductType[80];
|
|
DWORD dwBufLen;
|
|
|
|
// Query the registry to retrieve information.
|
|
RegOpenKeyExW(HKEY_LOCAL_MACHINE,
|
|
L"SYSTEM\\CurrentControlSet\\Control\\ProductOptions", 0,
|
|
KEY_QUERY_VALUE, &hKey);
|
|
RegQueryValueExW(hKey, L"ProductType", nullptr, nullptr,
|
|
(LPBYTE)szProductType, &dwBufLen);
|
|
RegCloseKey(hKey);
|
|
|
|
if (lstrcmpiW(L"WINNT", szProductType) == 0) {
|
|
this->OSRelease += " Professional";
|
|
}
|
|
if (lstrcmpiW(L"LANMANNT", szProductType) == 0) {
|
|
// Decide between Windows 2000 Advanced Server and Windows .NET
|
|
// Enterprise Server.
|
|
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) {
|
|
this->OSRelease += " Standard Server";
|
|
} else {
|
|
this->OSRelease += " Server";
|
|
}
|
|
}
|
|
if (lstrcmpiW(L"SERVERNT", szProductType) == 0) {
|
|
// Decide between Windows 2000 Advanced Server and Windows .NET
|
|
// Enterprise Server.
|
|
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) {
|
|
this->OSRelease += " Enterprise Server";
|
|
} else {
|
|
this->OSRelease += " Advanced Server";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Display version, service pack (if any), and build number.
|
|
if (osvi.dwMajorVersion <= 4) {
|
|
// NB: NT 4.0 and earlier.
|
|
sprintf(operatingSystem, "version %ld.%ld %ls (Build %ld)",
|
|
osvi.dwMajorVersion, osvi.dwMinorVersion, osvi.szCSDVersion,
|
|
osvi.dwBuildNumber & 0xFFFF);
|
|
this->OSVersion = operatingSystem;
|
|
} else if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) {
|
|
// Windows XP and .NET server.
|
|
typedef BOOL(CALLBACK * LPFNPROC)(HANDLE, BOOL*);
|
|
HINSTANCE hKernelDLL;
|
|
LPFNPROC DLLProc;
|
|
|
|
// Load the Kernel32 DLL.
|
|
hKernelDLL = LoadLibraryW(L"kernel32");
|
|
if (hKernelDLL != nullptr) {
|
|
// Only XP and .NET Server support IsWOW64Process so... Load
|
|
// dynamically!
|
|
DLLProc = (LPFNPROC)GetProcAddress(hKernelDLL, "IsWow64Process");
|
|
|
|
// If the function address is valid, call the function.
|
|
if (DLLProc != nullptr)
|
|
(DLLProc)(GetCurrentProcess(), &bIsWindows64Bit);
|
|
else
|
|
bIsWindows64Bit = false;
|
|
|
|
// Free the DLL module.
|
|
FreeLibrary(hKernelDLL);
|
|
}
|
|
} else {
|
|
// Windows 2000 and everything else.
|
|
sprintf(operatingSystem, "%ls (Build %ld)", osvi.szCSDVersion,
|
|
osvi.dwBuildNumber & 0xFFFF);
|
|
this->OSVersion = operatingSystem;
|
|
}
|
|
break;
|
|
|
|
case VER_PLATFORM_WIN32_WINDOWS:
|
|
// Test for the product.
|
|
if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 0) {
|
|
this->OSRelease = "95";
|
|
if (osvi.szCSDVersion[1] == 'C') {
|
|
this->OSRelease += "OSR 2.5";
|
|
} else if (osvi.szCSDVersion[1] == 'B') {
|
|
this->OSRelease += "OSR 2";
|
|
}
|
|
}
|
|
|
|
if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 10) {
|
|
this->OSRelease = "98";
|
|
if (osvi.szCSDVersion[1] == 'A') {
|
|
this->OSRelease += "SE";
|
|
}
|
|
}
|
|
|
|
if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 90) {
|
|
this->OSRelease = "Me";
|
|
}
|
|
break;
|
|
|
|
case VER_PLATFORM_WIN32s:
|
|
this->OSRelease = "Win32s";
|
|
break;
|
|
|
|
default:
|
|
this->OSRelease = "Unknown";
|
|
break;
|
|
}
|
|
|
|
// Get the hostname
|
|
WORD wVersionRequested;
|
|
WSADATA wsaData;
|
|
char name[255];
|
|
wVersionRequested = MAKEWORD(2, 0);
|
|
|
|
if (WSAStartup(wVersionRequested, &wsaData) == 0) {
|
|
gethostname(name, sizeof(name));
|
|
WSACleanup();
|
|
}
|
|
this->Hostname = name;
|
|
|
|
const char* arch = getenv("PROCESSOR_ARCHITECTURE");
|
|
const char* wow64 = getenv("PROCESSOR_ARCHITEW6432");
|
|
if (arch) {
|
|
this->OSPlatform = arch;
|
|
}
|
|
|
|
if (wow64) {
|
|
// the PROCESSOR_ARCHITEW6432 is only defined when running 32bit programs
|
|
// on 64bit OS
|
|
this->OSIs64Bit = true;
|
|
} else if (arch) {
|
|
// all values other than x86 map to 64bit architectures
|
|
this->OSIs64Bit = (strncmp(arch, "x86", 3) != 0);
|
|
}
|
|
|
|
#else
|
|
|
|
struct utsname unameInfo;
|
|
int errorFlag = uname(&unameInfo);
|
|
if (errorFlag == 0) {
|
|
this->OSName = unameInfo.sysname;
|
|
this->Hostname = unameInfo.nodename;
|
|
this->OSRelease = unameInfo.release;
|
|
this->OSVersion = unameInfo.version;
|
|
this->OSPlatform = unameInfo.machine;
|
|
|
|
// This is still insufficient to capture 64bit architecture such
|
|
// powerpc and possible mips and sparc
|
|
if (this->OSPlatform.find_first_of("64") != std::string::npos) {
|
|
this->OSIs64Bit = true;
|
|
}
|
|
}
|
|
|
|
# ifdef __APPLE__
|
|
this->OSName = "Unknown Apple OS";
|
|
this->OSRelease = "Unknown product version";
|
|
this->OSVersion = "Unknown build version";
|
|
|
|
this->CallSwVers("-productName", this->OSName);
|
|
this->CallSwVers("-productVersion", this->OSRelease);
|
|
this->CallSwVers("-buildVersion", this->OSVersion);
|
|
# endif
|
|
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
int SystemInformationImplementation::CallSwVers(const char* arg,
|
|
std::string& ver)
|
|
{
|
|
#ifdef __APPLE__
|
|
std::vector<const char*> args;
|
|
args.push_back("sw_vers");
|
|
args.push_back(arg);
|
|
args.push_back(nullptr);
|
|
ver = this->RunProcess(args);
|
|
this->TrimNewline(ver);
|
|
#else
|
|
// avoid C4100
|
|
(void)arg;
|
|
(void)ver;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void SystemInformationImplementation::TrimNewline(std::string& output)
|
|
{
|
|
// remove \r
|
|
std::string::size_type pos = 0;
|
|
while ((pos = output.find('\r', pos)) != std::string::npos) {
|
|
output.erase(pos);
|
|
}
|
|
|
|
// remove \n
|
|
pos = 0;
|
|
while ((pos = output.find('\n', pos)) != std::string::npos) {
|
|
output.erase(pos);
|
|
}
|
|
}
|
|
|
|
/** Return true if the machine is 64 bits */
|
|
bool SystemInformationImplementation::Is64Bits() const
|
|
{
|
|
return this->OSIs64Bit;
|
|
}
|
|
}
|